Cancellation and periodicity properties of iterated morphisms

Juha Honkala

Department of Mathematics, University of Turku, FIN-20014 Turku, Finland

Abstract

In this note we prove two cancellation properties of iterated morphisms and use these properties to give a simple method for deciding whether or not a given infinite D0L word is ultimately periodic.

c⃝2007 Elsevier B.V. All rights reserved.

Keywords: Iterated morphism; Periodicity; D0L system

1. Introduction and definitions

In this note we prove two cancellation properties of iterated morphisms. As an application of these properties we give a new solution to the D0L periodicity problem solved in [3,5].

We assume that the reader is familiar with the basics concerning iterated morphisms (see [1,6,7]). For all unexplained notation and terminology we refer to these references.

As usual, the free monoid generated by a finite nonempty alphabet X is denoted by X∗. The set of right-infinite words over X is denoted by Xω and X∞ = X∗ ∪ Xω. If u is a finite word, uω is the word uu · · ·. An infinite word w is called ultimately periodic if there exist finite words u, v such that w = uvω.

Let h : X∗ → X∗ be a morphism and let a ∈ X be a letter. If a is a prefix of h(a) and the language {h(n)(a) | n ≥ 0} is infinite, then hω(a) is the unique infinite word having prefix h(n)(a) for all n ≥ 0.

A morphism h : X∗ → Y∗ is called elementary if there do not exist a set Z smaller than X and two morphisms f : X∗ → Z∗, g : Z∗ → Y∗ such that h = gf. Elementary morphisms are injective on finite and infinite words. More precisely, if h : X∗ → Y∗ is elementary and u, v ∈ X∞, then h(u) = h(v) implies that u = v (see [6, Theorem III 1.6]).

Suppose h : X∗ → X∗ is an elementary morphism. Define

F(h) = {a ∈ X | h(n)(a) ∈ X for all n ≥ 1}.

Clearly, if a ∈ F(h) then h(a) ∈ F(h). Hence h induces a permutation of F(h). It follows that

h(card(X)!)(a) = a if a ∈ F(h).

Here card(X)! can be replaced by an integer at most G(card(X)), where G(k) is Landau’s function specifying the maximum order of an element of the symmetric group on k symbols (see [4]).

E-mail addresses: juha.honkala@utu.fi, jhonkala@utu.fi.

0304-3975/S - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2007.10.030
2. Two cancellation properties of iterated morphisms

In this section we state and prove two cancellation properties. The first of these is a direct generalization of a result of Ehrenfeucht and Rozenberg [2].

Theorem 1. Let \(h : X^* \to X^* \) be a morphism and let \(u, v \in X^\omega \). Suppose that there is a positive integer \(n \) such that

\[
h^n(u) = h^n(v).
\]

Then

\[
h^{\text{card}(X)}(u) = h^{\text{card}(X)}(v).
\]

Proof. We use induction on \(\text{card}(X) \). If \(\text{card}(X) = 1 \), the claim holds. Assume inductively that the claim holds if \(\text{card}(X) < k \) where \(k \geq 2 \) and consider an alphabet \(X \) having \(k \) letters.

If \(h \) is elementary, \(h^n(u) = h^n(v) \) implies that \(u = v \). Hence the claim holds.

If \(h \) is not elementary, there exist an alphabet \(Y \) smaller than \(X \) and morphisms \(f : X^* \to Y^* \), \(g : Y^* \to X^* \) such that \(h = gf \). Hence \((gf)^n(u) = (gf)^n(v) \). Therefore \((fg)^n f(u) = (fg)^n f(v) \). By the inductive assumption we get

\[
(fg)^{\text{card}(Y)} f(u) = (fg)^{\text{card}(Y)} f(v).
\]

Hence

\[
(gf)^{\text{card}(Y)+1} (u) = (gf)^{\text{card}(Y)+1} (v),
\]

which implies the claim. \(\square \)

Theorem 2. Let \(h : X^* \to X^* \) be a morphism and let \(u \in X^\omega \). Suppose that there is a positive integer \(n \) such that

\[
u = h^n(u).
\]

Then

\[
u = h^{\text{card}(X)!}(u).
\]

Proof. We use induction on \(\text{card}(X) \). If \(\text{card}(X) = 1 \), the claim holds. Assume inductively that the claim holds if \(\text{card}(X) < k \) where \(k \geq 2 \) and consider an alphabet \(X \) having \(k \) letters.

Suppose first that \(h \) is elementary. The claim holds if all letters of \(u \) belong to \(F(h) \). To proceed, assume that

\[
u = a_1 \cdots a_i b v,
\]

where \(a_1, \ldots, a_i \in F(h), b \in X - F(h) \) and \(v \in X^\omega \). Then \(h^n(bv) = bv \). Because \(b \notin F(h) \), this implies that \((h^n)^\omega(b) = bv \). Hence there exists a positive integer \(m \leq \text{card}(X) \) such that \((h^m)^\omega(b) = bv \). Therefore \(h^m(bv) = bv \) and

\[
u = a_1 \cdots a_i b v = h^{\text{card}(X)!}(a_1 \cdots a_i b v) = h^{\text{card}(X)!}(u).
\]

Suppose then that \(h \) is not elementary. Then there exist an alphabet \(Y \) smaller than \(X \) and morphisms \(f : X^* \to Y^* \), \(g : Y^* \to X^* \) such that \(h = gf \). Because \(u = (gf)^n(u) \) we have \(f(u) = (fg)^n f(u) \) where \(f(u) \) is an infinite word. Now the inductive hypothesis implies that

\[
f(u) = (fg)^{\text{card}(Y)!} f(u).
\]

Hence

\[
h(u) = h^{\text{card}(Y)!+1}(u).
\]

By assumption, there exists a positive integer \(p \geq \text{card}(X) \) such that \(u = h^p(u) \). Because

\[
h^{p+1}(u) = h^{p+1}(h^{\text{card}(Y)!}(u)),
\]

we have

\[
h(u) = h^{\text{card}(Y)!+1}(u).
\]

Hence

\[
h(u) = h^{\text{card}(Y)!+1}(u) = h^{\text{card}(Y)!+1}(u).
\]

...
Theorem 1 implies that
\[h^p(u) = h^p(h^{\text{card}(Y)\!}(u)). \]

Hence
\[u = h^{\text{card}(Y)!}(u), \]

which implies the claim. \(\square\)

3. The periodicity problem for infinite DOL words

The decidability of the DOL periodicity problem is an immediate consequence of the following theorem.

Theorem 3. Let \(X \) be an alphabet having \(k \) letters. Let \(h : X^* \rightarrow X^* \) be a morphism and let \(a \in X \) be a letter such that \(h^\omega(a) \) exists. Let \(h(a) = au \) where \(u \in X^*. \) Let
\[w_1 = auh(u) \cdots h^{k-1}(u) \]

and let \(w_2 \) be a primitive word and \(q \) be a positive integer such that
\[h^k(u)h^{k+1}(u) \cdots h^{k+q-1}(u) = w_2^q. \]

(a) If \(h^\omega(a) \) is ultimately periodic, then \(h^\omega(a) = w_1w_2^\alpha. \)

(b) \(h^\omega(a) \) is ultimately periodic if and only if there exist integers \(\alpha \geq 0, \beta \geq 1 \) and words \(w_3, w_4 \in X^* \) such that
\[h(w_1) = w_1w_2^\beta w_3, \quad h(w_2) = (w_4w_3)^\beta, \quad w_2 = w_3w_4. \] (1)

Proof. Suppose first that \(h^\omega(a) \) is ultimately periodic. Then there exist positive integers \(i \) and \(j, i < j, \) such that
\[h^i(u)h^{i+1}(u) \cdots = h^j(u)h^{j+1}(u) \cdots. \]

In other words we have
\[h^i(uh(u) \cdots) = h^j(uh^{j-i}(u)h^{j-i+1}(u) \cdots). \]

By Theorem 1 we have
\[h^k(uh(u) \cdots) = h^k(uh^{j-i}(u)h^{j-i+1}(u) \cdots) \]
or, equivalently,
\[h^k(u)h^{k+1}(u) \cdots = h^{k+j-i}(u)h^{k+j-i+1}(u) \cdots = h^{j-i}(h^k(u)h^{k+1}(u) \cdots). \]

This implies by Theorem 2 that
\[h^k(u)h^{k+1}(u) \cdots = h^{k+1}(h^k(u)h^{k+1}(u) \cdots). \]

Because
\[h^k(u)h^{k+1}(u) \cdots = h^k(u)h^{k+1}(u) \cdots h^{k+k!-1}(u)h^{k+k!}(u)h^{k+k!+1}(u) \cdots = w_2^q h^{k+1}(h^k(u)h^{k+1}(u) \cdots), \]

we get
\[w_2^q h^{k+1}(h^k(u)h^{k+1}(u) \cdots) = h^{k+1}(h^k(u)h^{k+1}(u) \cdots). \]

Hence
\[h^{k+k!}(u)h^{k+k!+1}(u) \cdots = w_2^\omega, \]

and
\[h^\omega(a) = w_1w_2^\omega. \]
Because $h(w_1 w_2^\omega) = w_1 w_2^\omega$, we have $h(w_1)h(w_2)^\omega = w_1 w_2^\omega$. Hence there exists a positive integer β such that $h(w_2)$ is a conjugate of w_2^β. In other words, there exist words $w_3, w_4 \in X^*$ such that $h(w_2) = (w_4 w_3)^\beta$ and $w_2 = w_3 w_4$. Because $h(w_1)$ is longer than w_1, the equation $h(w_1)(w_4 w_3)^\omega = w_1 (w_3 w_4)^\omega$ implies that there is a nonnegative integer α such that the first equation of (1) holds.

Finally, if there exist integers $\alpha \geq 0$, $\beta \geq 1$ and words $w_3, w_4 \in X^*$ such that (1) holds, then

$$h^\omega(\alpha) = h^\omega(w_1) = w_1 w_2^\omega$$

is ultimately periodic. □

References