Immuno-purification of a dimeric subcomplex of the respiratory NAHD-CoQ reductase of Rhodobacter capsulatus equivalent to the FP fraction of the mitochondrial complex I

Hervé Duborjal ${ }^{\mathrm{a}}$, Alain Dupuis ${ }^{\mathrm{a}, *}$, Agnès Chapel ${ }^{\mathrm{b}}$, Silvie Kieffer ${ }^{\mathrm{b}}$, Joël Lunardi ${ }^{\mathrm{a}}$, Jean-Paul Issartel ${ }^{\text {a }}$
${ }^{\text {a }}$ Laboratoire de Bioénergétique Cellulaire et Pathologique, EA 2019 UJF, DBMS, CEA Grenoble, 38054 Grenoble Cedex 9, France
${ }^{\mathrm{b}}$ Laboratoire de Chimie des Protéines, DBMS, CEA Grenoble, 38054 Grenoble Cedex 9, France

Received 13 February 1997

Abstract

The Rhodobacter capsulatus genes encoding the NUOE and NUOF subunits, equivalent to the 24 kDa and 51 kDa subunits of the mammalian mitochondrial complex I, have been sequenced. According to the nucleotide sequence, the NUOE subunit is 389 amino acids long and has a molecular mass of 41.3 kDa . In comparison to the mitochondrial equivalent subunit, NUOE is extended at the \mathbf{C} terminus by more than 150 amino acids. The NUOF subunit is 431 amino acids long and has a molecular mass of 47.1 kDa . A subcomplex containing both the NUOE and NUOF subunits was extracted by detergent treatment of \boldsymbol{R}. capsulatus membranes and immuno-purified. This subcomplex is homologous to the mitochondrial FP fragment. Mass spectrometry after trypsin treatment of the NUOE subunit validates the atypical primary structure deduced from the sequence of the gene.

(c) 1997 Federation of European Biochemical Societies.

Key words: Rhodobacter capsulatus; Complex I; Mitochondrion; Gene sequence; Immunopurification; MALDI mass spectrometry

1. Introduction

NADH-CoQ reductase (or complex I) is the first component of the bacterial or mitochondrial respiratory chains. This enzyme catalyzes the oxidation of NADH and the reduction of ubiquinone with the concomitant ejection of 4 protons outside the bacterial cell or mitochondria [1,2]. In bovine mitochondria, structural analysis has revealed this complex to be composed of 43 different subunits. A number of cofactors (one FMN and 46 iron-sulfur clusters) are key components in the redox process. The precise assignment of these bound cofactors to the different subunits is still a matter of debate. Years ago, the subfractionation of the mitochondrial complex I led to the identification of three different subcomplexes called HP, IP and FP with the following features [3,4]. The HP subcomplex (hydrophobic proteins) is a non-soluble multimeric aggregate of hydrophobic subunits. It is partly built up of the 7 subunits encoded by the mitochondrial episome (also called ND subunits: ND1 through ND6 and ND4L). This hydrophobic fraction plays an important role in the anchoring

[^0]of complex I to the internal mitochondrial membrane and also in the proton channeling through the membrane. The second subcomplex, called IP fragment (iron-sulfur proteins), is a soluble domain made up of numerous subunits and contains some of the iron-sulfur clusters of complex I. The third subcomplex has been called FP fragment (flavoprotein) as it was proved to contain the FMN molecule and iron-sulfur clusters $[5,6]$. This soluble domain, when purified from bovine complex I, is composed of three subunits with molecular masses of 51,24 and 9 kDa and displays NADH-ferricyanate oxidoreductase activity. The 51 kDa subunit is believed to be the catalytic subunit since it binds NADH [7,8]. One $4 \mathrm{Fe}-4 \mathrm{~S}$ cluster and one FMN are probably liganded to this subunit. The second iron-sulfur cluster borne by the FP fragment is a 2 Fe 2 S cluster and is localized to the 24 kDa subunit. Complex I from bacteria, a more simple model of complex I, is being studied in different laboratories. In Escherichia coli and Paracoccus denitrificans, complex I is believed to be an assembly of at least 14 different subunits $[9,10]$. The genes encoding these subunits are clustered in one operon (so-called nuo for NAHD-ubiquinone oxidoreductase in E. coli and nqo for NADH-quinone oxidoreductase in P. denitrificans). Primary structure analysis has indicated that the 14 bacterial subunits are homologous to 14 subunits which are part of the bovine mitochondrial complex I. Seven bacterial subunits are equivalent to the mitochondrial ND subunits and seven others are the counterparts of the $75 \mathrm{kDa}, 51 \mathrm{kDa}, 49 \mathrm{kDa}, 30 \mathrm{kDa}, 24$ $\mathrm{kDa}, 23 \mathrm{kDa}$ and 20 kDa subunits. Hence, two of the bacterial subunits are highly similar to the two main subunits which compose the mitochondrial FP fragment (51 kDa and 24 kDa subunits). The third subunit of the mitochondrial FP fragment called 9 kDa has no counterpart amongst the subunits encoded by the bacterial operons. The present report shows that an FP-like subcomplex made up of two subunits homologous to the mitochondrial 51 kDa and 24 kDa subunits can be immuno-purified from the R. capsulatus membranes. Strikingly enough, the R. capsulatus NUOE subunit has a very long C terminus extension which is not found in the equivalent subunits of the different bacterial and mitochondrial complexes I.

2. Materials and methods

An R. capsulatus B10 genomic DNA library constructed in lambda was screened with a bovine cDNA fragment coding for the 51 kDa subunit. Inserts from the positive clones were subcloned in plasmids and sequenced as described previously [11]. A 12 amino acid peptide called peptide PNE corresponding to the N terminus of the NUOE subunit was synthesized on an Applied Biosystems 432A peptide syn-
thesizer (the PNE sequence was MLRRLHATQPDSC, in which the C terminus cysteine was an additional residue added for cross-linking to BSA). The HPLC purified peptide was cross-linked to maleimide-activated BSA and the final conjugate was used to raise antibodies in rabbits. Cytoplasmic membranes from aerobically grown wild type R. capsulatus B10 strain were prepared as follows. Cells were grown in the dark in RCV medium [12] containing 30 mM lactate as a carbon source and harvested by centrifugation. They were resuspended in one tenth the initial volume in buffer A $(50 \mathrm{mM}$ HEPES, $\mathrm{pH} 7.5,1 \mathrm{mM}$ EDTA, $1 \mathrm{mM} \beta$-mercaptoethanol, $2 \mu \mathrm{~g} / \mathrm{ml}$ aprotinin, $1 \mu \mathrm{~g} / \mathrm{ml}$ antipain, $1 \mu \mathrm{~g} / \mathrm{ml}$ leupeptin, $1 \mu \mathrm{~g} / \mathrm{ml}$ chymostatin, $0.5 \mu \mathrm{~g} / \mathrm{ml}$ pepstatin) and disrupted by passing through a cell disrupter (Constant Cell, War-
wick, UK) at a pressure of 1 kbar . Subcomplex extraction was performed by treatment of the membranes with a stripping solution composed of 50 mM HEPES $\mathrm{pH} 7.5,20 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ EDTA and 2% Glucopon (Glucopon 215 CS UP is a proprietary detergent from Henkel, France). After centrifugation ($15 \mathrm{~min}, 90000 \mathrm{rpm}, 4^{\circ} \mathrm{C}$) the supernatant was diluted five-fold in phosphate saline buffer and loaded onto a 1 ml immunoaffinity column of immobilized anti-PNE antibodies. The immunoaffinity column was generated essentially as described by Haines et al. [13]. Very briefly, the anti-PNE antibodies were immobilized on a protein A crosslinked Sepharose CL6B (Pharmacia) then chemically crosslinked with dimethylpimelimidate. The Glucopon solubilized R. capsulatus membrane extract was loaded

Fig. 1. Sequence of the ClaI-MscI restriction fragment of lambda clones, selected from an R. capsulatus genomic library by screening with a cDNA coding for the bovine 51 kDa subunit as a probe. The derived amino acid sequences of the three open reading frames nuoE, orfA and nuoF are indicated below the DNA sequence. Termination codons are marked by an asterisk. The nucleotide sequence data reported in this figure will appear in the EMBL, GenBank and DDBJ. Nucleotide Sequence Databases under accession number Y10142.
onto the column and allowed to recirculate through the column overnight at $4^{\circ} \mathrm{C}$. The column was then washed extensively in buffer A . Finally, the immuno-adsorbed components were released by an acidic washing step with a solution composed of 100 mM HCl -glycine pH $2.8,0.4 \%$ Glucopon. Collected fractions were immediately neutralized and analyzed on SDS-PAGE. Proteins were sequenced after electrophoretic transfer onto PVDF membranes as described [14].

The identification of the peptides generated by tryptic cleavage of NUOE was performed by mass spectrometry as follows. The silver stained NUOE spot was excised from the polyacrylamide gel and ingel digested with trypsin after iodoacetamide derivatization according to published procedures [15]. The resultant peptide mixture was embedded into a matrix of α-cyano-4-hydroxy-trans-cinnamic acid and analyzed by MALDI mass spectrometry. The mass spectra were obtained on a Bruker BIFLEX mass spectrometer. For spectrum calibration, trypsin autolytic fragments were taken as standards.

3. Results and discussion

Lambda clones, containing a DNA fragment encompassing the R. capsulatus gene coding for the 51 kDa catalytic subunit of the respiratory complex I, were recovered by screening and R. capsulatus DNA genomic library using a cDNA clone coding for the bovine mitochondrial 51 kDa subunit as a probe. Restriction digest fragments of the positive clones were cloned and sequenced. A ClaI-MscI fragment 3.3 kb long (Fig. 1) was proved to contain 3 putative open reading frames. The first open reading frame from base 90 to base 1259 encodes a 41 kDa protein which is related to the bovine 24 kDa subunit (Fig. 2). As a consequence this gene was called nuoE following the nomenclature of the E. coli nuo genes [10]. The second open reading frame from base 1359 to 1802 was called orf A and encodes a potential polypeptide with a molecular mass of 14.8 kDa . This putatively expressed polypeptide has no equivalent with either of the known subunits of the mitochondrial or bacterial complexes I. The last open reading frame from base 1995 to base 3290 encodes a 47 kDa protein which is equivalent to the bovine 51 kDa subunit. This gene was called nuoF. The overall organization of this R. capsulatus DNA fragment with the $n u o E$ gene located upstream of the nuoF gene is similar to what is found in the E. coli nuo operon, except that in R. capsulatus a supernumerary open reading
frame (orfA) is located between nuoE and nuoF. In the P. denitrificans operon, Yagi's group has discovered two open reading frames called urfl and urf2 located between the $n q o 2$ and nqo1 genes ($n q o 2$ and nqol genes are the equivalents of the R. capsulatus nuoE and nuoF genes respectively) [9]. Neither of these two urfs looks similar to the R. capsulatus orfA. Analysis of our lambda clones showed that in R. capsulatus the nuoE and nuoF genes are located in the close vicinity and upstream of the nuoH-nuoN gene cluster previously sequenced (not shown) [11,16].

A closer look at the primary structures of the NUOE and NUOF proteins has given additional information. The R. capsulatus NUOF protein is 38.5% identical to the E. coli NUOF subunit, about 67% identical to the bovine 51 kDa subunit and up to 85% identical to the P. denitrificans NQOI subunit. Four cysteine residues which are believed to be involved in the binding of a $4 \mathrm{Fe}-4 \mathrm{~S}$ cluster (C346, C349, C352 and C392, R. capsulatus numbering) are strictly conserved in all the subunits. Four cysteine residues are also invariant in the NUOE equivalent subunits (Fig. 2). All the NUOE equivalent subunits are highly similar except for their C terminal parts which are heterogeneous in size (Fig. 2). The E. coli NUOE subunit is the shortest one with 166 amino acids and a molecular mass of about 19 kDa . The human and bovine subunits, as mitochondrially imported and processed forms, are 217 amino acids and close to 24 kDa , and the P. denitrificans with 239 amino acids is 26 kDa [9,10,17]. According to the DNA sequence, the R. capsulatus NUOE subunit would have 389 amino acids and a molecular mass of 41264 Da . This subunit looks very atypical and is nearly twice as big as the corresponding mammalian mitochondrial subunit. In comparison to the P. denitrificans subunit, the R. capsulatus NUOE subunit appeared to be extended at the C terminus by 150 amino acids. This predicted extension is alanine rich, without specific motifs, and contains only one additional cysteine residue. It is not highly hydrophobic and is not predicted to form a transmembranous helix. To rule out the possibility of any DNA sequencing artifact, we paid careful attention to accurate sequencing of various subcloned fragments of the nuo E gene as well as a number of PCR fragments

Fig. 2. Comparison of the polypeptide sequences of the R. capsulatus NUOE subunit, the E. coli NUOE subunit, the bovine and human 24 kDa subunits (as processed mitochondrially imported subunits) and the P. denitrificans NQO2 subunit. Identical residues between the R, capsulatus NUOE and the human 24 kDa subunits are marked by dots, invariant cysteine residues are indicated by open circles. The tryptic peptides of the R. capsulatus NUOE subunit identified by MALDI mass spectrometry (see Fig. 4) are underlined and labelled A to I and A^{\prime} to C^{\prime}. Alignment was computerized using the Clustal method with the PAM 250 weight table.

Fig. 3. SDS polyacrylamide gel and Western blot analysis of the fractions eluted from the anti-PNE affinity column. Proteins recovered from the affinity column by acidic elution were precipitated overnight with 5 volumes of ethanol at $-20^{\circ} \mathrm{C}$ (lanes $1,2,3$ and 5). Membrane lysates collected in the flow through of the column during sample loading were also run as controls after being ethanol precipitated (lanes 4 and 6). Samples were run through a 12% polyacrylamide gel then stained with Coomassie (lane 1) or silver (lane 2). After electrophoretic transfer to PVDF membranes, proteins were identified using an anti-NUOF antibody (lanes 3 and 4) or an anti-PNE antibody (lanes 5 and 6).
overlapping this gene. No error was found in our consensus sequence. Accordingly, we set up immunoaffinity experiments to check the size of the expressed subunit in the R. capsulatus membranes so as to definitively ascertain the existence of an elongated C terminus in the R. capsulatus NUOE subunit.

Antibodies were raised against a synthetic peptide (called PNE) corresponding to the deduced N terminus sequence of the NUOE subunit. Membrane samples from the R. capsulatus B10 strain were analyzed by 2D electrophoresis in polyacrylamide gel. The anti-PNE antibodies specifically revealed one polypeptide with an apparent molecular mass of 42 kDa and a $\mathrm{p} I$ value close to 5.5 (not shown). These features are very close to the theoretical values of 41264 Da and $\mathrm{p} I 5.42$ deduced from the sequence of the gene. The selectivity of our antibody allowed us to set up experiments with the aim to immuno-purify the whole complex I or some fraction of it from R. capsulatus membrane fractions. Membranes were diluted in a 2% Glucopon solution (see Section 2) and soluble material was recovered after centrifugation. This soluble fraction was loaded onto a column of anti-PNE antibodies immobilized on a protein A-crosslinked Sepharose. After washing, the eluted fractions (see Section 2) were analyzed on SDSPAGE. These fractions contained 2 major proteins in a grossly stoichiometric amount as revealed by Coomassie blue staining (Fig. 3, lane 1). This subcomplex fraction appeared at least 95% pure as shown by Coomassie and intense silver staining (Fig. 3, lanes 1 and 2). Apparent molecular masses of 49 and 43 kDa were estimated for these two proteins. The two proteins were specifically detected by an antiNUOF subunit antibody or by the anti-PNE antibody respectively (Fig. 3). The identity of these two proteins was further confirmed by sequencing of their N termini. The N terminus of the biggest subunit was shown to be MLNDHDRIFT and that of the smaller one MLRRLHATQP. These N termini perfectly matched those deduced from the sequenced genes coding for the NUOF and NUOE subunits respectively
(Fig. 1). This confirmed that the two newly sequenced nuoE and nuoF genes are truly expressed in R. capsulatus and that the NUOE and NUOF subunits, purified as a soluble heterodimer after detergent extraction of the membranes, are in close contact in complex I. We also checked on an aliquot of the particulate material from the column if the NUOENUOF subcomplex might have some catalytic activity. Indeed, some deamino-NADH dependent nitroblue tetrazolium reductase activity was present in the immobilized protein fraction on the column after the extensive washes.

To ascertain that the mass of the NUOE subunit was related to a C terminus extension in comparison to other species NUOE subunits, we analyzed by MALDI mass spectrometry the peptide mixture obtained after tryptic digestion of the NUOE spot in the polyacrylamide gel. Eleven different peptides generated by trypsin cleavage of the NUOE subunit were unambiguously identified (Fig. 4). Among these peptides, two (peptide H from amino acid 288 to 306 and peptide I from amino acid 371 to 379) are part of the C terminus extension which has no counterpart in the equivalent bacterial or mitochondrial subunits (Figs. 2 and 4). This analysis ascertains that the amino acid sequence deduced from the DNA sequence of the nuoE gene is accurate and that the R. capsulatus NUOE subunit is significantly bigger than the other equivalent subunits known so far.

In chloroplasts, three subunits of the NADH dehydrogenase domain of complex I ($75 \mathrm{kDa}, 51 \mathrm{kDa}$ and 24 kDa) are apparently missing. This observation was taken by Friedrich et al. as an indication that in chloroplasts 'complex I' may work in a different way to the mitochondrial complex I [18]. Chloroplast complex I was hypothesized by these authors to be a NADPH or a ferredoxin:plastoquinone oxidoreductase. The discovery that in R. capsulatus NUOE and NUOF, which are the equivalents of the 24 kDa and 51 kDa subunits, are expressed is a clear indication that the R. capsulatus complex I is more of the mitochondrial type than of the chloroplast type.

Friedrich et al. have shown that stripping the E. coli cytoplasmic membranes under acidic conditions with a buffer containing the technical alkylglucoside APG 225 (a Glucopon equivalent manufactured by Henkel, Düsseldorf, Germany) led to the isolation of a whole active complex I [19]. Unlike this work, many different attempts at solubilizing the whole R. capsulatus complex I in our laboratory or others [20] have thus far proved unsuccessful probably because of the great instability of this complex I. The experiments we report here clearly show that in the case of R. capsulatus, Glucopon treatment of the membranes led to the isolation of a subcomplex composed of the NUOE and NUOF subunits only. This subcomplex was stripped from the membrane whatever the pH of the stripping solution in the range of $6-8$. Indeed, our purification protocol yielded a subcomplex of complex I very similar to the mitochondrial FP fragment. The mitochondrial FP fragment is composed of 3 different subunits, $51 \mathrm{kDa}, 24 \mathrm{kDa}$ and 9 kDa . An equivalent of the 9 kDa subunit, the role of which is unclear in the mitochondrial complex I, is absent in our preparation. None of the genes or other ORFs of the bacterial NADH-ubiquinone oxidoreductase operons analyzed so far encode a protein similar to the mammalian 9 kDa ($[9,10]$ and unpublished data for R. capsulatus). Furthermore, no significant homology was observed between the C terminal extension of R. capsulatus NUOE subunit and the bovine 9 kDa . Consequently, the possibility for the R. capsu-

Fig. 4. MALDI mass spectrum of a tryptic digest of the NUOE subunit. After in-gel tryptic digestion of the NUOE band, the eluted peptide mixture was analyzed as described in Section 2. The identified tryptic peptides are labelled A to I, and A^{\prime} and C^{\prime}, their positions and sequences are given in the table. Peptides $\mathrm{A}^{\prime}, \mathrm{C}^{\prime}$ and G correspond to partially digested peptides. The peptide at $m / z 1045.60$ is a trypsin autolytic fragment which partially overlaps the signal of peptide I. These two peaks are clearly distinguishable when this doublet peak is magnified (not shown). The major peak of the spectrum was unidentified. The theoretical masses of the protonated peptides are given in the table. They correspond to the monoisotopic masses for peptides G, E and I and to average masses for peptides $\mathrm{A}-\mathrm{D}, \mathrm{C}^{\prime}, \mathrm{F}$ and H . Positions of the peptides A to I, A^{\prime} and C^{\prime} are underlined in Fig. 2. (a) Mass of the Cys-195 carboxyamidomethylated peptide F.
latus NUOE subunit to behave as a fusion protein that would be the equivalent of both the bovine 24 kDa and 9 kDa seems to be ruled out. In the case of P. denitrificans attempts to purify complex I after detergent treatment of the membranes have led to the partial purification of a heterodimer with NADH-ubiquinone oxidoreductase activity [21]. The two subunits had molecular masses of 48 and 25 kDa . An antibody raised against this heterodimer was proved to crossreact with the bovine 51 kDa subunit of the bovine mitochondrial complex I suggesting that the two-subunit NADH-ubiquinone oxidoreductase component purified from the P. denitrificans membranes might also be an FP-like subcomplex I [22]. Furthermore, it has been recently reported by Yag's group that the P. denitrificans NQO1 and NQO2 subunits tend to associate in a dimeric aggregate when co-expressed in E. coli [23]. The above data as well as our immuno-purification of an FPlike fragment from the R. capsulatus membrane are clear indications that the NUOE and NUOF subunits interact closely and strongly in the bacterial complex I.

The R. capsulatus NUOE subunit has a very peculiar feature because of a very long C terminal alanine rich extension which is not found in the equivalent subunits from other
species. Because this extension is predicted not to contain any hydrophobic helix it is probably not involved in the membrane anchorage of complex I. At the present time, we do not know if this extended C terminus is related to a specific structural component in the R. capsulatus complex I or whether it is associated with the fact that R. capsulatus is a photosynthetic bacterium. Mutagenesis studies are under way to check the role, if any, of this C terminal extension.

Acknowledgements: We thank J.E. Walker for the gift of bovine cDNA; T. Rabilloud, M. Chevallet and V. Procaccio for their assistance in immunochemistry; M. Louwagie for amino acid sequence analysis; J. Garin for helpful discussion and P.J. Harms for reading the manuscript. Glucopon was a generous gift from Henkel, France. This work was supported by grants from the EU Biotech program (BIO2-CT93-0364), from the EPR Rhône Alpes; from INSERM (CRE 930805) and from the Commissariat à l'Energie Atomique.

References

[1] I.M. Fearnley, J.E. Walker, Biochim. Biophys. Acta 1140 (1992) 105-134.
[2] T. Yagi, Biochim. Biophys. Acta 1141 (1993) 1-17.
[3] Y. Hatefi, Annu. Rev. Biochem. 54 (1985) 1015-1069.
[4] C.I. Ragan, Curr. Topics Bioenerg. 15 (1987) 1-36.
[5] Y.M. Galante, Y. Hatefi, Arch. Biochem. Biophys. 192 (1979) 559-568.
[6] C.I. Ragan, Y.M. Galante, Y. Hatefi, T. Onishi, Biochemistry 21 (1982) 590-594.
[7] S. Chen, R.J. Guillory, J. Biol. Chem. 256 (1981) 8318-8323.
[8] T. Yagi, T.M. Dinh, Biochemistry 29 (1990) 5515-5520.
[9] T. Yagi, T. Yano, A. Matsuno-Yagi, J. Bioenerg. Biomemb. 25 (1993) 339-345.
[10] U. Weidner, S. Geier, A. Ptock, T. Friedrich, H. Leif, H. Weiss, J. Mol. Biol. 233 (1993) 109-122.
[11] A. Dupuis, FEBS Lett. 301 (1992) 215-218.
[12] P.F. Weaver, J.D. Wall, H. Gest, Arch. Microbiol. 105 (1975) 207-216.
[13] A.M.R. Haines, J.M. Cooper, J.A. Morgan-Hughes, J.B. Clark, A.H.V. Schapira, Prot. Express. Purif. 3 (1992) 223-227.
[14] C. Adessi, A. Chapel, M. Vinçon, T. Rabilloud, G. Klein, M. Satre, J. Garin, J. Cell. Sci. 108 (1995) 3331-3337.
[15] A. Shevchenko, M. Wilm, O. Vorm, M. Mann, Anal. Chem. 68 (1996) 850-858.
[16] A. Dupuis, A. Peinnequin, M. Chevallet, J. Lunardi, E. Darrouzet, B. Pierrard, V. Procaccio, J.-P. Issartel, Gene 167 (1995) 99104.
[17] S.J. Pilkington, J.E. Walker, Biochemistry 28 (1989) 3257-3264.
[18] T. Friedrich, K. Steinmüller, H. Weiss, FEBS Lett. 367 (1995) 107-111.
[19] H. Leif, V.D. Sled, T. Onishi, H. Weiss, T. Friedrich, Eur. J. Biochem. 230 (1995) 538-548.
[20] B.C. Berks, S.J. Ferguson, Biochem. Soc. Trans. 19 (1991) 581588.
[21] C.L. George, S.J. Ferguson, Eur. J. Biochem. 143 (1984) 567573.
[22] C.L. George, S.J. Ferguson, M.W.J. Cleeter, C.I. Ragan, FEBS Lett. 198 (1986) 135-139.
[23] T. Yano, V.D. Sled, T. Ohnishi, T. Yagi, J. Biol. Chem. 271 (1996) 5907-5913.

[^0]: *Corresponding author. Fax: (33) 476885187.
 E-mail: Dupuis@aup.ceng.cea.fr
 Abbreviations: NUO, NADH-ubiquinone oxidoreductase; FP, flavoprotein fraction; MALDI, matrix-assisted laser desorption/ionization; PNE, synthetic peptide corresponding to the NUOE subunit N terminus

