Journal of Fluorine Chemistry 167 (2014) 172-178

ELSEVIER

Contents lists available at ScienceDirect

Journal of Fluorine Chemistry

journal homepage: www.elsevier.com/locate/fluor

Oxy-trifluoromethylation of alkenes and its application to the synthesis of β -trifluoromethylstyrene derivatives

Hiromichi Egami^{a,b}, Ryo Shimizu^{a,c}, Yoshihiko Usui^{a,c}, Mikiko Sodeoka^{a,b,c,d,*}

^a Synthetic Organic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

^b Sodeoka Live Cell Chemistry Project, ERATO, Japan Science and Technology Agency, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

^c Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan

^d RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

ARTICLE INFO

Article history: Received 25 April 2014 Received in revised form 23 May 2014 Accepted 26 May 2014 Available online 2 June 2014

Keywords: Trifluoromethyl Catalysis Togni's reagent Styrene Diene

1. Introduction

Introduction of a trifluoromethyl group into an organic framework often results in increased metabolic stability, lipophilicity, and bioactivity [1]. Therefore, development of new methodologies for construction of trifluoromethylated organic compounds is of interest not only in organic chemistry, but also in the fields of pharmaceutical and agrochemical science [1]. Indeed, many reports on trifluoromethylation, including C_{sp2} -CF₃ and C_{sp3} -CF₃ bond formation reactions, have appeared [2]. Among trifluoromethylation reactions, trifluoromethylation of alkenes, especially difunctionalization-type trifluoromethylation, is a topic of growing interest [3]. We have studied trifluoromethylation reactions of alkene, alkyne, and heteroaromatic compounds using Togni's reagent [4,5] and we reported the oxy-trifluoromethylation reaction of mono-substituted styrene type compounds catalyzed by copper ion in 2012 (Scheme 1) [5c]. Szabó independently reported the same type of trifluoromethylation [6] and Buchwald reported an intramolecular oxy-trifluoromethylation in the same year [7a]. Buchwald also developed an asymmetric version of his reaction in 2013 [7b].

ABSTRACT

Oxy-trifluoromethylation of di-substituted styrenes and dienes was achieved by using Cu/Togni's reagent system. Not only *gem*-di-substituted styrenes, but also a β -methylstyrene derivative were transformed to the corresponding oxy-trifluoromethylation products. 1,4-Addition products were obtained selectively in the reaction of mono-substituted dienes. These reactions provide a new approach for the synthesis of β -trifluoromethyl styrene derivatives.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).

The pioneering work by Fuchikami on oxy-trifluoromethylation using CF₃I and palladium catalyst was reported in 1987 [8]. TFA was employed by Uneyama as a trifluoromethyl source for electrochemical reactions [9], and Nagano reported oxy-trifluoromethylation of an alkene via iodo-trifluoromethylation [10]. Akita and Koike accomplished oxy-trifluoromethylation with a combination of Umemoto reagent [11] and photo-redox catalysis [12], and Studer described a radical reaction system using Togni's reagent with TEMPONa in 2012 [13]. Intramolecular and intermolecular oxy-trifluoromethylation reactions using Umemoto reagent, Togni's reagent, or Langlois reagent have recently been the main focuses of attention [14].

In our original paper, as well as Szabo's paper, only limited substrates, mainly mono-substituted styrene-type compounds, were examined as substrates for intermolecular oxy-trifluoromethylation using Cu/Togni's reagent system (Scheme 1) [5c,6]. We also reported two examples of reactions of dienes [5c]. Xu et al. investigated ligand effects in the diastereoselective reaction of dienes in 2013 [15]. However, the scope of substrates, such as disubstituted alkenes and dienes, in the original systems has not been fully established. In addition, although we originally reported a direct synthesis of β -trifluoromethylstyrene derivatives from styrenes, there were only two examples [5c,16]. In the present report, we describe the oxy-trifluoromethylation of di-substituted styrenes and diene derivatives as well as application of this reaction leading to the synthesis of β -trifluoromethyl styrene derivatives.

0022-1139/© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).

^{*} Corresponding author at: Synthetic Organic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. Tel.: +81 48 467 9373; fax: +81 48 462 4666

E-mail address: sodeoka@riken.jp (M. Sodeoka).

http://dx.doi.org/10.1016/j.jfluchem.2014.05.009

Sodeoka: [(MeCN)₄Cu]PF₆ (10 mol %), **1** (1.2 eqiv.), CH₂Cl₂, 23 °C, up to 95% Szabó: Cul (10 mol %), **1** (1.5 equiv.), CHCl₃, 60 °C or 120 °C/mW, up to 86%

Scheme 1. Oxy-trifluoromethylation of mono-substituted styrene derivatives using the combination of copper salt and Togni's reagent.

2. Results and discussion

In order to expand the substrate scope of our trifluoromethylation reaction system, we first focused on gem-di-substituted styrene derivative **2a**. The reaction with $[(MeCN)_4Cu]PF_6$, which was reported to be a better catalyst for mono-substituted styrene derivatives [5c], was found to provide a mixture of α -methyl- β trifluoromethyl-4-methoxystyrene 3a' and α -trifluoroethyl-4methoxystyrene 3a", which would be generated via E1 reaction from **3a** (Eq. (1)). Therefore, we concluded that cationic copper species were not suitable for the reaction of gem-di-substituted styrene derivatives, and CuI was chosen as a catalyst for the oxytrifluoromethylation to suppress the E1 reaction, because CuI has a lower Lewis acidity than [(MeCN)₄Cu]PF₆. Fortunately, the reaction using CuI proceeded smoothly at 40 °C and 3a was obtained in 93% yield (Table 1). An ortho-substituent affected the reaction rate, but **3b** was obtained in high vield. The reaction of **3c** having a naphthalene ring also proceeded smoothly. However, an electron-withdrawing group, such as bromide, retarded the reaction, and 3d was obtained in only 11% yield. In this case, 56% of the substrate was recovered, suggesting that this reaction system is not suitable for electron-deficient substrates. In contrast, cyclic-type substrate 2e afforded the desired oxytrifluoromethylation product **3e** in 46% yield, together with 42% yield of 4-trifluoroethyl-1,2-dihydronaphthalene 3e'. The reaction of a β -methylstyrene derivative also proceeded, albeit with low diastereoselectivity (Scheme 2). The stereochemistry of the product was determined after hydrolysis of 5 to give a known material [17]. It is noteworthy that the syn/anti ratio was the same in the reactions using trans- and cis-isomers.

The yields were determined by ¹⁹F NMR analysis using trifluoromethylbenzene.

We next examined the reactions of dienes [18]. A mixture of 1,4addition product and the corresponding 1,2-addition product was

Scheme 2. Trifluoromethylation of *trans*- and *cis*-β-methylstyrene derivatives.

Table 1

Oxy-trifluoromethylation of gem-di-substituted styrene derivatives^a.

 a The reactions were carried out with CuI (20 mol%) and Togni's reagent (1.2 equiv.) in CH_2Cl_2 (1 mL) at 40 $^\circ$ C on a 0.2 mmol scale.

generated when $[(MeCN)_4Cu]PF_6$ was used as a catalyst (Eq. (2)). To our delight, however, we found that the reaction of monosubstituted dienes exclusively afforded 1,4-adducts when CuI was used as a catalyst (Table 2, entries 1–5), 1.4-Adduct **7a** was produced from trans-1-phenyl-1.3-butadiene 6a in 93% vield and no 1.2addition product was detected (entry 1). Contrary to the reaction of mono-substituted styrene derivatives, dienes bearing an electronwithdrawing group, or an electron-donating group, provided the desired products. Although the reaction of **6b** bearing a methoxy group was faster than that of **6c** bearing a fluorine atom on the phenyl ring, the corresponding products **7b** and **7c** were obtained in 91% and 87% yields, respectively (entries 2 and 3). Surprisingly, aliphatic dienes **6d** and **6e** were also good substrates, affording **7d** and **7e**, respectively, in excellent yields (entries 4 and 5). Despite the sterically hindered nature of 6f, compound 7f was obtained in 83% yield (entry 6). Meanwhile, 1,2-oxy-trifluoromethylation occurred exclusively when terminally di-substituted diene was used as a substrate, and 8g was obtained from 1,1-diphenyl-1,3-butadiene 6g in 97% yield (entry 7). It should be noted that all compounds were obtained with excellent stereo- and regio-selectivity [19].

The yields were determined by ¹⁹F NMR analysis using trifluoromethylbenzene.

The reaction character was completely changed by addition of a Brønsted acid. That is, the reaction in the presence of *p*-TsOH provided β -trifluoromethylstyrene derivatives instead of oxy-trifluoromethylation products. To demonstrate the utility of this reaction system, various substrates were examined (Table 3) [20]. Styrenes having oxygen functionality, such as a methoxy group, on the aryl ring reacted smoothly. Compounds **10a**, **10b** and **10c** were obtained in 90%, 87% and 62% yields, respectively. In addition, heteroaromatic compounds tolerated these reaction conditions (**10d**, **10e**). A diene derivative could be successfully transformed to trifluoromethylated diene under the same reaction conditions (**10f**).

Table 2

Oxy-trifluoromethylation of dienes^a.

The reactions were carried out with catalyst (10 mol%) and Togni's reagent 2 (1.2 equiv.) in CH₂Cl₂ (1 mL) at 40 °C on a 0.2 mmol scale.

Ph

7^d

Run for 1 h.

d Run with [(MeCN)₄Cu]PF₆ as the catalyst on a 1 mmol scale.

In general, styrene derivatives have a nature to polymerize under acidic conditions. In fact, β-trifluoromethyl-2-hydroxystyrene 10g was not obtained in the presence of acid due to rapid polymerization. However, it was found that addition of Et₃N allowed 10g to be obtained in 73% yield (Eq. (3)). The base presumably suppresses polymerization and activates the hydroxyl group to stabilize the benzylic cation. On the other hand, p-TsOH failed to accelerate the E1 reaction of a substrate bearing an amide moiety, such as 11h. Therefore, triflic acid (TfOH) was tried, and the desired product 10h was isolated in 99% yield (Eq. (4)). Although the transformation of oxy-trifluoromethylation product 11i failed under the acidic conditions, it was found that 11i could be converted to 10i by treatment with sodium hexamethyldisilazide

Table 3

^a The reactions were carried out with [(MeCN)₄Cu]PF₆ (10 mol%), **1** (1.2 equiv.) and p-TsOH (1.0 equiv.) in CH₂Cl₂ (1 mL) at 40 °C on a 0.2 mmol scale. ^bRun with 10 mol% of Cul instead of [(MeCN)₄Cu]PF₆.

(NaHMDS) (Eq. (5)). Thus, we consider that a β -trifluoromethylstyrene derivative can be accessed if the oxy-trifluoromethylation product is obtained.

3. Conclusion

97

8g

In this report, we describe oxy-trifluoromethylation of disubstituted styrene derivatives and dienes using Cu/Togni's reagent system, which was originally reported by our group and also at the same time by Szabó. It is noteworthy that the reactions of both *cis*- and *trans*- β -methylstyrene derivatives gave similar results. 1,4-Addition products were selectively obtained in the reaction of mono-substituted dienes using CuI, and various compounds having not only aryl but also aliphatic groups could be utilized as substrates. In addition, we succeeded in the synthesis of β -trifluoromethylstyrene derivatives under both acidic and basic conditions. We believe that these reactions provide a new approach for the synthesis of trifluoromethylated building blocks. Further studies, including detailed examination of the reaction mechanism, are ongoing in our laboratory.

b Run for 6 h. с

4. Experimental

4.1. General

All reactions were carried out under a nitrogen atmosphere. Togni's reagent was prepared according to the literature [21]. Dichloromethane (CH_2Cl_2) was purchased from Kanto Chemical Co., Inc. Cul and $[(CH_3CN)_4Cu]PF_6$ were obtained from commercial sources, and used as received. Other reagents were purified by usual methods.

¹H and ¹⁹F NMR spectra were measured on a JEOL JNM-ECS-400 spectrometer at 400 and 376 MHz, respectively. ¹³C NMR spectra were recorded on a JEOL JNM-ECS-400 spectrometer at 100 MHz. Chemical shifts were reported downfield from TMS (=0) or CDCl₃ for ¹H NMR. For ¹³C NMR, chemical shifts were reported in the scale relative to CDCl₃. For ¹⁹F NMR, chemical shifts were reported in the scale relative to a CFCl₃ external standard (0 ppm). Infrared spectra were measured on a Thermo Nicolet iS5, and only diagnostic absorptions are listed below. ESI-MS was taken on Waters SYNAPT G2 MS. EI-MS was taken on a JEOL JMS-700V. Column chromatography was performed with silica gel N-60 (40–100 μ m) purchased from Kanto Chemical Co., Inc. TLC analysis was performed on Silica gel 60 F₂₅₄-coated glass plates (Merck). Visualization was accomplished by means of ultraviolet (UV) irradiation at 254 nm or by spraying a solution of 12-molybdo(-VI)phosphoric acid in ethanol as the developing agent.

4.2. Typical procedure for oxy-trifluoromethylation of substituted styrene derivatives

Cul (7.6 mg, 20 mol%) and Togni's reagent **1** (76 mg, 1.2 equiv.) were added to a Schlenk tube which had been flame-dried under vacuum. The tube was evacuated and backfilled with nitrogen. CH₂Cl₂ (1 mL) and α -methyl-4-methoxystyrene **2a** (29.6 mg, 0.2 mmol) were added to the tube. The reaction mixture was stirred for 2 h at 40 °C, then diluted with EtOAc (5 mL) and quenched with aqueous saturated NaHCO₃. The mixture was extracted with EtOAc. The organic layer was washed with brine and dried over MgSO₄. After filtration, the filtrate was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel (hexane/EtOAc = 30/1) to give product **3a** (86.0 mg, 93%) as a colorless oil.

4.2.1. 4,4,4-Trifluoro-2-(4-methoxyphenyl)butan-2-yl 2-iodobenzoate (**3a**)

Colorless oil; 86.0 mg, 93%; ¹H NMR (400 MHz, CDCl₃): δ = 2.11 (s, 3H), 2.95–3.24 (m, 2H), 3.81 (s, 3H), 6.92 (d, *J* = 7.4 Hz, 2H), 7.16 (dd, *J* = 7.8, 7.8 Hz, 1H), 7.37–7.44 (m, 3H), 7.84 (d, *J* = 7.8 Hz, 1H), 7.99 (d, *J* = 7.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 25.5, 44.2 (q, *J* = 27.0 Hz), 55.2, 81.4 (br), 93.7, 113.9, 125.2 (q, *J* = 277.4 Hz), 125.7, 128.0, 130.8, 132.6, 134.9, 135.6, 141.3, 159.0, 164.8; ¹⁹F NMR (376 MHz, CDCl₃): δ = –60.4 (t, *J* = 10.4 Hz); IR (neat): 2959, 1612, 1583, 1514, 1369, 1289, 1183 cm⁻¹; HRMS (ESI⁺): Calcd. for [C₁₈H₁₆F₃IO₃+Na]⁺: *m/z* = 486.9994, Found: 487.0000.

4.2.2. 4,4,4-Trifluoro-2-(2-methoxyphenyl)butan-2-yl 2-iodobenzoate (**3b**)

Colorless oil; 86.8 mg, 93%; ¹H NMR (400 MHz, CDCl₃): δ = 2.12 (s, 3H), 3.38–3.50 (m, 2H), 3.85 (s, 3H), 6.94 (d, *J* = 8.3 Hz, 1H), 7.00 (ddd, *J* = 1.4, 7.6, 8.3 Hz, 1H), 7.17 (ddd, *J* = 1.4, 7.8, 7.8 Hz, 1H), 7.31 (m, 1H), 7.45 (ddd, *J* = 0.9, 7.8, 7.8 Hz, 1H), 7.53 (dd, *J* = 1.4, 7.8 Hz, 1H), 7.87 (dd, *J* = 1.4, 7.8 Hz, 1H), 8.00 (dd, *J* = 0.9, 7.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 25.0, 40.4 (q, *J* = 27.0 Hz), 55.2, 81.7 (q, *J* = 2.9 Hz), 93.8, 111.4, 120.7, 125.6 (q, *J* = 278.4 Hz), 126.5, 127.9, 129.1, 129.6, 130.7, 132.3, 136.0, 141.1, 155.5, 164.9; ¹⁹F NMR (376 MHz, CDCl₃): δ = -60.4 (t, *J* = 10.4 Hz); IR (neat): 2939, 1721,

1581, 1439, 1387, 1368, 1316 cm⁻¹; HRMS (ESI⁺): Calcd. for $[C_{18}H_{16}F_3IO_3+Na]^+$: *m/z* = 486.9994, Found: 486.9992.

4.2.3. 4,4,4-Trifluoro-2-(naphthalen-2-yl)butan-2-yl 2-iodobenzoate (**3c**)

Colorless oil; 78.3 mg, 81%; ¹H NMR (400 MHz, CDCl₃): δ = 2.25 (s, 3H), 3.09–3.21 (m, 1H), 3.29–3.41 (m, 1H), 7.18 (ddd, *J* = 1.8, 7.8, 7.8 Hz, 1H), 7.44–7.59 (m, 4H), 7.84–7.93 (m, 5H), 8.02 (dd, *J* = 0.9, 7.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 25.7, 44.0 (q, *J* = 27.0 Hz), 81.5 (q, *J* = 1.9 Hz), 93.9, 122.2, 123.4, 125.3 (q, *J* = 278.4 Hz), 126.3, 126.4, 127.5, 128.0, 128.3, 128.6, 130.9, 132.6, 133.0, 135.5, 140.3, 141.3, 164.8; ¹⁹F NMR (376 MHz, CDCl₃): δ = -59.8 (t, *J* = 10.4 Hz); IR (neat): 3059, 1731, 1583, 1508, 1464, 1430, 1198 cm⁻¹; HRMS (ESI⁺): Calcd. for [C₂₁H₁₆F₃IO₂+Na]⁺: *m/z* = 507.0045, Found: 507.0040.

4.2.4. 2-(3-Bromophenyl)-4,4,4-trifluorobutan-2-yl 2-iodobenzoate (3d)

Colorless oil; 11.1 mg, 11%; ¹H NMR (400 MHz, CDCl₃): δ = 2.10 (s, 3 H), 2.96–3.21 (m, 2H), 7.18 (ddd, *J* = 1.8, 7.8, 7.8 Hz, 1H), 7.24–7.28 (m, 1H), 7.37 (ddd, *J* = 1.8, 1.8, 7.8 Hz, 1H), 7.42–7.46 (m, 2H), 7.59 (dd, *J* = 1.8, 1.8 Hz, 1H), 7.81 (dd, *J* = 1.8, 7.8 Hz, 1H), 8.00 (dd, *J* = 0.9, 7.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 25.6, 44.0 (q, *J* = 27.0 Hz), 80.7, 93.8, 122.9, 123.1, 125.0 (q, *J* = 278.4 Hz), 127.0, 128.1, 130.2, 130.8, 131.0, 132.8, 135.3, 141.4, 145.3, 164.8: ¹⁹F NMR (376 MHz, CDCl₃): δ = –59.9 (t, *J* = 10.4 Hz). IR (neat): 2920, 1731, 1582, 1567, 1464, 1419, 1371, 1192 cm⁻¹; HRMS (EI⁺): Calcd. for [C₁₇H₁₃BrF₃IO₂]⁺: *m/z* = 511.9096, Found: 511.9088.

4.2.5. 1-(2,2,2-Trifluoroethyl)-1,2,3,4-tetrahydronaphthalen-1-yl 2iodobenzoate (**3e**)

Colorless oil; 42.0 mg, 46%; ¹H NMR (400 MHz, CDCl₃): δ = 1.84– 1.95 (m, 1H), 2.10–2.18 (m, 1H), 2.43–2.47 (m, 1H), 2.81–3.21 (m, 5H), 7.12–7.16 (m, 2H), 7.20–7.22 (m, 2H), 7.41 (dd, *J* = 7.8, 7.8 Hz, 1H), 7.46–7.48 (m, 1H), 7.81 (d, *J* = 7.8 Hz, 1H), 7.97 (d, *J* = 7.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 20.2, 29.1, 30.5, 44.0 (q, *J* = 27.0 Hz), 81.2 (br), 93.8, 125.2 (q, *J* = 278.4 Hz), 125.5, 126.4, 127.9, 128.0, 129.3, 130.7, 132.5, 135.7, 136.7, 137.3, 141.3, 164.5; ¹⁹F NMR (376 MHz, CDCl₃): δ = -59.3 (t, *J* = 10.4 Hz); IR (neat): 2940, 1730, 1582, 1490, 1463, 1429, 1375, 1153 cm⁻¹; HRMS (ESI⁺): Calcd. for [C₁₉H₁₆F₃IO₂+Na]⁺: *m/z* = 483.0045, Found: 483.0038.

4.2.6. 4-(2,2,2-Trifluoroethyl)-1,2-dihydronaphthalene (3e')

Colorless oil; 17.8 mg, 42%; ¹H NMR (400 MHz, CDCl₃): δ = 2.30–2.35 (m, 2H), 2.76–2.80 (m, 2H), 3.23 (dq, *J* = 0.9, 10.7 Hz, 2H), 6.12–1.14 (m, 1H), 7.13–7.23 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ = 23.34, 28.07, 36.90 (q, *J* = 29.9 Hz), 122.9, 126.2 (q, *J* = 277.4 Hz), 126.6, 126.8, 127.4, 127.9, 132.2, 133.8, 136.4; ¹⁹F NMR (376 MHz, CDCl₃): δ = -64.4 (t, *J* = 10.7 Hz); IR (neat): 2939, 1489, 1353, 1255, 1127 cm⁻¹; HRMS (EI⁺): Calcd. for [C₁₂H₁₁F₃]⁺: *m/z* = 212.0812, Found: 212.0814.

4.2.7. 3,3,3-Trifluoro-1-(4-methoxyphenyl)-2-methylpropyl 2iodobenzoate; syn/anti mixture (1:2.2) (**5**)

Colorless oil; 82.1 mg, 88%; ¹H NMR (400 MHz, CDCl₃): *syn*isomer, $\delta = 1.00$ (d, J = 6.9 Hz, 3H), 2.90–3.00 (m, 1H), 3.81 (s, 3H), 6.10 (d, J = 8.7 Hz, 1H), 6.89–6.92 (m, 2H), 7.12–7.15 (m, 1H), 7.36 (d, J = 8.8 Hz, 2H), 7.38–7.41 (m, 1H), 7.83 (dd, J = 1.4, 7.8 Hz, 1H), 7.98 (dd, J = 1.4, 7.8 Hz, 1H): *anti*-isomer, $\delta = 1.27$ (d, J = 7.4 Hz, 3H), 2.65–2.74 (m, 1H), 3.81 (s, 3H), 6.37 (d, J = 3.7 Hz, 1H), 6.89–6.92 (m, 2H), 7.18 (ddd, J = 1.4, 7.8, 7.8 Hz, 1H), 7.30 (d, J = 8.3 Hz, 2H), 7.44 (ddd, J = 1.4, 7.8, 7.8 Hz, 1H), 7.89 (dd, J = 1.4, 7.8 Hz, 1H), 8.02 (dd, J = 1.4, 7.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 8.0$, 10.8, 42.8 (q, J = 25.1 Hz), 44.3 (q, J = 25.1 Hz), 55.4, 55.4, 73.3, 75.1, 94.3, 94.5, 114.1, 127.0 (q, J = 280.3 Hz), 127.1 (q, J = 280.3), 127.6, 128.0, 128.1, 129.0, 129.1, 129.7, 131.0, 132.9, 133.0, 134.4, 134.5, 141.6, 141.7, 159.6, 160.0, 164.7; ¹⁹F NMR (376 MHz, CDCl₃): δ = -68.9 (d, *J* = 8.7 Hz, *syn*), -69.8 (d, *J* = 8.7 Hz, *anti*); IR (neat): 1732, 1613, 1513, 1463, 1243, 1126, 1015, 833, 740 cm⁻¹; HRMS (ESI⁺): Calcd. for [C₁₈H₁₆F₃NO₃+Na]⁺: *m/z* = 486.9994, Found: 486.9989.

4.3. Typical procedure for the oxy-trifluoromethylation of diene derivatives

Cul (3.8 mg, 10 mol%) and Togni's reagent **1** (76 mg, 1.2 equiv.) were added to a Schlenk tube which had been flame-dried under vacuum. The tube was evacuated and backfilled with nitrogen. CH₂Cl₂ (1 mL) and 1-phenyl-1,3-butadiene **6a** (26.0 mg, 0.2 mmol) were added to the tube. The reaction mixture was stirred for 2 h at 40 °C, then diluted with EtOAc (5 mL) and quenched with aqueous saturated NaHCO₃. The mixture was extracted with EtOAc. The organic layer was washed with brine and dried over MgSO₄. After filtration, the filtrate was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel (hexane/EtOAc = 30/1) to give product **7a** (81.4 mg, 91%) as a colorless solid.

4.3.1. (E)-5,5,5-Trifluoro-1-phenylpent-2-en-1-yl 2-iodobenzoate (7a)

Colorless solid; 81.4 mg, 91%; ¹H NMR (400 MHz, CDCl₃): δ = 2.84–2.94 (m, 2H), 5.89–5.86 (m, 1H), 6.07 (dd, *J* = 6.0, 15.2 Hz, 1H), 6.54 (d, *J* = 6.0 Hz, 1H), 7.16 (m, 1H), 7.33–7.47 (m, 6H), 7.84 (dd, *J* = 1.8, 7.8 Hz, 1H), 8.00 (dd, *J* = 0.9, 7.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 37.0 (q, *J* = 30.8 Hz), 76.6, 94.2, 121.6 (q, *J* = 3.9 Hz), 125.6 (q, *J* = 277.4 Hz), 127.3, 127.9, 128.5, 128.7, 131.0, 132.8, 134.8, 135.2, 138.0, 141.4, 165.3; ¹⁹F NMR (376 MHz, CDCl₃): δ = -66.0 (t, *J* = 10.4 Hz); IR (neat): 3034, 1727, 1583, 1429, 1242, 1130, 1092, 1014, 968, 737, 696 cm⁻¹; HRMS (ESI⁺): Calcd. for [C₁₈H₁₄F₃IO₂+Na]⁺: *m/z* = 468.9883, Found: 468.9880.

4.3.2. (E)-5,5,5-Trifluoro-1-(4-methoxyphenyl)pent-2-en-1-yl 2-iodobenzoate (**7b**)

Colorless oil; 86.7 mg, 91%; ¹H NMR (400 MHz, CDCl₃): $\delta = 2.84-2.94$ (m, 2H), 3.81 (s, 3H), 5.75–5.83 (m, 1H), 6.07 (dd, J = 6.0, 15.6 Hz, 1H), 6.50 (d, J = 6.0 Hz, 1H), 6.86–6.93 (m, 2 H), 7.14 (dd, J = 7.8 Hz, 1H), 7.34–7.43 (m, 3H), 7.80 (d, J = 7.8 Hz, 1H), 7.98 (d, J = 7.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 37.0$ (q, J = 29.9 Hz), 55.2, 76.2, 94.1, 114.0, 121.1 (q, J = 3.8 Hz), 125.6 (q, J = 276.5 Hz), 127.9, 128.9, 130.0, 130.9, 132.7, 134.9, 135.4, 141.4, 159.7, 165.3; ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -66.0$ (t, J = 10.4 Hz); IR (neat): 2960, 1729, 1607, 1583, 1464, 1429, 1175 cm⁻¹; HRMS (ESI⁺): Calcd. for $[C_{19}H_{16}F_3IO_3+Na]^+$: m/z = 498.9994, Found: 498.9995.

4.3.3. (E)-5,5,5-Trifluoro-1-(4-fluorophenyl)pent-2-en-1-yl 2-iodobenzoate (**7c**)

Colorless oil; 80.6 mg, 87%; ¹H NMR (400 MHz, CDCl₃): $\delta = 2.84-2.94$ (m, 2H), 5.80 (dt, J = 7.3, 15.6 Hz, 1H), 6.03 (dt, J = 5.8, 15.6 Hz, 1H), 6.51 (d, J = 5.8 Hz, 1H), 7.05–7.18 (m, 3H), 7.39–7.45 (m, 3H), 7.78–7.81 (m, 1H), 7.98–8.00 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 36.9$ (q, J = 29.9 Hz), 75.8, 94.0, 115.6 (d, J = 22.2 Hz), 121.7 (q, J = 2.9 Hz), 125.5 (q, J = 276.5 Hz), 127.9, 129.2 (d, J = 7.7 Hz), 130.9, 132.8, 133.8 (d, J = 2.9 Hz), 134.7, 135.0, 141.4, 162.7 (d, J = 247.6 Hz), 165.2; ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -113.0$ to -112.9 (m), -66.0 (t, J = 10.4 Hz); IR (neat): 2933, 1605, 1583, 1562, 1465, 1429, 1042 cm⁻¹; HRMS (ESI⁺): Calcd. for [C₁₈H₁₃F₄IO₂+Na]⁺: m/z = 486.9794, Found: 486.9799.

4.3.4. (E)-1,1,1-Trifluoroundec-3-en-5-yl 2-iodobenzoate (7d)

Colorless oil; 77.3 mg, 85%; ¹H NMR (400 MHz, CDCl₃): δ = 0.88 (t, *J* = 6.9 Hz, 3H), 1.29–1.42 (m, 8H), 1.68–1.88 (m, 2H), 2.79–2.91

(m, 2H), 5.50 (dt, *J* = 6.4, 6.4 Hz, 1H), 5.73–5.85 (m, 2H), 7.14 (ddd, *J* = 1.8, 7.8, 7.8 Hz, 1H), 7.40 (ddd, *J* = 0.9, 7.8, 7.8 Hz, 1H), 7.77 (dd, *J* = 1.8, 7.8 Hz, 1H), 7.99 (dd, *J* = 0.9, 7.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 14.0, 22.5, 25.0, 28.9, 31.6, 34.1, 37.0 (q, *J* = 29.9 Hz), 75.4, 93.9, 121.4 (q, *J* = 3.8 Hz), 125.6 (q, *J* = 276.5 Hz), 127.9, 130.7, 132.5, 135.4, 135.5, 141.3, 165.7; ¹⁹F NMR (376 MHz, CDCl₃): δ = -66.1 (t, *J* = 10.4 Hz); IR (neat): 2928, 1727, 1465, 1430, 1347, 1285, 1043 cm⁻¹; HRMS (ESI⁺): Calcd. for [C₁₈H₂₂F₃IO₂+Na]⁺: *m*/*z* = 477.0514, Found: 477.0513.

4.3.5. (E)-1-Cyclohexyl-5,5,5-trifluoropent-2-en-1-yl 2-iodobenzoate (7e)

Colorless oil; 73.7 mg, 92%; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.02 - 1.29$ (m, 5H), 1.66–1.86 (m, 6H), 2.76–2.94 (m, 2H), 5.32 (dd, *J* = 6.4, 6.4 Hz, 1H), 5.70–5.83 (m, 2H), 7.14 (ddd, *J* = 1.8, 7.8, 7.8 Hz, 1H), 7.41 (ddd, *J* = 0.9, 7.8, 7.8 Hz, 1H), 7.78 (dd, *J* = 1.4, 7.8 Hz, 1H), 7.99 (dd, *J* = 0.9, 7.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 25.8$, 25.8, 26.2, 28.5, 28.6, 37.0 (q, *J* = 29.9 Hz), 41.5, 79.4, 94.0, 122.1 (q, *J* = 3.8 Hz), 125.7 (q, *J* = 276.5 Hz), 127.9, 130.7, 132.5, 134.1, 135.3, 141.3, 165.6; ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -66.1$ (t, *J* = 10.4 Hz); IR (neat): 2927, 2854, 1583, 1464, 1450, 1429, 1281 cm⁻¹; HRMS (ESI⁺): Calcd. for [C₁₈H₂₀F₃IO₂+Na]⁺: *m*/*z* = 475.0358, Found: 475.0352.

4.3.6. (E)-5,5,5-Trifluoro-2-methyl-1-phenylpent-2-en-1-yl 2-iodobenzoate (7f)

Colorless oil; 76.8 mg, 83%; ¹H NMR (400 MHz, CDCl₃): δ = 1.67 (s, 3H), 2.87–2.97 (m, 2H), 5.78 (t, *J* = 7.4 Hz, 1H), 6.46 (s, 1H), 7.14–7.18 (m, 1H), 7.32–7.43 (m, 6H), 7.85 (dd, *J* = 1.8, 7.8 Hz, 1H), 8.00 (d, *J* = 7.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 13.5, 32.7 (q, *J* = 29.9 Hz), 80.3, 94.2, 115.6 (q, *J* = 3.8 Hz), 126.1 (q, *J* = 276.5 Hz), 127.0, 127.9, 128.3, 128.5, 130.9, 132.8, 134.7, 137.5, 140.0, 141.5, 165.1; ¹⁹F NMR (376 MHz, CDCl₃): δ = -65.7 (t, *J* = 10.4 Hz); IR (neat): 2928, 1730, 1583, 1562, 1495, 1465, 1375, 1191 cm⁻¹; HRMS (ESI⁺): Calcd. for [C₁₉H₁₆F₃IO₂+Na]⁺: *m/z* = 483.0045, Found: 483.0040.

4.3.7. 5,5,5-Trifluoro-1,1-diphenylpent-1-en-3-yl 2-iodobenzoate (**8g**)

Colorless solid; 506.5 mg, 97% ¹H NMR (400 MHz, CDCl₃): $\delta = 2.51-2.63$ (m, 1H), 2.67–2.81 (m, 1H), 5.84–5.89 (m, 1H), 6.21 (d, *J* = 9.2 Hz, 1H), 7.12–7.16 (m, 1H), 7.24–7.31 (m, 7H), 7.36–7.45 (m, 4H), 7.74 (dd, *J* = 1.4, 7.8 Hz, 1H), 7.97 (d, *J* = 8.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 38.7$ (q, *J* = 27.9 Hz), 68.2 (q, *J* = 2.9 Hz), 93.9, 123.6, 125.2 (q, *J* = 277.4 Hz), 127.5, 127.9, 128.1, 128.3, 128.3, 128.6, 129.3, 130.8, 132.7, 135.0, 138.2, 140.8, 141.2, 146.9, 165.0; ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -62.7$ (t, *J* = 10.4 Hz); IR (neat): 3058, 3026, 1730, 1583, 1494, 1445, 1429, 1387, 1281, 1237, 1129, 1090, 1015, 759, 739, 697 cm⁻¹; HRMS (ESI⁺): Calcd. for [C₂₄H₁₈F₃IO₂+Na]⁺: *m*/*z* = 545.0196, Found: 545.0199.

4.4. Typical procedure for the synthesis of β -trifluoromethylstyrene derivatives

[(MeCN)₄Cu]PF₆ (7.5 mg, 10 mol%), *p*-TsOH·H₂O (38 mg, 1 equiv.) and Togni's reagent **1** (76 mg, 1.2 equiv.) were weighed and added to a Schlenk tube which had been flame-dried under vacuum. The tube was evacuated and backfilled with nitrogen. CH₂Cl₂ (1 mL) was added to the tube, followed by addition of 4-methoxystyrene **9a** (27 μ L, 0.2 mmol). The reaction mixture was stirred for 1 h at 40 °C, then diluted with EtOAc (5 mL) and quenched with aqueous NaHCO₃. The mixture was extracted with EtOAc. The organic layer was washed with brine and dried over MgSO₄. After filtration, the filtrate was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel (hexane/EtOAc = 30/1) to give **10a** (36.6 mg, 90%) as a colorless solid.

4.4.1. (E)-1-Methoxy-4-(3,3,3-trifluoroprop-1-en-1-yl)benzene (**10a**)

Colorless solid; 36.6 mg, 90%; ¹H NMR (400 MHz, CDCl₃): δ = 3.84 (s, 3H), 6.06 (dq, *J* = 6.9, 16.1 Hz, 1H), 6.91 (d, *J* = 8.7 Hz, 2H), 7.06–7.11 (m, 1H), 7.40 (d, *J* = 8.7 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 55.3, 113.4 (q, *J* = 33.7 Hz), 114.3, 123.9 (q, *J* = 268.8 Hz), 126.0, 129.0, 137.1 (q, *J* = 6.7 Hz), 161.0; ¹⁹F NMR (376 MHz, CDCl₃): δ = -62.7 (d, *J* = 6.9 Hz); IR (neat) 3036, 2966, 2937, 2846, 1664, 1606, 1514, 1290, 1258, 1177, 1131, 1108, 1029, 974, 810 cm⁻¹; HRMS (EI⁺): Calcd. for [C₁₀H₉F₃O]⁺: *m*/*z* = 202.0605, Found: 202.0607.

4.4.2. (E)-5-(3,3,3-Trifluoroprop-1-en-1-yl)benzo[d][1,3]dioxole (10b)

White solid; 37.8 mg, 87%; ¹H NMR (400 MHz, CDCl₃): δ = 6.00 (s, 2 H), 6.02 (dq, *J* = 6.9, 16.1 Hz, 1H), 6.80 (d, *J* = 8.3 Hz, 1H), 6.90–6.95 (m, 2H), 7.04 (ddd, *J* = 1.8, 1.8, 16.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 101.5, 106.2, 108.5, 113.8 (q, *J* = 33.7 Hz), 123.4, 123.8 (q, *J* = 268.8 Hz), 127.7, 137.2 (q, *J* = 6.7 Hz), 148.4, 149.3; ¹⁹F NMR (376 MHz, CDCl₃): δ = -62.8 (d, *J* = 6.9 Hz); IR (neat): 2910, 1664, 1621, 1607, 1451, 1362, 1285, 1113 cm⁻¹; HRMS (EI⁺): Calcd. for [C₁₀H₇F₃O₂]⁺: *m*/*z* = 216.0398, Found: 216.0391.

4.4.3. (E)-tert-Butyldimethylsiloxy-4-(3,3,3-trifluoroprop-1-en-1-yl)benzene (**10c**)

Colorless oil; 37.8 mg, 62%; ¹H NMR (400 MHz, CDCl₃): δ = 0.21 (s, 6 H), 0.98 (s, 9H), 6.06 (dq, *J* = 6.9, 16.1 Hz, 1H), 6.84 (d, *J* = 8.7 Hz, 2H), 7.08 (dq, *J* = 2.3, 16.1 Hz, 1H), 7.34 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = -4.4, 18.2, 25.6, 113.6 (q, *J* = 33.7 Hz), 120.5, 123.9 (q, *J* = 268.8 Hz), 126.6, 129.0, 137.1 (q, *J* = 6.7 Hz), 157.5; ¹⁹F NMR (376 MHz, CDCl₃): δ = -62.8 (d, *J* = 6.9 Hz); IR (neat): 2957, 2932, 2860, 1421, 1391, 1363, 1205 cm⁻¹; HRMS (EI⁺): Calcd. for [C₁₅H₂₁F₃OSi]⁺: *m/z* = 302.1314, Found: 302.1312.

4.4.4. (E)-2-Methyl-5-(3,3,3-trifluoroprop-1-en-1-yl)thiophene (**10d**)

Colorless oil; 25.2 mg, 66%; ¹H NMR (400 MHz, CDCl₃): δ = 2.49 (s, 3 H), 5.87 (dq, *J* = 6.9, 15.6 Hz, 1H), 6.68–6.69 (m, 1H), 6.96 (d, *J* = 3.7 Hz, 1H), 7.15 (dq, *J* = 1.8, 15.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 15.7, 113.0 (q, *J* = 33.7 Hz), 123.6 (q, *J* = 268.8 Hz), 126.2, 130.5, 130.8 (d, *J* = 6.7 Hz), 135.9, 143.0; ¹⁹F NMR (376 MHz, CDCl₃): δ = -62.7 (d, *J* = 6.9 Hz); IR (neat): 2927, 1731, 1542, 1475, 1350, 1305, 1206 cm⁻¹; HRMS (EI⁺): Calcd. for [C₈H₇F₃S]⁺: *m*/*z* = 192.0221, Found: 192.0220.

4.4.5. 1-Acetyl-3-((E)-3,3,3-trifluoroprop-1-enyl)-1H-indole (10e)

Colorless solid; 37.2 mg, 73%; ¹H NMR (400 MHz, CDCl₃): $\delta = 2.66$ (s, 3H), 6.34 (dq, J = 6.9, 16.1 Hz, 1H), 7.21–7.27 (m, 1H), 7.35–7.45 (m, 2H), 7.59 (s, 1H), 7.75 (d, J = 7.4 Hz, 1H), 8.47 (d, J = 8.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 23.9$, 116.2 (q, J = 33.7 Hz), 116.9, 119.6, 123.6 (q, J = 268.8 Hz), 124.5, 126.1, 126.6, 127.6, 128.9 (q, J = 7.7 Hz), 136.4, 168.4; ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -63.3$ (d, J = 6.9 Hz); IR (neat): 3136, 3020, 2929, 1714, 1666, 1450, 1379, 1348, 1306, 1274, 1215, 1113, 1088, 1012, 970, 743 cm⁻¹; HRMS (ESI⁺): Calcd. for [C₁₃H₁₀F₃NO+Na]⁺: m/z = 276.0607, Found: 276.0609.

4.4.6. ((1E,3E)-5,5,5-Trifluoropenta-1,3-dien-1-yl)benzene (10f)

Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ = 5.80 (dq, *J* = 6.9, 15.2 Hz, 1H), 6.73–6.93 (m, 3H), 7.29–7.38 (m, 3H), 7.43–7.45 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 118.3 (q, *J* = 33.7 Hz), 123.5 (q, *J* = 268.8 Hz), 124.9, 127.0, 128.8, 128.9, 135.8, 137.5 (q, *J* = 7.7 Hz), 139.3; ¹⁹F NMR (376 MHz, CDCl₃): δ = -63.1 (d, *J* = 6.9 Hz); IR (neat): 3030, 2918, 1737, 1498, 1450, 1156, 1030 cm⁻¹; HRMS (EI⁺): Calcd. for [C₁₁H₉F₃]⁺: *m/z* = 198.0656, Found: 198.0654.

4.5. Synthesis of (E)-2-(3,3,3-trifluoroprop-1-en-1-yl)phenol (10g)

[(MeCN)₄Cu]PF₆ (7.5 mg, 10 mol%), Et₃N (40.5 mg, 2 equiv.) and Togni's reagent 1 (76 mg, 1.2 equiv.) were weighed and added to a Schlenk tube which had been flame-dried under vacuum. The tube was evacuated and backfilled with nitrogen. CH₂Cl₂ (1 mL) was added to the tube, followed by addition of 4-methoxystyrene 9g (24.0 mg, 0.2 mmol). The reaction mixture was stirred for 6 h at 23 °C, then diluted with EtOAc (5 mL) and guenched with agueous NaHCO₃. The mixture was extracted with EtOAc. The organic layer was washed with brine and dried over MgSO₄. After filtration, the filtrate was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel (hexane/ EtOAc = 10/1) to give **10g** (24.6 mg, 66%) as a colorless oil. ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3)$: $\delta = 5.19 \text{ (s, 1H)}, 6.38 \text{ (ddq, } J = 2.3, 6.9, 16.1 \text{ Hz},$ 1H), 6.77-6.79 (m, 1H), 6.94-6.98 (m, 1H), 7.21-7.26 (m, 1H), 7.35–7.40 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 116.1, 116.9 (q, J = 33.7 Hz), 120.8, 121.2, 128.3 (q, J = 268.8 Hz), 129.1, 130.9, 132.7 (q, J = 6.7 Hz), 154.1; ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -63.2$ (d, J = 6.9 Hz); IR (neat): 3609, 3416, 1664, 1607, 1500, 1210, 1178 cm⁻¹; HRMS (EI⁺): Calcd. for $[C_9H_7F_3O]^+$: m/z = 188.0449, Found: 188.0452.

4.6. Synthesis of (E)-4-(3,3,3-trifluoroprop-1-en-1-yl)acetoaniline (**10h**)

To a solution of **11h** (105 mg, 0.22 mmol) in CH_2Cl_2 (1.1 mL) was added TfOH (49.5 mg, 1.5 equiv.). The reaction mixture was stirred for 12 h at 40 °C, then diluted with CH_2Cl_2 (5 mL) and quenched with aqueous NaHCO₃. After extraction, the organic layer was dried over MgSO₄ and filtered, and the filtrate was evaporated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/EtOAc = 20/1) to give **10h** (49.7 mg, 99%) as a colorless oil. ¹H NMR (400 MHz, CD₃OD): δ = 2.13 (s, 3H), 6.36 (dq, *J* = 6.9, 16.1 Hz, 1H), 7.10–7.15 (m, 1H), 7.42 (d, *J* = 8.7 Hz, 2H), 7.55 (d, *J* = 8.7 Hz, 2H); ¹³C NMR (100 MHz, CD₃OD): δ = 23.9, 115.4 (q, *J* = 33.7 Hz), 121.0, 125.5 (q, *J* = 267.8 Hz), 129.4, 130.4, 138.5 (d, *J* = 6.9 Hz); IR (neat): 3305, 2967, 1458, 1414, 1371, 1208, 1181 cm⁻¹; HRMS (ESI⁺): Calcd. for [C₁₁H₁₀F₃NO+H]⁺: *m/z* = 230.0793, Found: 230.0793.

4.7. Synthesis of (E)-1-(tert-butyl)-4-(3,3,3-trifluoroprop-1-en-1-yl)benzene (**10i**)

To a solution of **11i** (95.3 mg, 0.2 mmol) in THF (2 mL) was added a 1 M solution of NaHMDS in THF (0.4 mL, 2 equiv.) in -78 °C. The reaction mixture was stirred for 1 h, and then quenched with aqueous NH₄Cl. The mixture was extracted with EtOAc. The organic layer was washed with brine, dried over MgSO₄ and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel (hexane/EtOAc = 20/1) to give **10i** (29.2 mg, 64%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 1.32 (s, 9H), 6.16 (dq, *J* = 6.9, 16.1 Hz, 1H), 7.10–7.15 (m, 1H), 7.38–7.42 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ = 31.2, 34.8, 114.9 (q, *J* = 33.7 Hz), 123.8 (q, *J* = 268.8 Hz), 125.9, 127.3, 130.6, 137.4 (d, *J* = 6.7 Hz), 153.5; ¹⁹F NMR (376 MHz, CDCl₃): δ = –63.0 (d, *J* = 6.9 Hz); IR (neat): 2967, 1665, 1334, 1312, 1272, 1215, 1107 cm⁻¹; HRMS (EI⁺): Calcd. for [C₁₃H₁₅F₃]⁺: *m/z* = 228.1126, Found: 228.1127.

Acknowledgement

We thank the Collaboration Promotion Unit (RIKEN Global Research Cluster) for HRMS analysis.

References

- (a) P. Krisch, Modern Fluoroorganic Chemistry, Wiley-VHC, Weinheim, 2004;
 (b) J.-P. Bégué, D. Bonnet-Delpon, Bioorganic and Medicinal Chemistry of Fluorine, Wiley-VHC, Hoboken, 2008;
 - (c) I. Ojima, Fluorine in Medicinal Chemistry and Chemical Biology, Wiley-Blackwell, Chichester, 2009;
 - (d) P. Jeschke, ChemBioChem 5 (2004) 570-589;
 - (e) M. Shimizu, T. Hiyama, Angew. Chem. Int. Ed. 44 (2005) 214-231;
 - (f) M. Schlosser, Angew. Chem. Int. Ed. 45 (2006) 5432-5446;
 - (g) K. Müller, C. Faeh, F. Diederich, Science 317 (2007) 1881-1886;
 - (h) W.K. Hagmann, J. Med. Chem. 51 (2008) 4359-4369;
 - (i) V. Gouverneur, K. Müller, Fluorine in Pharmaceutical and Medicinal Chemistry: From Biophysical Aspects to Clinical Applications, Imperial College Press, London, 2012.
- [2] For selected reviews on trifluoromethylations, see:
 - (a) T. Umemoto, Chem. Rev. 96 (1996) 1757-1777;
 - (b) G.K.S. Prakash, A.K. Yudin, Chem. Rev. 97 (1997) 757-786;
 - (c) Y. Zheng, J.-A. Ma, Adv. Synth. Catal. 352 (2010) 2745-2750;
 - (d) S. Roy, B.T. Gregg, G.W. Gribble, V.-D. Le, S. Roy, Tetrahedron 67 (2011) 2161–2195;
 - (e) O.A. Tomashenko, V.V. Grushin, Chem. Rev. 111 (2011) 4475-4521;
 - (f) H. Amii, J. Synth. Org. Chem. Jpn. 69 (2011) 752-762;
 - (g) X.-F. Wu, H. Neumann, M. Beller, Chem. Asia J. 7 (2012) 1744-1754;
 - (h) A. Studer, Angew. Chem. Int. Ed. 51 (2012) 8950-8958;
 - (i) T. Liu, Q. Shen, Eur. J. Org. Chem. 2012 (2012) 6679–6687
 - (j) T. Liang, C.N. Neumann, T. Ritter, Angew. Chem. Int. Ed. 52 (2013) 8164-8214.
- [3] H. Egami, M. Sodeoka, Angew. Chem. Int. Ed. (2014), http://dx.doi.org/10.1002/ anie.201309260, and references therein.
- [4] For selected reports on Togni's reagent, see:
 - (a) P. Eisenberger, S. Gischig, A. Togni, Chem. Eur. J. 12 (2006) 2579–2586;
 - (b) I. Kieltsch, P. Eisenberger, A. Togni, Angew. Chem. Int. Ed. 46 (2007) 754-757;
 - (c) R. Koller, K. Stanek, D. Stolz, R. Aardoom, K. Niedermann, A. Togni, Angew. Chem. Int. Ed. 48 (2009) 4332–4336;
 - (d) V. Matousek, E. Pietrasiak, R. Schwenk, A. Togni, J. Org. Chem. 78 (2013) 6763-6768.
- [5] (a) R. Shimizu, H. Egami, T. Nagi, J. Chae, Y. Hamashima, M. Sodeoka, Tetrahedron Lett. 51 (2010) 5947–5949;
 - (b) R. Shimizu, H. Egami, Y. Hamashima, M. Sodeoka, Angew. Chem. Int. Ed. 51 (2012) 4577-4580;
 - (c) H. Egami, R. Shimizu, M. Sodeoka, Tetrahedron Lett. 53 (2012) 5503-5506;
 - (d) A. Miyazaki, R. Shimizu, H. Egami, M. Sodeoka, Heterocycles 86 (2012) 979–983; (e) H. Egami, R. Shimizu, S. Kawamura, M. Sodeoka, Angew. Chem. Int. Ed. 52 (2013)
 - 4000–4003:
 - (f) H. Egami, R. Shimizu, M. Sodeoka, J. Fluor. Chem. 152 (2013) 51–55;
 - (g) H. Egami, S. Kawamura, A. Miyazaki, M. Sodeoka, Angew. Chem. Int. Ed. 52 (2013) 7841–7844;
 - (h) H. Egami, R. Shimizu, Y. Usui, M. Sodeoka, Chem. Commun. 49 (2013) 7346-7348.
- [6] P.G. Janson, I. Ghoneim, N.O. Ilchenko, K.J. Szabó, Org. Lett. 14 (2012) 2882–2885.
- [7] (a) Ř. Zhu, S.L. Buchwald, J. Am. Chem. Soc. 134 (2012) 12462–12465;
 (b) R. Zhu, S.L. Buchwald, Angew. Chem. Int. Ed. 52 (2013) 12655–12658.

- [8] T. Fuchikami, Y. Shibata, H. Urata, Chem. Lett. 16 (1987) 521-524.
- [9] (a) K. Uneyama, S. Watanabe, Y. Tokunaga, Bull. Chem. Soc. Jpn. 65 (1992) 1976– 1981;
- (b) Y. Sato, S. Watanabe, K. Uneyama, Bull. Chem. Soc. Jpn. 66 (1993) 1840–1843. [10] (a) T. Yajima, H. Nagano, C. Saito, Tetrahedron Lett. 44 (2003) 7027–7029;
- (b) T. Yajima, C. Saito, H. Nagano, Tetrahedron 61 (2005) 10203-10215.
- [11] For selected reports on Umemoto's reagent, see:
 - (a) T. Umemoto, S. Ishihara, Tetrahedron Lett. 31 (1990) 3579–3582; (b) T. Umemoto, S. Ishihara, J. Am. Chem. Soc. 115 (1993) 2156–2164;
 - (c) T. Umemoto, K. Adachi, J. Org. Chem. 59 (1994) 5692–5699;
 - (d) T. Ono, T. Umemoto, J. Fluor. Chem. 80 (1996) 163–166;
 - (e) T. Umemoto, S. Ishihara, J. Fluor. Chem. 98 (1999) 75-81
- [12] (a) Y. Yasu, T. Koike, M. Akita, Angew. Chem. Int. Ed. 51 (2012) 9567–9571;
 (b) Y. Yasu, Y. Arai, R. Tomita, T. Koike, M. Akita, Org. Lett. 16 (2014) 780–783.
- [13] Y. Li, A. Studer, Angew. Chem. Int. Ed. 51 (2012) 8221-8224.
- [14] (a) C.-P. Zhang, Z.-L. Wang, Q.-Y. Chen, C.-T. Zhang, Y.-C. Gu, J.-C. Xiao, Chem. Commun. 47 (2011) 6632–6634;
 (b) A. Deb, S. Manna, A. Modak, T. Patra, S. Maity, D. Maiti, Angew. Chem. Int. Ed.
- (b) A. Deb, S. Manna, A. Modak, T. Patra, S. Maity, D. Maiti, Angew. Chem. Int. Ed 52 (2013) 9747–9750;
 - (c) Y.-T. He, L.-H. Li, Y.-F. Yang, Y.-Q. Wang, J.-Y. Luo, X.-Y. Liu, Y.-M. Liang, Chem. Commun. 49 (2013) 5687–5689;
 - (d) Q. Yu, S. Ma, Chem. Eur. J. 19 (2013) 13304-13308;
 - (e) E. Kim, S. Choi, H. Kim, E.J. Cho, Chem. Eur. J. 19 (2013) 6209–6212;
 - (f) X.-Y. Jiang, F.-L. Qing, Angew. Chem. Int. Ed. 52 (2013) 14177–14180.
- [15] D.-F. Lu, C.-L. Zhu, H. Xu, Chem. Sci. 4 (2013) 2478-2482.
- [16] For selected reports on the synthesis of β -trifluoromethylstyrene, see:
 - (a) T. Fuchikami, M. Yatabe, I. Ojima, Synthesis 13 (1981) 365-366;
 - (b) T. Kitazume, N. Ishikawa, Chem. Lett. 11 (1982) 1453-1454;
 - (c) M. Fujita, T. Hiyama, Tetrahedron Lett. 27 (1986) 3659-3660;
 - (d) T. Umemoto, Y. Gotoh, Bull. Chem. Soc. Jpn. 60 (1987) 3307-3313;
 - (e) M. Shimizu, T. Fujimoto, H. Minezaki, T. Hata, T. Hiyama, J. Am. Chem. Soc. 123
 - (2001) 6947-6948;
 - (f) S.R. Dubbaka, P. Vogel, Chem. Eur. J. 11 (2005) 2633–2641;
 - (g) M. Omote, M. Tanaka, A. Ikeda, S. Nomura, A. Tarui, K. Sato, A. Ando, Org. Lett. 14 (2012) 2286–2289;
 - (h) J. Xu, D.-F. Luo, B. Xiao, Z.-J. Liu, T.-J. Gong, Y. Fu, L. Liu, Chem. Commun. 47 (2011) 4300–4302;
 - (i) T. Liu, Q. Shen, Org. Lett. 13 (2011) 2342–2345;
 - (j) G.K.S. Prakash, H.S. Krishnan, P.V. Jog, A.P. Iyer, G.A. Olah, Org. Lett. 14 (2012) 1146–1149;
 - (k) A. Parsons, T.D. Senecal, S.L. Buchwald, Angew. Chem. Int. Ed. 51 (2012) 2947–2950;
 - (I) Z. He, T. Luo, M. Hu, Y. Cao, J. Hu, Angew. Chem. Int. Ed. 51 (2012) 3944–3947; (m) X.-P. Wang, J.-H. Lin, C.-P. Zhang, J.-C. Xiao, X. Zheng, Beilstein J. Org. Chem. 9
 - (2013) 2635–2640; (n) Z. Fang, Y. Ning, P. Mi, P. Liao, X. Bi, Org. Lett. 16 (2014) 1522–1525.
- [17] Q. Chen, F.-L. Qing, Tetrahedron Lett. 63 (2007) 11965–11972.
- [18] The reactions of **6a** and **6g** were reported previously, see ref. [5c].
- [19] An internal diene was unsuitable under these reaction conditions, due to generation of unidentified by-products.
- [20] The reactions using **9a** and **9e** were reported previously, see ref. [5c].
- [21] K. Stanek, R. Koller, A. Togni, J. Org. Chem. 73 (2008) 7678–7685.

H. Egami et al./Journal of Fluorine Chemistry 167 (2014) 172–178