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The CaBP family of EF-hand containing small Ca?*-binding proteins have recently emerged as important
regulators of multiple targets essential to normal neuronal function in the mammalian central nervous
system. Of particular interest are CaBP7 and CaBP8, abundantly expressed brain proteins that exhibit

the greatest sequence divergence from other family members. In this study, we have analysed their
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sub-cellular localisations in a model neuronal (Neuro2A) cell line and show that both proteins exhibit
a membrane distribution distinct from the other CaBPs and consistent with localisation to the trans-Golgi
network (TGN). Furthermore, we show that their localisation to the TGN critically depends upon an unu-
sual predicted C-terminal transmembrane domain that if deleted or disrupted has dramatic conse-
quences for protein targeting. CaBP7 and 8, therefore, possess a targeting mechanism that is unique
amongst the CaBPs that may contribute to differential functional Ca?*-sensing by these family members.

© 2009 Elsevier Inc. Open access under CC BY license.

Introduction

Calcium (Ca?") signalling impinges on almost all aspects of
mammalian physiology [1]. This is well illustrated in the central
nervous system (CNS) where Ca®* signals regulate neurotransmis-
sion and synaptic plasticity to shape higher level processes such as
learning and memory [2,3]. The mammalian CNS is able to utilise a
staggering array of complex spatio-temporal Ca?* signals and this
is largely attributable to the evolution of families of Ca%*-binding
proteins that display unique expression patterns and distinct
Ca?*-sensing properties [4,5].

One such family of Ca?*-sensors are the small EF-hand contain-
ing Calcium Binding Proteins or CaBPs [5,6]. Members of this
family appear structurally related to the ubiquitous EF-hand
Ca%*-sensing protein calmodulin (CaM) [7], they display, however,
restricted expression profiles and respond to specific Ca?* signals.
The CaBP family consists of six isoforms (1, 2, 4, 5, 7 and 8)
[5,6,8] although alternative splicing of the CaBP1 and possibly
CaBP2 genes generates at least nine distinct proteins. Recent
research has implicated Caldendrin and its two shorter splice
variants, CaBP1-Long and CaBP1-Short, as regulators of Ca®* release
channels in mammalian cells. Targets include P/Q [9] and L-Type
[10] voltage gated channels of the CNS, N-type channels of neuro-
endocrine cells [11], intracellular IPs-receptors [12,13], TRPC5
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channels [14] and Cay1.3 channels in auditory hair cells [15]. Cal-
dendrin is localised to the post synaptic density of excitatory syn-
apses [16] and integrates Ca?* signals from both synaptic and
extra-synaptic NMDA receptors to influence synaptic architecture
[17]. CaBP4 represents a retinal specific modulator of Cay1.4 chan-
nels [18,19] and mutations in the CaBP4 gene are responsible for
autosomal recessive night blindness [20]. CaBP5 is also expressed
in sensory cell types and in the retina appears to modulate the
activity of Cay1.2 channels to perhaps regulate retinal sensitivity
[21].

CaBP7 and 8 (also known as calneurons II and I, respectively)
are recent additions to the CaBP family and although similar to
one another (64% identity) they are most divergent from the other
family members sharing <30% identity. Little is known concerning
CaBP7 and 8 other than that they are abundantly expressed brain
proteins [6,8] that have a unique arrangement of functional and
non-functional EF-hand motifs. We have examined the sub-cellular
distribution of CaBP7 and 8 and other members of the CaBP family
following expression in differentiated Neuro2A cells, a model neu-
ronal cell line. Our results indicate that CaBP7 and 8 share a dis-
tinctive membranous localisation and can be co-localised with
trans-Golgi network (TGN) specific markers. Interestingly, CaBP7
and 8 lack sequence determinants for lipid modifications seen in
some other CaBPs. Analysis of their primary sequences uncovered
a predicted C-terminal transmembrane domain (TMD). We have
investigated the role of this domain in determining the distinctive
sub-cellular distributions of CaBP7 and 8 and provide evidence that
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it is essential for localisation. Deletion or mutation of the TMD ab-
lates the membrane association of CaBP7 and 8 and furthermore,
fusion of the TMDs to the normally cytosolic CaBP5 or mCherry
proteins induces localisation to membranes. It has been unclear
why so many different CaBPs are expressed but our data provides
new insights into the membrane targeting of CaBP7 and 8 that
could explain how they may respond to distinct spatially-localised
Ca?* signals.

Materials and methods

Plasmids constructs. Full length cDNAs encoding all human CaB-
Ps were obtained by PCR amplification from Quikclone (Clontech,
CA, USA) human brain ¢cDNA template. Products were cloned into
C-terminally tagging mCherry-N1 or mOrange-N1 vectors (a gift
from Dr. R. Tsien, University of California) for expression in mam-
malian cells. CaBP7 and 8 TMD deleted constructs were generated
by PCR cloning from the full length parental vectors. Triple lysine
TMD mutant plasmids were generated by site directed mutagene-
sis (Quikchange, Stratagene, USA) of parental vectors. N-terminally
tagged enhanced yellow fluorescent protein (EYFP) variants of
CaBP7 and 8 were generated by sub-cloning cDNAs into the
EYFP-C1 vector (Clontech, CA, USA). CaBP5 and mCherry-C1 chima-
eras containing the CaBP7 or CaBP8 TMDs were generated by PCR
amplification of the appropriate TMD and subsequent sub-cloning
using standard techniques. CaBP1-Long-EYFP was described previ-
ously [12]. The cis/medial Golgi marker (EYFP-Golgi) was obtained
from Clontech, CA, USA. All constructs were verified by automated
sequencing.

Cell culture and transfection. Neuro2A cells were maintained in
DMEM supplemented with 10% foetal bovine serum, 1% penicillin/
streptomycin and maintained in a humidified atmosphere of
95%air/5% CO, at 37 °C. Prior to transfection, media was exchanged
for DMEM containing 2% FBS, 1% penicillin/streptomycin and
20 pM retinoic acid to induce cell differentiation. Cells plated onto
glass coverslips were transiently transfected with 1 pg of the appro-
priate plasmid construct using GeneJuice transfection reagent
(Novagen) according to the manufacturer’s protocol. For co-localisa-
tion studies cells were transfected with 1 pg of each construct. Cells
were fixed 24 h post-transfection in 4% formaldehyde in phosphate
buffered saline (PBS) for 30 min. In some cases, cells were processed
for immunofluorescence by permeabilisation with PBT (0.1% triton
X-100, 0.3% BSA in PBS), incubation with mouse monoclonal anti-
syntaxin 6 antibody (Abcam) and subsequent incubation with a FITC
conjugated anti-mouse secondary antibody (Sigma).

VSVG assay. For cotransfections with VSVG cells were transiently
transfected with ts045 VSVG-GFP and each of CaBP7-mCherry,
CaBP8-mCherry,  mCherry-CaBP7'"'88  mCherry-CaBP8'~192,
CaBP7™P KKK mCherry, CaBP8™P KXKK_mCherry, CaBP5%38P7TMD_
mCherry, CaBP5“8""™P_mCherry and mCherry-287™D Ce]ls were
incubated at 37 °C for 4 h to permit transfection then transferred to
40 °C overnight. Cells were subsequently transferred to 20 °Cfor 2 h
to trap ts045 VSVG-GFP at the TGN before fixation.

Confocal microscopy. Fixed cells were imaged using a Leica TCS-
SP-MP microscope (Leica Microsystems, Heidelberg, Germany)
with a 22 pm pinhole and a x63 oil immersion objective. Images
were exported as TIFF files and compiled in CorelDraw x4 (Corel
Corporation).

Results
Localisation of human CaBP isoforms in Neuro2A cells

In order to compare the sub-cellular localisations of human
CaBP isoforms we determined the distributions of each of the pro-

teins following transfection of colour tagged constructs into reti-
noic acid differentiated neuro2A (N2A) cells [22]. As the CaBPs
exhibit greatest expression levels in neuronal tissues we reasoned
that these cells would provide a more accurate reflection of correct
sub-cellular localisation. CaBP1-Long, CaBP1-Short and CaBP2 all
harbour an N-terminal muyristoylation consensus sequence and
our results show that these isoforms were correctly trafficked
and efficiently membrane associated, localising to both a peri-nu-
clear region resembling the Golgi apparatus and the plasma mem-
brane (Fig. 1B-D). Of the remaining CaBPs, none carry consensus
sequences for post-translational lipidation and caldendrin, CaBP4
and CaBP5 (Fig. 1A, E and F) all exhibited a predominantly diffuse
cytosolic distribution consistent with this. CaBP7 and 8 similarly
lack consensus motifs for post-translational acylation but both
proteins were membrane associated in N2A cells (Fig. 1G and H).
CaBP7 and 8 distributions were similar, exhibiting localisation pre-
dominantly to a peri-nuclear compartment, intracellular vesicles
and in some instances the plasma membrane. This unexpected
localisation led us to investigate the cellular structures labelled
by CaBPs7 and 8 and the precise mechanism of this membrane
association further.

Association of CaBP7 and 8 with the TGN

We initially investigated the identity of the peri-nuclear com-
partment labelled by CaBP7 and 8 in differentiated N2A cells by
utilising a cis/medial Golgi marker (Fig. 2A and B). We observed
only partial co-localisation in these analyses and since previous
studies had determined a TGN localisation for CaBP1-Long and
CaBP1-Short we proceeded to examine whether the peri-nuclear
compartment labelled by CaBPs7 and 8 correlated more exten-
sively with this Golgi sub-domain. We utilised two TGN specific
markers, syntaxin 6 [23] and the constitutive secretory cargo,
vesicular stomatitis virus-G protein (VSVG) [24] to determine the
extent of co-localisation in cells co-expressing CaBP7 or 8. Initially,
we examined the distributions of CaBPs7 and 8 with endogenous,
immunolabelled, syntaxin 6 (Fig. 2C and D) and observed co-local-
isation consistent with the presence of both proteins at the TGN. In
examining co-localisation with VSVG we exploited a temperature
sensitive green fluorescent protein tagged version of the protein
(ts045 VSVG-GFP) [25] that has a temperature dependent
reversible folding defect permitting trapping of the protein in the
endoplasmic reticulum (ER). Cells were maintained at 40 °C post-
transfection (to trap ts045 VSVG-GFP in the ER) then shifted to
20 °C to allow traffic from the ER to the TGN (here transport is
again blocked as vesicular traffic out of the TGN is inhibited at
20°C). Under these conditions both CaBP7 and 8 co-localised
extensively with the ts045 VSVG-GFP positive TGN compartment
(Fig. 2E and F) consistent with syntaxin 6 data.

Identification and analysis of putative C-terminal TMDs in CaBPs7
and 8

We examined the primary sequence of CaBP7 and 8 to search
for determinants that might be responsible for sub-cellular target-
ing. The TMpred algorithm (http://www.ch.embnet.org/software/
TMPRED_form.html) [26] strongly predicted the presence of a
C-terminal TMD in both CaBP7 (residues 189-205) and CaBP8
(residues 193-209). Of the other CaBP family members only
CaBP1-Long and CaBP2 were predicted to contain a TMD although
prediction scores in these instances were significantly lower than
those for CaBP7 and 8. Since for CaBP1-Long N-terminal myris-
toylation has been proven essential to membrane association of
the protein [12] we focused upon investigating the predicted TMDs
in CaBPs7 and 8 and their potential role in sub-cellular localisation.
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Fig. 1. Intracellular distribution of fluorescently tagged human CaBP isoforms. The indicated constructs were used to determine the localisation of CaBPs expressed in retinoic

acid differentiated N2A cells. The scale bar represents 10 pm.

Characterisation of CaBP7 and 8 C-terminal TMDs

In order to provide evidence that predicted C-terminal TMDs in
CaBPs7 and 8 were of functional relevance we first generated trun-
cation variants of each protein terminating at the amino acid di-
rectly before the beginning of the predicted TMD. These
constructs (CaBP7'188 or CaBP8'~'%2, Fig. 3A and B) were predom-
inantly cytosolic in contrast to the defined membrane localisation
of the wild-type proteins (Fig. 1G and H) and co-localisation with
the TGN was lost. In related studies, we utilised a mutagenesis ap-
proach to replace the central three amino acids of the TMDs in full-
length CaBPs7 and 8 with lysine residues (predicted by TMpred to
abolish TMD function). In comparison to the localisation observed
with full-length wild-type CaBP7 and 8 these mutants (CaBP7™P-KKK
and CaBP8™P-KKK kig 3C and D) exhibited an increased cytosolic
distribution that was more pronounced for CaBP7. These data are
consistent with those obtained for truncation constructs and
suggest that disruption of the TMDs of CaBP7 or CaBP8 leads to
extensive mislocalisation of each protein into the cytosol.

Analysis of CaBP7 and 8 TMD chimaeric constructs

In an extension to our initial characterisation studies we gener-
ated chimaeric constructs fusing each TMD sequence to the C-ter-
minus of CaBP5 or mCherry both of which are normally cytosolic
proteins. In comparison to the normal localisation of wild-type
CaBP5 (Fig. 1F) both the CaBP5%BF7™PD and CaBP5%BP8™D fysion
constructs (Fig. 4A and B) co-localised extensively with the TGN
marker ts045 VSVG-GFP. Similarly, the TMD of CaBP7 when fused
to the fluorescent protein mCherry (Fig. 4C) was also able to direct
a pool of this protein to the TGN. These observations further sup-
port the notion that the putative TMDs of CaBPs7 and 8 are neces-
sary and sufficient for targeting to specific sub-cellular membrane
domains. As all of our data indicated the presence of a C-terminal
membrane interaction motif in CaBP7 and 8 we decided to rule out
the possibility that fusing a fluorescent protein tag to this end of
the molecule affects targeting. To this end we re-cloned CaBP7
and 8 into an N-terminally tagging fluorescent vector and co-ex-
pressed these constructs with their C-terminally tagged counter-
parts in the same cells. Complete co-localisation was observed in
these experiments indicating that tag position did not influence
the sub-cellular distribution of CaBP7 or 8 (Fig. 4D and E).

Discussion

The CaBP family of EF-hand containing small Ca%*-binding pro-
teins have emerged as important regulators of a variety of plasma
membrane and intracellular cation channels in neuronal cell types
principally modulating cytosolic Ca®* concentrations through con-
trol of influx from the extracellular fluid or efflux from intracellular
stores. The need for multiple members of this family is not yet
clear. Based on the documented functions exerted by CaBPs1, 4
and 5, we reasoned it likely that other family members would pos-
sess important, potentially neuronal specific, activities. In this
study, we have characterised CaBP7 and 8 the two most divergent
members of this family. These proteins are expressed to high levels
in distinct regions of the adult mammalian brain and display devel-
opmental changes in expression consistent with a role in normal
neuronal function. The only report published to date describing
an analysis of endogenous CaBP7 and 8 localisation in primary hip-
pocampal cultures [6] was based on crude subcelluar fractionation
and concluded that both proteins were present in the soluble cell
fraction suggesting that these proteins, like some other members
of the CaBP family are normally cytosolic. This finding was consis-
tent with a lack of consensus motifs in CaBPs7 and 8 for post-trans-
lational acylation, the only modification to date that has been
identified in the CaBP family to mediate membrane association.
In comparative studies examining all human CaBP isoforms ex-
pressed in N2A cells we observed a distinctive mechanism for
membrane localisation for CaBPs7 and 8. All other CaBP family
members in this analysis exhibited localisation patterns as previ-
ously reported and/or consistent with the presence or absence of
intrinsic myristoylation consensus sequences that can fully ac-
count for the membrane localisation of CaBP1-Long, CaBP1-Short
and CaBP2 [5,12,13].

Co-localisation studies showed that CaBP7 and 8 were targeted
to and associated with the TGN and other membranous structures
in neuronally-differentiated N2A cells. This was based on extensive
co-localisation of CaBP7 and 8 with the membranous TGN marker
syntaxin 6 and the secretory cargo protein ts045 VSVG-GFP in a
well characterised protocol that was designed to trap it in the
TGN. Interrogation of the CaBP7 and 8 primary sequences using
the TMpred algorithm uncovered a putative C-terminal TMD in
both proteins with a high probability score and which closely
resembled known TMDs present in tail anchored proteins [27].
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Fig. 2. Co-localisation of CaBP7 and 8 with TGN markers in differentiated N2A cells. Localisation of CaBP7 and 8 (red) with an EYFP tagged cis/medial Golgi marker (A,B,
green) or the TGN specific markers syntaxin 6 (C,D, green) and ts045 VSVG-GFP (E,F, green) was examined. Regions of co-localisation appear yellow in the merged images. The
scale bar represents 10 pm. (For interpretation of color mentioned in this figure the reader is referred to the web version of the article.)

To test the physiological relevance of the predicted TMD for mem- and observed the resulting effect on localisation. In N2A cells
brane targeting we deleted the domain entirely from each protein expressing truncated versions of CaBPs7 and 8 we observed a com-
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Fig. 3. Analysis of the function of the putative TMD of CaBP7 and 8 TMD in differentiated N2A cells. Cells were transfected with ts045 VSVG-GFP (green) as a TGN marker and
either CaBP7'~'®8 or CaBP8'~'%2 TMD deletion mutants (A,B, red); CaBP7™P-KKK or CaBpg™P-KKK T\D triple lysine mutants (C,D, red). Co-localisation appears yellow in
merged images. The scale bar represents 10 um. (For interpretation of color mentioned in this figure the reader is referred to the web version of the article.)

plete loss of membrane localisation and the proteins were entirely
cytosolic. Removing the C-terminal portion of the protein could
potentially affect protein folding leading to mislocalisation and
therefore we tested the function of the TMD in independent stud-
ies. Generation of triple lysine mutants predicted to completely
disrupt the putative TMD allowed us to examine TMD function in
the full-length proteins. In agreement with our truncation con-
struct data, the lysine mutants associated with cellular membranes
less efficiently and an increase in cytosolic signal was observed.
This effect was most severe in the case of CaBP7™PKKK whilst
CaBP8™PKKK retained a significant level of membrane association.
It is possible that sequences flanking the TMD of CaBP8 are respon-
sible for mediating residual membrane attachment in the presence
of a mutated TMD. Finally we examined whether the putative
TMDs of CaBP7 and 8 could direct a related yet normally cytosolic
protein to membrane domains if attached at the C-terminus. Using
CaBP5 and mCherry as test proteins and fusing to them the TMD of
either CaBP7 or 8 we were able to generate chimaera’s that effi-
ciently targeted to sub-cellular compartments similar in appear-

ance to those observed with wild-type CaBP7 and 8.
Cumulatively these data argue that both CaBPs7 and 8 contain fully
functional C-terminal TMDs in common with other tail-anchored
proteins and more importantly that these regions are necessary
and sufficient in driving membrane localisation. Since our expres-
sion constructs were all C-terminally tagged (which could interfere
with the function of a C-terminal TMD) we confirmed that moving
the tag to the N-terminus of CaBP7 and 8 did not alter the observed
sub-cellular distributions of the proteins.

In this study, we have begun dissecting the biochemical proper-
ties of CaBP7 and 8, Ca?*-sensing proteins highly expressed in adult
mammalian brain. We have identified these proteins as having a
distinct sub-cellular distribution pattern resulting from the pres-
ence of a predicted C-terminal TMD homologous to those of tail-
anchored proteins. This is intriguing as no other characterised CaB-
Ps have been found to utilise such a mechanism as a means of
membrane association. The prototypical EF-hand containing Ca%*-
sensor CaM is a cytosolic protein that can become transiently
membrane associated on interaction with membrane bound effec-
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Fig. 4. Analysis of CaBP5 and mCherry chimaeric constructs in retinoic acid differentiated N2A cells and effect of the position of the colour tag in CaBP7 and 8. The figure
shows CaBP5BP7™DP o CaBP52BP8™PD chimaeras (A,B, red), or mCherry“"”™P (C, red) co-expressed with ts045 VSVG-GFP (green) as a TGN marker. C-terminally mCherry
tagged CaBP7 and 8 (red) were co-expressed with N-terminally EYFP tagged variants of the same proteins (green, D,E). Regions of co-localisation appear yellow in merged
images. The scale bar represents 10 pm. (For interpretation of color mentioned in this figure the reader is referred to the web version of the article.)

tors in response to Ca%*. Evolutionary more recent additions to the
CaM superfamily including the NCS proteins [4] and the CaBPs
[5,6] have evolved more direct mechanisms to associate with tar-
get membranes based around post-translational myristoylation, a
modification that itself has been extensively elaborated upon to
permit permanent or transient membrane association [28]. The
introduction of a C-terminal tail-anchor into the CaBP family is
likely to be part of the evolution in targeting complexity observed

in the CaM superfamily. In the case of CaBPs7 and 8 this would per-
mit the sensing of spatially restricted, specialised, intracellular Ca%*
signals particularly in the region of the TGN.
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