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Abstract

This paper studies robust stability of uncertain impulsive dynamical systems. By introduci
concepts of uniformly positive definite matrix functions and Hamilton–Jacobi/Riccati inequa
several criteria on robust stability, robust asymptotic stability and robust exponential stabil
established. An example is also worked through to illustrate our results.
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1. Introduction

Impulsive dynamical systems have been widely studied in recent years; see [1–
references cited therein. Such systems arise in many applied fields such as contr
nology, communication networks, and biological population management. Since imp
dynamical systems provide a natural framework for mathematical modelling of many
ical phenomena, their study is assuming a greater importance. For the basic conc
theorems of impulsive dynamical systems, we refer the reader to [1,2]. On the other
uncertainties happen frequently in various engineering, biological, and economica
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tems due to modelling errors, measurement inaccuracy, linear approximation, and s
is well known that uncertainties often result in instability. Therefore, robustness an
of uncertain systems is very important. Several interesting results have been esta
in [6–8] for continuous dynamical systems. But so far very few robust stability resul
uncertain impulsive dynamical systems have been reported.

In this paper, we shall investigate the robust stability properties of uncertain im
sive dynamical systems. By utilizing the ideas developed in [4], we shall establish s
criteria on robust stability, robust asymptotic stability and robust exponential stability
organization of this paper is as follows. In Section 2, we introduce the concept of unif
positive definite matrix function and some other notations. We state and prove our m
sults in Section 3, where both linear and nonlinear uncertain impulsive dynamical sy
are considered. By using Riccati and Hamilton–Jacobi inequalities, we establish s
robust stability criteria. Finally, we work through an example to illustrate the applicab
of our results.

2. Preliminaries

Let R
n denote then-dimensional Euclidean space. LetR+ = [0,+∞), N = {1,2, . . .}.

Denote by� the class of functionsφ :R+ → R+, which are continuous, strictly increasin
andφ(0)= 0, �0 the class of continuous functionsψ :R+ → R+ such thatψ(s) = 0 if
and only if s = 0, andPC the class of functionsλ :R+ → R+, whereλ is continuous
everywhere excepttk (k ∈ N) at whichλ is left continuous and the right limitλ(t+k ) exists.
In this paper, we letSρ = {x ∈ R

n: ‖x‖ � ρ}.
Consider the uncertain impulsive dynamical systems of the form

ẋ = f (t, x)+ g(t, x), t �= tk,

∆x = Ik(x)+ Jk(x), t = tk, k ∈ N, (1)

wherex ∈ R
n, f,g :R+ × R

n → R
n, Ik, Jk :Rn → R

n, and∆x = x(t+k ) − x(t−k ), where
x(t+k ) is the right limit ofx(t) at t = tk , andx(t−k ) is the left limit. The functionsg(t, x),
Jk(x) represent structural uncertainty or uncertain perturbation characterized by

g ∈Ωg = {
g: g(t, x)= eg(t, x) · δg(t, x),

∥∥δg(t, x)∥∥ �
∥∥mg(t, x)

∥∥}
and

Jk ∈ΩJ = {
Jk: Jk(x)= ek(x) · δk(x),

∥∥δk(x)∥∥ �
∥∥mk(x)

∥∥}
, k ∈ N,

where eg :R+ × R → R
n×m and ek :Rn → R

n×m are known matrix functions whos
entries are smooth functions of the state, andδg, δk are unknown vector-valued fun
tions whose norm are bounded, respectively, by the norm of the vector-valued fun
mg(t, x),mk(x), respectively. Here,mg :R+×R

n → R
m,mk :Rn → R

m (k ∈ N) are given
smooth functions, and‖ · ‖ stands for the Euclidean norm inRn.

Let t0 ∈ R+ andx0 ∈ R
n. Denote byx(t, t0, x0) the solution of (1) satisfying the ini

tial conditionx(t+0 ) = x0. We assume, for simplicity, that the functionsf (t, x), g(t, x),
Ik(x) andJk(x), k ∈ N satisfy all the required conditions [1] so that all solutionsx(t) =
x(t, t0, x0) of (1) exist for allt � t0.
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We also assumef (t,0) = 0, δg(t,0) = 0, Ik(0) = 0, δk(0) = 0 for all t ∈ R+, k ∈ N.
Hence,x = 0 is a solution of system (1).

Definition 2.1. LetX :R+ → R
n×n be ann× n matrix function. ThenX(t) is said to be

(i) a positive definite matrix function if for anyt ∈ R+,X(t) is a positive definite matrix
(ii) a positive definite matrix function bounded above if it is a positive definite ma

function and there exists a positive real numberM > 0 such that

λmax
(
X(t)

)
�M, t ∈ R+, (2)

whereλmax(·) is the maximum eigenvalue;
(iii) a uniformly positive definite matrix function if it is a positive definite matrix functi

and there exists a positive real numberm> 0 such that

λmin
(
X(t)

)
�m, t ∈ R+, (3)

whereλmin(·) is the minimum eigenvalue of matrix (·).

Definition 2.2. Let V :R+ × R
n → R+; thenV is said to belong to classν0 if

(i) V is continuous in(tk−1, tk] × R
n and for eachx ∈ R

n, t ∈ (tk−1, tk], k ∈ N,

lim
(t,y)→(t+k−1,x)

t>tk−1

V (t, y)= V
(
t+k−1, x

)
(4)

exists;
(ii) V is locally Lipschitzian inx.

Definition 2.3. For (t, x) ∈ (tk−1, tk] × R
n, we define

D+V (t, x)= lim
h→0+ sup

1

h

[
V

(
t + h,x + h

(
f (t, x)+ g(t, x)

)) − V (t, x)
]
. (5)

Definition 2.4. The uncertain impulsive dynamical system (1) is called robustly sta
robustly asymptotically stable, and robustly exponentially stable, respectively, if fo
g ∈Ωg , Jk ∈ΩJ (k ∈ N), the trivial solutionx = 0 of system (1) is stable, asymptotica
stable, and exponentially stable, respectively.

3. Robust stability criteria

The present section consists of three parts. In Part A, we summarize the existing s
results given in [4] for the nominal system of system (1). In Part B, we establish som
bust stability criteria for linear uncertain impulsive dynamical systems. The correspo
results for nonlinear uncertain impulsive dynamical systems are given in Part C.
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Part A. Stability results of nominal impulsive systems

The nominal impulsive system of system (1) is given by

ẋ = f (t, x), t �= tk,

∆x = Ik(x), t = tk, k ∈ N,

x
(
t+0

) = x0. (6)

For system (6), we summarize the following general results.

Proposition 3.1 [4]. Assume that

(i) there existsρ0 with 0< ρ0 � ρ such thatx ∈ Sρ0 implies thatx + Ik(x) ∈ Sρ for all
k ∈ N;

(ii) V ∈ ν0, and there exista, b ∈ �, such that

b
(‖x‖) � V (t, x)� a

(‖x‖), (7)

where(t, x) ∈ R+ × Sρ;
(iii) V

(
t+k , xk + Ik(xk)

)
�ψk

(
V (tk, xk)

)
, (8)

whereψk ∈ �0, k ∈ N;
(iv) there existc ∈ �, p ∈ PC such that

D+V (t, x)� p(t) · c(V (t, x)), (9)

where(t, x) ∈ (tk, tk+1] × Sρ , k ∈ N;
(v) there exists a constantσ > 0 such that for allz ∈ (0, σ ),

tk+1∫
tk

p(s) ds +
ψk(z)∫
z

ds

c(s)
� −rk (10)

for some constantsrk ∈ R andk ∈ N.

Then the system(6) is stable ifrk � 0 for all k ∈ N, and asymptotically stable if in additio∑∞
k=1 rk = +∞.

Proposition 3.2 [4]. Assume that conditions(i)–(iii) of Proposition3.1 hold. Suppose fur
ther that

(iv∗) there existc ∈ �, λ ∈ PC such that

D+V (t, x)� −λ(t) · c(V (t, x)), (11)

where(t, x) ∈ (tk, tk+1] × Sρ , k ∈ N;
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some
(v∗) there exists a constantσ > 0 such that for allz ∈ (0, σ ),

−
tk+1∫
tk

λ(s) ds +
ψk(z)∫
z

ds

c(s)
� −rk (12)

for some constantsrk ∈ R andk ∈ N.

Then system(6) is stable ifrk � 0 for all k ∈ N, and asymptotically stable if in additio∑∞
k=1 rk = +∞.

Part B. Robust stability results for linear uncertain impulsive dynamical systems

The time-varying linear uncertain impulsive dynamical system is of the form

ẋ =A(t)x +B(t)x, t �= tk,

∆x = C(t)kx +D(t)kx, t = tk,

x
(
t+0

) = x0, k ∈ N, (13)

whereA(t),C(t)k ∈ R
n×n are known matrices, andB(t),D(t)k ∈ R

n×n (k ∈ N) are in-
terval matrices, i.e.,B(t) ∈N[P(t),Q(t)] = {B(t) ∈ R

n×n: B(t) = (b(t)ij )n×n, p(t)ij �
b(t)ij � q(t)ij , i, j = 1,2, . . . , n}, D(t)k ∈ N[P(t)k ,Q(t)k], whereP(t) = (p(t)ij )n×n,
P(t)k = (p(t)kij )n×n, Q(t) = (q(t)ij )n×n, Q(t)k = (q(t)kij )n×n, k ∈ N, are known matri-
ces.

In order to obtain robust stability results for system (13), we shall first establish
lemmas.

Lemma 3.1. Let X(t) ∈ R
n×n be a positive definite matrix function andY (t) ∈ R

n×n
a symmetric matrix. Then for anyx ∈ R

n, t ∈ R+ the following inequality holds:

xT Y (t)x � λmax
(
X(t)−1Y (t)

) · xT X(t)x. (14)

Proof. It follows from the properties of positive definite matrices.✷
Lemma 3.2. LetB(t) ∈ N[P(t),Q(t)], whereP = (p(t)ij )n×n andQ = (q(t)ij )n×n are
known matrices. ThenB(t) can be written as

B(t) = B(t)0 +E(t)Σ(t)F (t), (15)

where

B(t)0 = 1

2

(
P(t)+Q(t)

)
, H(t)= (

h(t)ij
)
n×n = 1

2

(
Q(t)− P(t)

)
,

Σ(t) ∈Σ∗ = {
Σ(t) ∈ R

n2×n2
: Σ(t)= diag

(
ε(t)11, . . . , ε(t)1n, . . . , ε(t)n1, . . . ,

ε(t)nn
)
,

∣∣ε(t)ij ∣∣ � 1, i, j = 1,2, . . . , n
}
,

E(t)= (√
h(t)11e1, . . . ,

√
h(t)1n e1, . . . ,

√
h(t)n1 en, . . . ,

√
h(t)nn en

) ∈ R
n×n2

,
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o,
F(t)= (√
h(t)11e1, . . . ,

√
h(t)1n en, . . . ,

√
h(t)n1 e1, . . . ,

√
h(t)nn en

)T ∈ R
n2×n,

ei = (0, . . . ,0,1,0, . . . ,0)T ∈ R
n, i = 1,2, . . . , n.

Proof. For anyB(t) ∈N[P(t),Q(t)], we have

b(t)ij = 1

2

(
p(t)ij + q(t)ij

) + ε(t)ij · 1

2
(qij − pij )

= 1

2

(
p(t)ij + q(t)ij + ε(t)ij h(t)ij

)
for someε(t)ij ∈ R satisfying |ε(t)ij | � 1, i, j = 1,2, . . . , n, t ∈ R+. Thus we can ex
pressB(t) by

B(t) = B(t)0 +
n∑

i,j=1

ε(t)ij B(t)ij , (16)

whereB(t)ij ∈ R
n×n whose entry in position(i, j) is h(t)ij and all other entries are zer

i, j = 1,2, . . . , n. Since
∑n

i,j=1 ε(t)ijB(t)ij =E(t)Σ(t)F (t), we get Eq. (15) forB(t). ✷
Remarks. (1) Clearly, for anyΣ(t) ∈Σ∗, we get

Σ(t)Σ(t)T =Σ(t)T Σ(t)� I,

E(t)E(t)T = diag

{
n∑

j=1

h(t)1j . . .

n∑
j=1

h(t)nj

}
∈ R

n×n,

F (t)T F (t)= diag

{
n∑

j=1

h(t)j1 . . .

n∑
j=1

h(t)jn

}
∈ R

n×n,

whereI is then× n identity matrix.
(2) By Lemma 3.2, system (13) can be rewritten as

ẋ =A(t)0x +E(t)Σ(t)F (t)x, t �= tk,

∆x = C̃(t)kx + Ẽ(t)kΣ̃(t)kF̃ (t)kx, t = tk,

x
(
t+0

) = x0, k ∈ N, (17)

whereA(t)0
∆=A(t)+B(t)0, C̃(t)k

∆= C(t)k+D(t)k0, D(t)k =D(t)k0 +Ẽ(t)kΣ̃(t)kF̃ (t)k .
Here,B(t)0, E(t), Σ(t), F(t), D(t)k0, Ẽ(t)k , Σ̃(t)k , andF̃ (t)k (k ∈ N) are defined as in
Lemma 3.2.

Lemma 3.3. If Σ(t) ∈ Σ∗, then for any positive scalar functionλ(t) > 0 and for any
ξ ∈ R

n2
, η ∈ R

n2
the following inequality holds:

2ξT Σ(t)η � λ(t)−1ξT ξ + λ(t)ηT η. (18)
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Proof. It follows from the Schwarz inequality andΣ(t)Σ(t)T =Σ(t)T Σ(t)� I . ✷
Theorem 3.1. Assume that there exist scalar functionsλ(t) > 0, α(t) � 0 and a uniformly
positive definite matrix functionX(t) bounded above such that

(i) X(t) is differentiable att �= tk and the Riccati inequality holds

Ẋ +XA0 +AT
0X+ λ−1XEET X + λFT F � αX for all t �= tk, k ∈ N; (19)

(ii) there exist somerk ∈ R, ξk > 0 (k ∈ N) such that

tk+1∫
tk

α(s) ds + lnβk � −rk for all k ∈ N, (20)

where

βk = λmax
{
X(tk)

−1[(I +C(tk)
T
k

)(
X(tk)+ ξ−1

k X(tk)Ẽ(tk)kẼ(tk)
T
k X(tk)

)
× (

I +C(tk)k
) + (

ξk + λmax
(
Ẽ(tk)

T
k X(tk)Ẽ(tk)k

))
F̃ (tk)

T
k F̃ (tk)k

]}
.

Then the system(17) is robustly stable ifrk � 0 for all k ∈ N, and it is robustly asymptoti
cally stable if in addition

∑∞
k=1 rk = +∞.

Proof. To prove this theorem, we only need to check all the conditions of Proposition
Let V (t, x)= xT X(t)x. Clearly,V belongs toν0 and

λmin
(
X(t)

) · ∥∥x(t)∥∥2 � V � λmax
(
X(t)

) · ∥∥x(t)∥∥2
, (t, x) ∈ R+ × R

n. (21)

SinceX(t) is a uniformly positive definite matrix function and bounded above, there
positive real numbersM �m> 0 such that

m� λmin
(
X(t)

)
� λmax

(
X(t)

)
�M. (22)

Definea(s)=M · s2 andb(s)=m · s2, s ∈ R+; thena, b ∈ � and from (21) and (22), w
have

b
(‖x‖) � V (t, x)� a

(‖x‖). (23)

Hence, condition (ii) of Proposition 3.1 holds.
Denotexk = x(tk),Xk =X(tk), C̃k = C̃(tk)k, Ẽk = Ẽ(tk)k , Σ̃k = Σ̃(tk)k , F̃k = F̃ (tk)k .

Whent = tk , by Lemmas 3.1 and 3.3, we get

V
(
t+k , xk + Ik(xk)

) = xTk
[
(I + C̃k)+ ẼkΣ̃kF̃k

]T
Xk

[
(I + C̃k)+ ẼkΣ̃kF̃k

]
xk

= xTk
{(
I + C̃T

k

)
Xk(I + C̃k)+ (I + C̃k)

T XkẼkΣ̃kF̃k

+ (ẼkΣ̃kF̃k)
T Xk(I + C̃k)+ (ẼkΣ̃kF̃k)

T Xk(ẼkΣ̃kF̃k)
}
xk

� xTk
{(
I + C̃T

k

)
Xk(I + C̃k)+ ξ−1

k (I + C̃k)
T XkẼkẼ

T
k Xk(I + C̃k)+ ξkF̃

T
k F̃k

}
xk

+ λmax
(
ẼT
k XkẼk

) · xTk F̃ T
k F̃kxk
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of of
= xTk
{
(I + C̃k)

T
[
Xk + ξ−1

k XkẼkẼ
T
k Xk

]
(I + C̃k)

+ (
ξk + λmax

(
ẼT
k XkẼk

)) · F̃ T
k F̃k

}
xk

� βkV (tk, xk). (24)

Let ψk(s) = βk · s, s ∈ R+. Then, it is easy to seeψk ∈ �0. From (24), condition (iii) of
Proposition 3.1 is satisfied.

Denotex = x(t), X = X(t), E = E(t), Σ = Σ(t), F = F(t). Using Lemma 3.3 and
condition (i), fort �= tk, we get

D+V (t, x)= ẋT Xx + xT Ẋx + xT Xẋ

= xT
(
Ẋ+AT

0X +XA0
)
x + 2xTXEΣFx

� xT
(
Ẋ+AT

0X +XA0 + λ−1XEET X+ λFT F
)
x

� α(t) · xT Xx = α(t) · V (t, x). (25)

Thus, lettingc(s)= s, p(t)= α(t), s ∈ R+, we get

D+V (t, x)� p(t) · c(V (t, x)). (26)

Hence, by (26), condition (iv) of Proposition 3.1 is also satisfied. Byrk � 0 and (20), we
haveβk � 1 for all k ∈ N. In view of (24), condition (i) of Proposition 3.1 is satisfied. T
condition (v) of Proposition 3.1 is satisfied as well by using (20) andψk(s) = βk · s and
c(s) = s. Therefore, all conditions of Proposition 3.1 are satisfied. Hence the theor
true and the proof is complete.✷
Theorem 3.2. Assume that there exist scalar functionsλ(t) > 0, µ(t)� 0 and a uniformly
positive definite matrix functionX(t) bounded above such that

(i) X(t) is differentiable att �= tk and the following Riccati inequality holds:

Ẋ +XA0 +AT
0X+ λ−1XEET X + λFT F � −µX, t �= tk, k ∈ N; (27)

(ii) there exist somerk ∈ R, ξk > 0 (k ∈ N) such that

−
tk+1∫
tk

µ(s) ds + lnβk � −rk, k ∈ N, (28)

where

βk = λmax
{
X(tk)

−1[(I +C(tk)
T
k

)(
X(tk)+ ξ−1

k X(tk)Ẽ(tk)kẼ(tk)
T
k X(tk)

)
×(

I +C(tk)k
) + (

ξk + λmax
(
Ẽ(tk)

T
k X(tk)Ẽ(tk)k

))
F̃ (tk)

T
k F̃ (tk)k

]}
.

Then the system(17) is robustly stable ifrk � 0 for all k ∈ N, and it is robustly asymptoti
cally stable if in addition

∑∞
k=1 rk = +∞.

Proof. It follows from Proposition 3.2 and similar arguments to those used in the pro
Theorem 3.1. The details are omitted.✷
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Theorem 3.3. Assume that

(i) there exist a scalar functionλ(t) > 0 and an uniformly positive definite matrix functio
X(t) bounded above andX(t) is differentiable att �= tk such that the following Ricca
inequality holds:

Ẋ +XA0 +AT
0X+ λ−1XEET X + λFT F < 0, (29)

and that−(Ẋ+XA0 +AT
0X+λ−1XEET X+λFT F) is a uniformly positive definite

matrix function;
(ii)

∏∞
k=1βk converges, where

βk = λmax
{
X(tk)

−1[(I +C(tk)
T
k

)(
X(tk)+ ξ−1

k X(tk)Ẽ(tk)kẼ(tk)
T
k X(tk)

)
×(

I +C(tk)k
) + (

ξk + λmax
(
Ẽ(tk)

T
k X(tk)Ẽ(tk)k

))
F̃ (tk)

T
k F̃ (tk)k

]}
.

Then the system(17) is robustly exponentially stable.

Proof. Using Theorem 3.1, we see that system (17) is robustly asymptotically stabl
Y (t) = −(Ẋ + XA0 + AT

0X + λ−1XEETX + λFT F). Then by condition (i),Y (t) is a
uniformly positive definite matrix function. Moreover, sinceX(t) is a uniformly positive
definite matrix function bounded above, there exist positive real numbersσ1, σ2, σ3 satis-
fying

σ1 � λmin
(
Y (t)

)
, σ3 � λmin

(
X(t)

)
� λmax

(
X(t)

)
� σ2, t ∈ R+.

Let V (t, x)= xT X(t)x. Then, for anyt �= tk , we have

D+V (t, x)= xT
(
Ẋ+AT

0X +XA0
)
x + 2xTXEΣFx

� xT
(
Ẋ+AT

0X +XA0 + λ−1XEET X+ λFT F
)
x

= −xT Y (t)x � −σ · xT X(t)x = −σ · V (t, x), (30)

whereσ
∆= σ1/σ2 > 0. Whent = tk , by the similar proof of (24) of Theorem 3.1, we get

V
(
t+k , x

+
k

)
� βk · V (tk, xk). (31)

From (30) and (31), fortk < t � tk+1, we get

V
(
t, x(t)

)
� V

(
t+k , x

+
k

) · e−σ(t−tk) � βk · V (tk, xk) · e−σ(t−tk)

� V (t0, x0) ·
k∏

i=1

βi · e−σ(t−t0). (32)

Hence, for allt ∈ (tk, tk+1], k ∈ N, we get

∥∥x(t)∥∥ �
[

V (t0, x0)

λmin(X(t))
·

k∏
i=1

βi

]1/2

· e−(σ/2)(t−t0)

� ‖x0‖
[
σ2

σ3
·

k∏
βi

]1/2

· e−(σ/2)(t−t0) (33)

i=1
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oof is

ariant

r corre-

f

.

r

and

∥∥x(
t+k

)∥∥ �
(
βk

σ3

)1/2

· ∥∥x(tk)∥∥. (34)

Hence, from (33) and (34), system (17) is robustly exponentially stable and the pr
complete. ✷
Remark. As a special case, we can get some corresponding results for the time-inv
linear uncertain impulsive dynamical systems, i.e., all matricesA0,E,F,Σ, C̃k, Σ̃k, F̃k
in (17) are constant matrices. To save space, we just give one result here and othe
sponding results are omitted.

Corollary 3.1. Assume that system(17) is time-invariant. Suppose further that

(i) there exist real numbersλ, ε > 0 and a positive definite matrixX such that the follow-
ing algebraic Riccati equation holds:

XA0 +AT
0X + λ−1XEETX + λFT F + εI = 0, (35)

or
(i ′) A0 is asymptotically stable matrix and∥∥F(sI −A0)

−1E
∥∥∞ < 1; (36)

(ii) condition(ii) of Theorem3.3 holds.

Then system(17) is robustly exponentially stable.

Proof. From [9], it is easy to see that condition (i) or (i′) is equivalent to condition (i) o
Theorem 3.3. Thus the corollary is true. The proof is complete.✷
Part C. Robust stability results for nonlinear uncertain impulsive dynamical systems

For uncertain impulsive system (1), we establish some general results as follows

Theorem 3.4. Assume that there isV ∈ ν0 such thatV (t, x) is differentiable on(tk−1, tk)×
R
n for anyk ∈ N, and conditions(i), (ii) and (v) of Proposition3.1 hold. Suppose furthe

that

(i) there exist functionsP1k :R+ × R
n → R

1×m, P2k :R+ × R
n → R

m×m with P2k (t, x)

� 0, and fort ∈ R+, x ∈ R
n, y ∈ R

m, k ∈ N,

V
(
t, x + Ik(x)+ ek(x)y

)
� V

(
t, x + Ik(x)

) + P1k (t, x)y + yT P2k (t, x)y; (37)
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y

osi-

fore,
plete.
(ii) there are positive constantsεk (k ∈ N) such that

V
(
t+k , xk + Ik(xk)

) + ε−1
k P1kP

T
1k + (

εk + λmax(P2k )
)
mT
k mk

�ψ
(
V (tx, xk)

)
, (38)

whereψk ∈ �0, P1k = P1k (tk, xk), P2k = P2k (tk, xk), mk =mk(xk), k ∈ N;
(iii) there existc ∈ �, p ∈ PC and scalar functionλk ∈C[Rn,R+] such that

∂V

∂t
+ ∂V

∂x
f + λ2

k

2

∂V

∂x
ege

T
g

∂V T

∂x
+ 1

2λ2
k

mT
g mg � p(t) · c(V (t, x)), (39)

where(t, x) ∈ (tk, tk+1] × Sρ , k ∈ N.

Then system(1) is robustly stable ifrk � 0 for all k ∈ N, and it is robustly asymptoticall
stable if in addition

∑∞
k=1 rk = +∞.

Proof. From Proposition 3.1, we only need to verify conditions (iii) and (iv) of Prop
tion 3.1. Whent = tk , k ∈ N, by conditions (i), (ii) and Lemma 3.3, we get

V
(
t+k , xk + Ik(xk)+ Jk(xk)

)
� V

(
t+k , xk + Ik(xk)

) + P1k δk(xk)+ δk(xk)
T P2k δk(xk)

� V
(
t+k , xk + Ik(xk)

) + ε−1
k P1kP

T
1k + εkm

T
k mk + λmax(P2k )m

T
k mk

= V
(
t+k , xk + Ik(xk)

) + ε−1
k P1kP

T
1k + (

εk + λmax(P2k )
)
mT
k mk

�ψk

(
V (tk, xk)

)
. (40)

Let V = V (t, x), f = f (t, x), g = g(t, x), mg = mg(t, x), δg = δg(t, x), andλk = λ(t).
Then fort �= tk, k ∈ N, in view of inequality (39), we have

D+V
(
t, x(t)

) = ∂V

∂t
+ ∂V

∂x
(f + g)= ∂V

∂t
+ ∂V

∂x
f + ∂V

∂x
egδg

= ∂V

∂t
+ ∂V

∂x
f + λ2

k

2

∂V

∂x
ege

T
g

∂V T

∂x
+ 1

2λ2
k

mT
g mg

− 1

2

{
λk
∂V

∂x
eg − 1

λk
δTg

}
·
{
λke

T
g

∂V T

∂x
− 1

λk
δg

}

− 1

2λ2
k

{
mT
g mg − δTg δg

}

� ∂V

∂t
+ ∂V

∂x
f + λ2

k

2

∂V

∂x
ege

T
g

∂V T

∂x
+ 1

2λ2
k

mT
g mg

� p(t) · c(V (
t, x(t)

))
. (41)

Thus, by (40) and (41), conditions (iii) and (iv) of Proposition 3.1 are satisfied. There
by Proposition 3.1, system (1) is robustly asymptotically stable and the proof is com✷
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of of

n

Theorem 3.5. Assume that there isV ∈ ν0 such thatV (t, x) is differentiable on(tk−1, tk)×
R
n for anyk ∈ N, and conditions(i) and (ii) of Proposition3.1 and conditions(i) and (ii)

of Theorem3.4 hold. Suppose further that

(i ′) there existc ∈ �, λ ∈ PC and scalar functionsλk ∈C[Rn,R+] such that

∂V

∂t
+ ∂V

∂x
f + λ2

k

2

∂V

∂x
ege

T
g

∂V T

∂x
+ 1

2λ2
k

mT
g mg � −λ(t) · c(V (t, x)); (42)

(ii ′) there exists a constantσ > 0 such that for allz ∈ (0, σ ),

−
tk∫

tk−1

λ(s) ds +
ψk(z)∫
z

ds

c(s)
� −rk (43)

for some constantrk andk ∈ N.

Then the system(1) is robustly stable ifrk � 0 for all k = 1,2, . . . , and it is robustly
asymptotically stable if in addition

∑∞
k=1 rk = +∞.

Proof. It follows from Proposition 3.2 and similar arguments to those used in the pro
Theorem 3.4. The details are omitted.✷
Corollary 3.2. Assume that all conditions of Theorem3.5 hold. Moreover, ifλ(t) ≡ 0,
t ∈ R+, andψk(s)= µk ·s, s ∈ R+, for some positive constantsµk (k ∈ N), then system(1)
is robustly stable ifµk � 1 for all k ∈ N, and robustly asymptotically stable if in additio∑∞

k=1 lnµk = −∞.

Proof. The result is a direct consequence of Theorem 3.5.✷
Theorem 3.6. Assume that there isV ∈ ν0 such thatV (t, x) is differentiable on(tk−1, tk)×
R
n for anyk ∈ N, and condition(i) of Theorem3.4 holds. Suppose further that

(i) there are positive real numbersµ1,µ2 such that

µ1
∥∥x(t)∥∥2 � V (t, x)� µ2

∥∥x(t)∥∥2
, (t, x) ∈ R+ × Sρ; (44)

(ii) there are positive constantsεk (k ∈ N) such that

V
(
t+k , xk + Ik(xk)

) + ε−1
k P1kP

T
1k + (

εk + λmax(P2k )
)
mT
k mk

� V (tx, xk), (45)

whereP1k = P1k (tk, xk), P2k = P2k (tk, xk), mk =mk(xk), k ∈ N;
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plete.
(iii) there areε > 0 and scalar functionsλk ∈ C[Rn,R+] such that

∂V

∂t
+ ∂V

∂x
f + λ2

k

2

∂V

∂x
ege

T
g

∂V T

∂x
+ 1

2λ2
k

mT
g mg + ε2

2
xT x � 0, (46)

where(t, x) ∈ (tk, tk+1] × Sρ , k ∈ N.

Then system(1) is robustly exponentially stable.

Proof. From the assumptions, it is easy to get the following inequalities:

∥∥x(t)∥∥ � ‖x0‖
√
µ2

µ1
exp

{
−1

2

(
ε

µ2

)2

(t − t0)

}
, t ∈ (tk, tk+1], (47)

and ∥∥x(
t+k

)∥∥ �
√
µ2

µ1

∥∥x(tk)∥∥, k ∈ N. (48)

From (47) and (48), system (1) is robustly exponentially stable and the proof is com✷

4. Example

Finally, we shall discuss an example to illustrate our results.

Example 4.1. Consider the following uncertain impulsive dynamical system:

ẋ = f (t, x)+ g(t, x), t ∈ (k, k + 1],

∆x =
(−1+ 1

k+2 0

0 −1+ 1
k+2

)
xk, t = k, k ∈ N, (49)

where

x =
(
x1
x2

)
, f (t, x)=

(−x1 + x2(x
2
1 + x2

2)

−x2 + x1(x
2
1 + x2

2)

)
,

g(t, x) ∈Ωg =
{
g: g = eg · δg, eg =

(
x1 0

0 x2

)
, ‖δg‖ � ‖mg‖,

mg =
(
x1 + x2√

2x1x2

)}
.

Let V (t, x) = (1/2)(x2
1 + x2

2). Then, obviously,V ∈ ν0 andV is differentiable at any
t ∈ R

+. For anyt ∈ (k, k + 1] andλk = 1, we get

∂V

∂t
+ ∂V

∂x
f + λ2

k

2

∂V

∂x
ege

T
g

∂V T

∂x
+ 1

2λ2
k

mT
g mg

= −x2
1 − x2

2 + 2x1x2
(
x2

1 + x2
2

) + 1(
x4

1 + x4
2

) + 1{
(x1 + x2)

2 + 2x2
1x

2
2

}

2 2
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remarks.

cien-

, New

ore,

dels,

Con-

bility

r Con-
= x1x2 − 1

2

(
x2

1 + x2
2

) + 2x1x2
(
x2

1 + x2
2

) + 1

2

(
x2

1 + x2
2

)
� 4V 2. (50)

Hence, if letp(t)= 1, c(s)= 4s2, then the Hamilton–Jacobi inequality

∂V

∂t
+ ∂V

∂x
f + λ2

k

2

∂V

∂x
ege

T
g

∂V T

∂x
+ 1

2λ2
k

mT
g mg � p(t) · c(V (t, x))

is satisfied. Furthermore, whent = k, k ∈ N, we get

V
(
t+k , x

+
k

) = 1

2

(
1

k + 2

)2

· (x2
1(tk)+ x2

2(tk)
)

=
[

1

k + 2

]2

· V (tk, xk)�ψk

(
V (tk, xk)

)
,

whereψk(s)= (1/(k + 2))2 · s, s ∈ R+. Setσ = 1; then, for anyz ∈ (0, σ ),

k+1∫
k

p(s) ds +
ψk(z)∫
z

1

c(s)
ds = 1+

ψk(z)∫
z

1

4s2 ds = 1+ 1

4z

[
1− (k + 2)2

]

� 1+ 1

4

[
1− (k + 2)2

] = −1

4

[
(k + 2)2 − 5

]
. (51)

Hence, settingrk = (1/4)[(k + 2)2 − 5], we get
∫ k+1
k p(s) ds + ∫ ψk(z)

z (1/c(s)) ds � −rk ,
andrk � 0 for all k ∈ N. Clearly,

∑∞
k=1 rk = (1/4)

∑∞
k=1[(k+ 2)2 − 5] = +∞. Therefore,

by Theorem 3.4, system (49) is robustly asymptotically stable.
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