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Abstract The problem of unsteady convective with thermophoresis, chemical reaction and radia-

tive heat transfer in a micropolar fluid flow past a vertical porous surface moving through binary

mixture considering temperature dependent dynamic viscosity and constant vortex viscosity has

been investigated theoretically. For proper and correct analysis of fluid flow along vertical surface

with a temperature lesser than that of the free stream, Boussinesq approximation and temperature

dependent viscosity model were modified and incorporated into the governing equations. The gov-

erning equations are converted to systems of ordinary differential equations by applying suitable

similarity transformations and solved numerically using fourth-order Runge–Kutta method along

with shooting technique. The results of the numerical solution are presented graphically and in tab-

ular forms for different values of parameters. Velocity profile increases with temperature dependent

variable fluid viscosity parameter. Increase of suction parameter corresponds to an increase in both

temperature and concentration within the thin boundary layer.
� 2015 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Non-Newtonian fluids are common fluids in industrial and
engineering processes in which there is no linear relationship
between stress and deformation rate as such fluid flows along
horizontal or vertical surface. Within the past few years, the

dynamic and behavior of non-Newtonian fluid have received
considerable attention in the field of heat and mass transfer
and thermal science owing to their great applications in the

industrial production of molten polymers, pulps, fossils fuels
and fluids containing certain additives. Immense contributions
to the body of knowledge (i.e. toward the understanding of the

dynamics of non-Newtonian fluids) can be found in Refs.
[1–8]. Gebhart et al. [9] focused on the physics of a flow along
vertical surface and explained extensively how fluid flows along
vertical surface. In natural convection, fluid surrounding a
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Nomenclature

ðx; yÞ cartesian coordinates

t time
T temperature of the fluid
N angular velocity
j micro-inertia density

T1 dimensional free stream temperature
Q activation enthalpy
EA activation energy

Cp specific heat at constant pressure
RG universal gas constant
Sc schmidt number

VT thermophoretic velocity
Kr chemical reaction rate
hðgÞ dimensionless microrotation
L1 time dependent microrotation parameter

Ra radiation number
Gr modified thermal Grashof number
fðgÞ velocity profile

ðu; vÞ velocity components along x; y directions respec-
tively

g acceleration due to gravity

C concentration of the fluid
Tw dimensional surface temperature
Cw dimensional surface concentration

C1 dimensional free stream concentration
c suction
hq heat generation parameter
Uo uniform velocity at free stream

n order of the chemical reaction

DH enthalpy change

Dm coefficient of mass diffusivity
RA arrhenius term
K1 microrotation parameter
Da Damkholer number

Gc modified solutal Grashof number
Pr Prandtl number

Greek symbols

n variable viscosity parameter
# kinematic viscosity
j thermal conductivity
s vortex viscosity

l dynamic viscosity
x activation energy
h dimensionless temperature

b volumetric thermal-expansion coefficient
w stream function
a absorption coefficient

r Stefan–Boltzmann constant
q fluid density
g similarity variable
hw dimensionless wall temperature

/w dimensionless wall concentration
k thermophoretic parameter
/ dimensionless concentration

b� volumetric solutal-expansion coefficient
c� spin gradient viscosity
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heat source receives heat energy; the fluid tends to becomes less
dense and rises. The surrounding cooler fluid moves to replace

it [9]. Bird et al. [10] reported that this cooler fluid is heated
and the process continues forming convection current; this
process transfers heat energy from the hot region to cool

region. The driving force for free convective is buoyancy, a
positive differences in fluid density. According to all the previ-
ous published articles on fluid flow along vertical surface, it is

worth noticing that existence of buoyancy in the fluid domain
is incorporated into the momentum equation based on the fact
that wall temperature is greater than free stream temperature
and the temperature decreases from the wall to the free stream.

Because of this, a correct and accurate pressure gradient term
is required to account for the convection term in momentum
equation.

Emulsion on the other side can be described as a mixture of
two liquids that would ordinarily not mix together. Two types
of emulsion are temporary and permanent. An example of

temporary emulsion is found in the industrial production of
simple vinaigrette (mixture of oil and vinegar) and mixture
of oil and water. When stirred or shaken vigorously, the two
liquids tend to form temporary emulsion which comes together

for a short time. In industry, Hollandaise sauce is another per-
manent emulsion which is made of egg yolks and clarified but-
ter. These can be explained as good examples of a binary

mixture of fluids. Fluid flow past a plate moving through a
binary mixture has been investigated due to its importance in
industry. Makinde et al. [11] carried out a research on
unsteady convection with chemical reaction and radiative heat

transfer past a flat porous plate moving through a binary mix-
ture using the classical Boussinesq approximation. They
assumed constant fluid viscosity within the thin boundary

layer formed on vertical surface. The effects of increasing mag-
nitude of thermal Grashof number, solutal Grashof number
and other important parameters over velocity, temperature

and concentration profiles were reported extensively. Makinde
and Olanrewaju [12] went further to consider the flow of a vis-
cous incompressible fluid flow past a vertical porous plate
moving through a binary mixture with the influences of energy

flux caused by a composition gradient and mass flux caused by
a temperature gradient. They extensively reported the effect of
the new parameters (i.e. Dufour and Soret parameter). Sastry

and Murti [13] were motivated by the research and assumed
that the fluid in question is electrically conducting and
reported the effect of magnetic field parameter.

In view of these ideas, it is of importance to investigate the
dynamics of fluids which contains microstructure as it flows
past a vertical porous plate moving through a binary mixture
as well (i.e. study fluid which contains particles that may

undergo translations and rotations as it flows through a binary
mixture). This kind of fluids belongs to a class of fluid with
non-symmetric stress tensor that are called polar fluids.

Physically, micropolar fluids consist of rigid, randomly ori-
ented (or spherical) particles suspended in a viscous medium
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where the deformation of fluid particles is ignored in Eringen
[14,15] and also in [16]. Physical examples can be seen in fer-
rofluids, blood flows, bubbly liquids and liquids crystals

[17,18]. In order to investigate such highly viscous fluid as it
flows upward, Boussinesq approximation and temperature
dependent viscosity are of great importance. Thermophoresis

can be described as the migration of colloidal particle in
response to a macroscopic temperature; when a temperature
gradient is established in gas, small particles suspended in

the gas migrate toward the direction of decreasing tempera-
ture. The phenomenon called thermophoresis occurs because
gas molecules colliding on one side of a particle have different
average velocities from those on the other side due to the tem-

perature gradient. A common example of the phenomenon is
the blackening of the glass globe of a kerosene lantern; the
temperature gradient established between the flame and the

globe drives the carbon particles produced in the combustion
process toward the globe where they deposit [19]. Chamkha
and Isaa [20] studied effects of heat generation/absorption

and thermophoresis on hydromagnetic flow with heat and
mass transfer over a flat surface. It is worth mentioning that
in [19–21], the thermophoresis model is incorporated into the

concentration equation and holds accurately when concentra-
tion at the wall is higher than that of the freestream. Recently,
Animasaun [21] presented the effects of some thermo-physical
parameters on non-darcian MHD dissipative Casson fluid flow

along linearly stretching vertical surface with migration of col-
loidal particles in response to macroscopic temperature.

Natural convection flow occurs frequently in nature. It

occurs due to positive temperature differences, as well as due
to concentration differences or the combination of these two.
For example in atmospheric flows, there exists differences in

water concentration and hence the flow is influenced by such
concentration difference. Convection in which the buoyancy
forces are due to both temperature and chemical concentration

gradients is referred to as thermo-solutal, or double diffusive
convection. Changes in fluid density gradients may be caused
by non-reversible chemical reaction in the system as well as
by the differences in molecular weight between values of the

reactants and the products. In the study of buoyancy driven
flow, the model is built on the fact that average temperature
of the fluid layers ðTÞ is greater than the temperature of the

fluid layers at free stream ðT1Þ. Boussinesq [22] studied
buoyancy-driven flow; he studied density differences and accel-
eration due to gravity in relation to buoyancy driven flow [22].

The basis of the Boussinesq approximation is that there are
fluid flows in which the temperature varies little and therefore
the density varies little, yet the buoyancy drives the motion.
Thus, the variation in density is neglected everywhere except

in the buoyancy term.
Following the above contributions to the body of knowledge, a

thorough literature review on Boussinesq approximation reveals

that this model is valid accurately when both dimensional and
dimensionless temperatures at the wall are higher in magnitude
than the dimensional and dimensionless freestream temperatures;

otherwise, thermal Grashof number may be negatively influenced.
It is worthmentioning that this is dependent on the kind of similar-
ity variable for temperature that is adopted. Likewise, when inves-

tigating fluid flow with temperature dependent dynamic viscosity
and thermal conductivity, differences betweenwall and free stream
temperature must be greater than zero. If otherwise, Grashof
related parametermaybe influencedbadly. Typical effect on veloc-
ity profile whenmagnitude of thermal grashof number is unity has
been presented in figures twoand three of [11,12]. In both figures, it
is observed that velocity profile reaches negative values few dis-

tance after the wall. Within past few years, modification of theory
or model has been something researchers embrace and investigate
in order to test the validity as presented in academic discourse. In

order todemonstrate the effects of temperature dependent physical
properties for natural convection in a concentric annulus, a modi-
fied Boussinesq approximation with temperature dependent vis-

cosity and thermal conductivity was developed and used
successfully in [23]. It is worth mentioning that the formulation
was based on the primitive variables stated in [23]. Recently, Diaz
et al. [24] reported that in the Boussinesq approximation the main

coupling term is the buoyancy force (generation ofmomentumdue
to temperature gradients) together with viscous heating (heat pro-
duction due to internal friction). It is always assumed that viscous

heating is negligible. These researchers proposed amodification of
the classical Boussinesq approximation for buoyancy-driven flows
of viscous, incompressiblefluids in situationswhereviscousheating

cannot be neglected.
Motivated by the above investigations, the purpose of this

research is to propose a modification of Boussinesq approxi-

mation and temperature dependent viscosity model which shall
provide better analysis of highly viscous fluid as it flows along
vertical surface when temperature at the wall is lesser than
temperature at the free stream. The present paper studies the

problem of unsteady convection with thermophoresis, chemi-
cal reaction and radiative heat transfer in a micropolar fluid
as it flows past vertical porous plate moving through a binary

mixture considering temperature dependent dynamic viscosity
and constant vortex viscosity. This aim can be further
described as an extension of [11–13] and modification of

Boussinesq approximation together with temperature depen-
dent viscosity. The governing equations are converted to cou-
ple ordinary differential equations by applying the similarity

transformation. Numerical solutions of the reduced nonlinear
similarity equations are then obtained by adopting numerical
approach. The results of the numerical solution are then pre-
sented graphically as well as the skin friction, heat transfer,

surface couple stress and mass transfer which are displayed
in tabular forms for different values of parameters.
2. Basic equations

An unsteady micropolar fluid flow past a flat vertical porous
surface moving through a binary mixture is considered. The

flow is assumed to be in the x-direction which is taken along
infinite surface and y-axis is normal to it. Since the plate is
of infinite length in x-direction, therefore all the physical quan-

tities (i.e. velocity, temperature, micro-element rotation and
species concentration) except possibly the pressure are
assumed to be independent of x. The fluid is assumed to be
optically thin with absorption coefficient a � 1. Following

Cheng [25], the approximate form of the radiative heat flux

equation @qr
@y

is taken as the fourth power of temperature in

the energy balance equation. In this research, it is assumed that
there exist colloidal particles in the fluid which migrate due to
the response of macroscopic temperature from the free stream

T1. For boundary layer analysis, the temperature gradient
along the surface is much lower than the temperature gradient
normal to the surface, i. e.
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@T

@y
� @T

@x
ð1Þ

In view of this, the component of thermophoretic velocity
along the surface is negligible compared to the component of
its velocity normal to the surface. Kabir and Al-Mahbub [26]

reported that the effect of thermophoresis is usually prescribed
by means of an average velocity that a particle will acquire
when exposed to a temperature gradient. It is assumed that a
very small amount of heat energy is transferred by convection

into the boundary layer formed over a vertical flat surface at
constant temperature Tw which is embedded in a fluid-
saturated porous medium at constant ambient temperature

T1 such that Tw < T1. Considering the mathematical model
introduced by [11] which is an extension of [12,13], Eringen
[14,15], Ferdows et al. [27] together with all assumptions stated

above along with Boussinesq’s approximation, the governing
equations can be formulated as follows:

The Continuity Equation

@v

@y
¼ 0 ð2Þ

The Momentum Equation

@u

@t
þ v

@u

@y
¼ lþ s

q

� �
@2u

@y2
þ s
q
@N

@y
þ gbðT� T1Þ

þ gb�ðC� C1Þ ð3Þ
The Angular Momentum Equation

@N

@t
þ v

@N

@y
¼ c�

qj
@2N

@y2
� s
qj

2Nþ @u

@y

� �
ð4Þ

The Energy Equation

qCp

@T

@t
þ v

@T

@y

� �
¼ j

@2T

@y2
þQ� 4ra2T4 ð5Þ

The Concentration Equation

@C

@t
þ v

@C

@y
þ @

@y
½VTðC� C1Þ� ¼ Dm

@2C

@y2
� RA ð6Þ

As micropolar fluid flows along a vertical porous plate
moving through a binary mixture of chemically reacting fluid,
the usual quantities and constituents stated in Eqs. (5) and (6)

are enough to justify the model. It is a well-known fact in the
study of emulsion that the two liquids do not ordinary mix
together; hence, most quantities/phenomena in a mixture the-

ory are neglected. From Eq. (2), it can be noted that the veloc-
ity component (v) along y-direction is either constant or a
function of time. Following Makinde [28], velocity component
along y-axis is considered as

v ¼ �c

ffiffiffi
#

t

r
ð7Þ

where c > 0 is the suction parameter and c < 0 is the injection
parameter. Spin gradient viscosity and Micro-inertia per unit

mass are considered as stated in Abdel-Rahman [29] and
Khan et al. [30] as

c� ¼ lþ s
2

� �
j; j ¼ l

qUo

ð8Þ

In this study, Q ¼ ð�MHÞRA is the heat of chemical reaction

called activation enthalpy and RA ¼ Kre
� EA

RGTCn is the
Arrhenius type of the nth order irreversible reaction, Kr is the

chemical reaction rate, RG is the universal gas constant and EA

is the activation energy parameter. The thermophoretic velocity
of the colloidal particles in the fluid as incorporated in Eq. (6)

was given by Talbot et al. [31] and later by Tsai et al. [32] as

VT ¼ � Kth

Tref

@T

@y

� �
ð9Þ

Kth is the thermophoretic coefficient which ranges in values

from 0.2 to 1.2 as reported by Batchelor and Shen [33]. It is fur-
ther assumed that all the fluid properties are constant except
dynamic viscosity and the influence of density variation with

temperature and concentration in the body force term (Boussi-
nesq’s approximation). According to Boussinesq [22], if q1
denotes the density of the fluid at the freestream where the tem-

perature is T1 then for small temperature difference between
the wall and freestream layer, the density model is presented as

q ¼ q1½1� bðT� T1Þ� ð10Þ
Buoyancy term gðq� q1Þ is of the same order of magni-

tude as the inertia term or the viscous term; so it is not negli-

gible. Upon using the above approximation in Eq. (10), the
buoyancy term can be simplified as

gðq� q1Þ ¼ �gbq1ðT� T1Þ ð11Þ
The body force term (Buoyancy force) is now of the form

qgx ¼ gbq1ðT� T1Þ. For free convection, heat and mass
transfer, the Boussinesq approximation is mathematically
denoted in momentum equation as

qgx ¼ gbq1ðT� T1Þ þ gb�q1ðC� C1Þ: ð12aÞ
Likewise, for forced convection, heat and mass transfer is

mathematically denoted in momentum equation as

� @p

@x
¼ ue

due
dx

ð12bÞ

Also, for mixed convection, heat and mass transfer, the
presure gradient term and Boussinesq approximation are

mathematically denoted in momentum equation as

� @p

@x
þqgx ¼ ue

due
dx

þgbq1ðT�T1Þþgb�q1ðC�C1Þ ð12cÞ

This theory is known as Boussinesq approximation which
states that density differences are sufficiently small to be

neglected, except where they appear in terms multiplied by g
(the acceleration due to gravity) see Boussinesq [22]. The
essence of the Boussinesq approximation is that the difference
in inertia is negligible but gravity is sufficiently strong to make

the specific weight appreciably different between the two fluids.
Through literature review, researchers have considered
0:1 6 hw 6 1:5. This can be further categorized into two cases

which are: Case 1 when hw > 1 (i. e. hw ¼ 1:5). Case 2 when
hw < 1 (i. e. hw ¼ 0:1). For more details on case 1 (see
Animasaun [34]). In this research, hw < 1 is only considered.

When the fluid temperature Tðy; tÞ is subjected to
Tð0; tÞ ¼ Tw and Tð1; tÞ ¼ T1 in which similarity variable
for temperature as in [11–13] is considered, dimensionless wall
temperature hw < 1 simply implies Tw < T1. In order to investi-

gate the effect of temperature dependent viscosity, emphasis
needs to be made on source of temperature into the fluid domain.
Hence, it is necessary to modify Boussinesq’s approximation in

momentum equation and temperature dependent variable fluid
viscosity model. It is very important to remark that if any model
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as stated in Eq. (12a–c) is incorporated into the momentum equa-
tion when Tw < T1, this may have negative influence on the
boundary layer analysis. Typical negative influence can be

deduced from Fig. 4 in [12]. To address this kind of negative
influence which may not be suitable and accommodated when
investigating fluid flow over a vertical/horizontal melting surface

or vertical surface at absolute zero, a modified Boussinesq
approximation is needed. In order to accurately achieve one of
the objectives of this research (i.e. to investigate effects of temper-

ature dependent variable fluid viscosity on free convective
micropolar fluid flow past a vertical plate moving through a bin-
ary mixture considering a case when hw;/w½ � < 1), the modified
Boussinesq approximation is proposed as

qgx ¼ gbq1ðT1 � TÞ þ gb�q1ðC1 � CÞ ð13Þ
Based on the fact that typical examples of case 2 are common

in the industry, correct governing equation(s) is/are needed. It
is worth pointing out that it is valid, reliable and realistic to
investigate case 2 mentioned above by substituting Eq. (13)

into Eq. (3).
The temperature dependent viscosity model was developed

using experimental data presented by Batchelor [35], adopted

by Mukhopadhyay [36] and successfully used to analyze the
effect of increasing temperature on viscosity within boundary
layer in [37,38] as lðTÞ ¼ l�½1þ bðTw � TÞ� valid when
Tw > T1 is also modified to

lðTÞ ¼ l�½1þ bðT1 � TÞ� ð14Þ
It is worth mentioning that the new model as in (14) is valid

when Tw < T1. There are several temperature dependent shear
viscosity models e.g. exponential model, Arrhenius model,

Williams Landel–Ferry model, Masuko–Magill model and
Batchelor model. All these models are developed for either liq-
uid or gases in which vortex viscosity is zero. In this research,

the author only considered a case where dynamic viscosity l is
temperature dependent and vortex viscosity s is negligibly
affected by temperature; hence it is assumed constant. It is

worth mentioning that an experimental data which can unravel
the influence of temperature on both dynamic and vortex vis-
cosity as in the case of Micropolar fluid is still an open ques-
tion. Since vortex viscosity is assumed as a constant, it is

valid to assumed the new model in Eq. (14). Imposing the
modified Boussinesq approximation (13) and temperature
dependent variable fluid viscosity (14) on dimensional equa-

tions, Eqs. (3)–(6) becomes

@u

@t
þ v

@u

@y
¼ lðTÞ

q
@2u

@y2
þ 1

q
@u

@y

@lðTÞ
@T

@T

@y

þ s
q

@2u

@y2
þ @N

@y

� �
þ gbðT1 � TÞ þ gb�ðC1 � CÞ

ð15Þ
@N

@t
þ v

@N

@y
¼ lðTÞ

q
þ s
2q

� �
@2N

@y2
� sUo

lðTÞ 2Nþ @u

@y

� �
ð16Þ

qCp

@T

@t
þ v

@T

@y

� �
¼ j

@2T

@y2
þ Kre

� EA
RGTCnð�MHÞ � 4ra2T4 ð17Þ

@C

@t
þ v

@C

@y
þ ðC1 � CÞ @VT

@y
þ VT

@

@y
ðC1 � CÞ

¼ Dm

@2C

@y2
� Kre

� EA
RGTCn ð18Þ
The appropriate boundary conditions of the above problem
are

uðy; 0Þ ¼ 0; Tðy; 0Þ ¼ Tw; Nðy; 0Þ ¼ �mo

@u

@y
;

Cðy; 0Þ ¼ Cw for t � 0 ð19Þ

uð0; tÞ ¼ 0; Tð0; tÞ ¼ Tw; Nð0; tÞ ¼ �mo

@u

@y
;

Cðy; tÞ ¼ Cw for t > 0 ð20Þ
uð1; tÞ ! Uo; Tð1; tÞ ! T1; Nð1; tÞ ! 0;

Cð1; tÞ ¼ C1 for t > 0 ð21Þ
In the boundary conditions Eqs. (19)–(21), Tw < T1 and

Cw < C1. In Eq. (17) the case mo ¼ 0, is called strong con-
centrations by Guram and Smith [39] indicates Nð0; tÞ ¼ 0
near the wall, represents concentrated particle flows in which

the microelements close to the wall surface are unable to
rotate [40]. The case mo ¼ 0:5 indicates the vanishing of
anti-symmetric part of the stress tensor and denotes weak
concentrations [41]. The case mo ¼ 1, as suggested by Ped-

dieson [42], is used for the modeling of turbulent boundary
layer flows (see Ioan [16]). In this research, the case
mo ¼ 0:5 is considered. Upon introducing the following

dimensionless variables

fðgÞ ¼ u

Uo

; g ¼ y

2
ffiffiffiffiffi
#t

p ; hðgÞ ¼ T

T1
hw ¼ Tw

T1
;

/ðgÞ ¼ C

C1
; /w ¼ Cw

C1
; NðgÞ ¼ Uoffiffiffiffiffi

#t
p hðgÞ;

Gr ¼ 4tgb
Uob

; Gc ¼ 4tgb�

Uob
; @ ¼ j

qCp

; n ¼ bT1;

K1 ¼ s
l
; L1 ¼ K1Uot; k ¼ �KthT1

#Tref

ð22Þ

hq ¼ ð�MHÞC1
qCpT1

; Ra ¼ 4ra2T4
1

qCpT1
; x ¼ EA

T1RG

;

Da ¼ 4tKre
� EA
RGT1Cn�1; Pr ¼ #

@ ; Sc ¼ #

Dm

into (15)–(21), the following dimensionless nonlinear ordinary

differential equations are obtain

½1þ n� hnþ K1� d
2f

dg2
� n

dh
dg

df

dg
þ 2ðgþ cÞ df

dg
þ 2k1

dh

dg

þ Grnð1� hÞ þ Gcnð1� /Þ ¼ 0; ð23Þ
d2h
dg2

þ 2Prðgþ cÞ dh
dg

þ PrhqDae
x h�1

hð Þ/n � Prh
4Ra ¼ 0; ð24Þ

1þ n� hnþ K1

2

� �
d2h

dg2
þ 2ðgþ cÞ dh

dg
þ 2h

� L1

½1þ n� hn� 8hþ 2
df

dg

� �
¼ 0; ð25Þ

d2/
dg2

þ 2Scðgþ cÞ d/
dg

� kScð1� /Þ d
2h
dg2

þ kSc

d/
dg

dh
dg

� ScDae
x h�1

hð Þ/n ¼ 0 ð26Þ
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The dimensionless boundary conditions of the above prob-
lem are

fðgÞ ¼ 0; hðgÞ ¼ hwð< 1Þ; hðgÞ ¼ � 1

4

df

dg
;

/ðgÞ ¼ /wð< 1Þ at g ¼ 0 ð27Þ
fðgÞ ! 1; hðgÞ ! 1; hðgÞ ! 0; /ðgÞ ¼ 1

as g ! 1 ð28Þ
where fðgÞ is the dimensionless velocity function, n is the tem-
perature dependent variable fluid viscosity parameter, K1 is

known as micro-rotation parameter, Gr is the modified thermal
Grashof number, Gc is the modified solutal Grashof number,
hðgÞ is the dimensionless temperature function, Pr is the
Prandtl number, hq is the heat generation parameter, Da is

Damkhler number, x is the activation energy parameter, Ra

is the radiation parameter, hðgÞ is the dimensionless micro-
rotation function, L1 is the time dependent micro-rotation
parameter, /ðgÞ is the dimensionless concentration function,

Sc is known as Schmidt number and k is the thermophoretic
parameter. Also, other quantities of physical interest in this
problem are the skin friction Cf, Nusselt number Nu and Sher-

wood numbers Sh which are defined by Makinde et al. [11] as

Cf ¼ 2#
ffiffi
t

p

Uo

ffiffiffi
#

p @u

@y

� 				
y¼0

¼ df

dg

� 				
g¼0

; Nu ¼ 2
ffiffiffiffiffi
#t

p

T1

@T

@y

� 				
y¼0

¼� dh
dg

� 				
g¼0

Sh ¼ 2
ffiffiffiffiffi
#t

p

C1

@C

@y

� 				
y¼0

¼ � d/
dg

� 				
g¼0

ð29Þ

results of the skin friction, Nusselt number, and Sherwood
number can be easily computed using Eq. (29).

3. Numerical solution

Numerical solutions of the ordinary differential Eqs. (23)–(26)
with the Neumann boundary conditions (27) and (28) are

obtained using classical Runge–Kutta method along with
shooting technique. The set of coupled ordinary differential
equations along with boundary conditions has been reduced
to a system of eight simultaneous equations of first order for

eight unknowns following the method of superposition (see
Na [43]). In order to integrate the corresponding I.V.P. the val-

ues of f 0ð0Þ; h0ð0Þ; h0ð0Þ and /0ð0Þ are required, but no such val-
ues exist after the non-dimensionalization of the boundary
conditions (19) and (21). The suitable guess values for

f 0ð0Þ; h0ð0Þ; h0ð0Þ and /0ð0Þ are chosen and then integration
is carried out. The calculated values for fðgÞ; hðgÞ; hðgÞ and
/ðgÞ at g1 ¼ 6 are compared with the given boundary
Table 1 Comparison of local heat transfer rate �h0ð0Þ and local

together with shooting techniques and bvp4c when g1 ¼ 6.

�h0ð0ÞRK4SM �h0ð0Þ
Sc ¼ 0:22; c ¼ 0 �0:838686692972656 �0:8386

Sc ¼ 0:42; c ¼ 0 �0:849242983648582 �0:8492

Sc ¼ 0:62; c ¼ 0 �0:854912516033717 �0:8549

Sc ¼ 0:22; c ¼ 0:5 �1:267068597902801 �1:2670

Sc ¼ 0:42; c ¼ 0:5 �1:280521268663868 �1:2805

Sc ¼ 0:62; c ¼ 0:5 �1:287403287660129 �1:2874
conditions in Eq. (28) and the estimated values

f 0ð0Þ; h0ð0Þ; h0ð0Þ and /0ð0Þ are adjusted to give a better

approximation for the solution. For more details on the
numerical technique see [44]. Series of values for

f 0ð0Þ; h0ð0Þ; h0ð0Þ and /0ð0Þ are considered and applied with
fourth-order classical Runge–Kutta method using step size
Mg ¼ 0:01. The above procedure is repeated until asymptoti-
cally converged results is obtained within a tolerance level of

10�5. It is worth mentioning that there exist no related pub-
lished articles that can be used to validate the accuracy of
the numerical results. Eqs. (23)–(28) can easily be solved using
ODE solvers such as MATLAB’s bvp4c solver.

3.1. Verification of the results

In order to verify the accuracy of the present analysis,

the results of Classical Runge–Kutta together with
shooting have been compared with that of bvp4c solution
for the limiting case when n ¼ 3; g at infinity = 6,

Gr ¼ Gc ¼ 1; Da ¼ 0:05; x ¼ Ra ¼ 0:2; K1 ¼ k ¼ L1 ¼ 1;
Pr ¼ 0:71; h ¼ 3; n ¼ 1 and hw ¼ /w ¼ 0:1 at various values
of Sc and c. The comparison in the above cases is found to
be in good agreement, as shown in Table 1. The excellent

agreement is an encouragement for further study of the effects
of other parameters on the flow.

4. Numerical results and discussion

Numerical computations have been carried out for the
present problem by employing the similarity solution for

fðgÞ; hðgÞ; hðgÞ and /ðgÞ against g with variations of
thermo-physical parameters controlling the fluid dynamics in
the flow regime. The values of Schmidt number for hydrogen

Sc ¼ 0:22 at 25 �C and one atmospheric pressure are consid-
ered in the analysis of the solution. It should be mentioned
here that Da > 0 indicates an increase in the destructive chem-

ical reaction rate, while Da < 0 corresponds to an increase in
generative chemical reaction rate. The value of the Prandtl
number is chosen to be Pr ¼ 0:71, which represents air at
25 �C and one atmospheric pressure. When modified local

thermal Grashof number Gr > 0 this corresponds to cooling
of the surface and when Gr < 0 this corresponds to heating
of the surface. In addition, when modified local solutal Gra-

shof number Gc > 0 this indicates that the chemical species
concentration in the free stream region is less than the concen-
tration at the surface/wall and when Gr < 0 this indicates that

the chemical species concentration in the free stream region is
greater than the concentration at the surface/wall. It is
mass transfer rate �/0ð0Þ with Sc using Classical Runge–Kutta

bvp4c �/0ð0ÞRK4SM �/0ð0Þ bvp4c
87 �0:582727235867182 �0:582727

43 �0:860039307005880 �0:860039

13 �1:099421579293592 �1:099422

69 �0:798091264284715 �0:798091

21 �1:279330713448670 �1:279331

03 �1:728144872634346 �1:728145
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Figure 2 Micro-rotation profiles for different values of n.
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observed from Table 1 that in the absence of suction (i. e.
c ¼ 0), both heat transfer rate and mass transfer rate decrease
with an increase in Schmidt number. It is furthered seen that

these physical quantities highly decrease with an increase in Sc.
At constant vortex viscosity, Fig. 1 illustrates the influence

of the temperature dependent dynamic viscosity on the

velocity distributions when modified local Grashof
numbers ðGr;GcÞ ¼ 1, thermophoretic parameter ðk ¼ 4Þ,
micro-rotation parameter ðK1 ¼ 1Þ and time dependent

micro-rotation parameter ðL1 ¼ 1Þ. As magnitude of n
increases, the velocity profiles asymptotically increase to its
peak within 1:2 6 g 6 1:8. Thereafter, each profile tends to
satisfies the far field boundary condition asymptotically. As

the micropolar fluid flows along the surface, it becomes heated
about the wall in the process as magnitude of n increases. At a
Table 2 Values of f 0ð0Þ and �h0ð0Þ for various values of

K1 ¼ 1; k ¼ 1; L1 ¼ 1; Pr ¼ 0:71; Sc ¼ 0:22; h ¼ 3; n ¼ 1; hw ¼ /

f 0ð0Þ
n ¼ 1 1.186167400354258

n ¼ 2 1.282625175735648

n ¼ 3 1.345231358872995
constant value of b, increase in n simply implies increase in the
amount of input temperature from the free stream into the
micropolar fluid domain. It is observed that velocity profiles

near 4 6 g 6 6 are not influenced with increase in n. The math-
ematical model of viscous forces by the differential equation
assumes that the flow is moving along a parallel solid surface

and the y-axis perpendicular to the flow. However, the rela-
tionship between shear stress and shear rate is nonlinear since
non-Newtonian fluid is under consideration. Yet, any fluid

moving along solid surface will incur a shear stress on that
boundary and still obey no-slip condition. This accounts for
the main reason why effect of n is very strong about the wall.
From Engineering point of view, when the fluid heats up, its

molecules become excited and begin to move (i. e. intermolec-
ular force which holds all the fluid molecules so tight is
weaken). The energy of this movement is enough to overcome

the forces that bind the molecules together, allowing the fluid
to move faster and decreasing its viscosity gradually away
from the wall; hence, the velocity increases from the wall

ðg ¼ 0Þ to the free stream ðg ¼ 3:8Þ with an increase in the
value of n.

The influence of temperature dependent dynamic viscosity

parameter ðnÞ over micro-rotation distribution across the
boundary layer is shown in Fig. 2. The result indicates that
with increase in the parameter n, the micro-rotation of the par-
ticles in the fluid decreases very near the wall ð0 6 g 6 0:18Þ,
increases significantly within ð0:23 6 g 6 3:4Þ and negligibly
increases as g ! 6. This result implies that when vortex viscos-
ity is a constant function of temperature, the micro-rotation of

particles near the wall decreases due to the fact that fluid near
the vertical porous wall is more viscous. Hence, the particles
within the micropolar fluid are able to rotate faster within

the fluid domain ð0:23 6 g 6 3:4Þ where drag caused by the
wall is reduced and heat energy is able to break down the inter-
molecular forces of the fluid within this interval of g. This
result is valid since it has been observed in Fig. 1 that heat
energy generated by increasing n and free stream are highly sig-
nificant few distance away from the wall. See Table 2 for fur-
ther report. It is noticed that skin friction coefficient increases

while couple stress at the wall decreases which implies increase
in drag near the wall and weak translations of particles; hence
this accounts for a decrease in micro-rotation of particles near

the wall. This effect may also be discussed as the correspond-
ing influence of heat energy at the wall which is of small mag-
nitude since hw ¼ 0:1 (see Table 3 for further report).

Fig. 3 represents the velocity profiles for different values of
suction parameter ðcÞ. It is expected that increase in suction
parameter should correspond to decrease in velocity field from
the wall to the free stream in a case where dimensionless

temperature hðg¼0Þ > hðg!1Þ [19]. The effect of increasing

suction parameter c is to remove the low-momentum fluid
around the hot wall and delays both transition and separation
n when c ¼ 0:1; Gr ¼ Gc ¼ 1; Da ¼ 0:05; x ¼ 0:2; Ra ¼ 0:2;

w ¼ 0:1 and g1 ¼ 6.

�h0ð0Þ
�0:103656480881624

�0:138093051629340

�0:159805656736284



Table 3 Values of f 0ð0Þ; �h0ð0Þ and �/0ð0Þ for various values of c when n ¼ 3; Gr ¼ Gc ¼ 1; Da ¼ 0:05; x ¼ 0:2; Ra ¼ 0:2;

K1 ¼ 1; k ¼ 1; L1 ¼ 1; Pr ¼ 0:71; Sc ¼ 0:22; h ¼ 3; n ¼ 1; hw ¼ /w ¼ 0:1 and g1 ¼ 6.

f 0ð0Þ �h0ð0Þ �/0ð0Þ
c ¼ 0 1.335731028494380 �0:838686692972656 �0:582727235867182

c ¼ 0:5 1.395937990067792 �1:230068597902801 �0:798091264284715

c ¼ 1 1.486721604027753 �1:753901025239213 �1:038334565710785

c ¼ 1:5 1.604063491727130 �2:281614874607798 �1:297065074287978

c ¼ 2 1.743089163837045 �2:837580328041057 �1:569462995721548
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Figure 3 Velocity profiles for different values of c.
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Figure 4 Temperature profiles for different values of c.
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Figure 5 Micro-rotation profiles for different values of c.
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Figure 6 Concentration profiles for different values of c.

762 I.L. Animasaun
(i.e. stabilizes the boundary layer growth), since the fluid near
the heated wall ðg ¼ 0Þ is pushed toward the wall where the

buoyancy forces can act to retard the fluid due to high influ-
ence of the viscosity. The case is difference in this research,
with an increase in suction ðc > 0Þ, it is observed that the

velocity distributions increases near the vertical porous wall
0 6 g 6 1:1 and decreases significantly thereafter. Low-
momentum fluid around the hotter area due to n ¼ 3 (within

the fluid domain) and hottest fluid from freestream due to
hðg ¼ 6Þ ¼ 1 are sucked. As the fluid is being sucked toward
the wall, heat energy is also transferred toward the wall. This
reduced the viscosity of the fluid and tends to increase the

velocity. The negligible increase in the velocity near the wall
can be further traced to the fact that the initial cold vertical
wall before suction start was not in motion (Uo is the uniform

velocity of the fluid layers at freestream) and dimensionless
temperature hðg¼0Þ < hðg¼6Þ. The effect of suction parameter

on the fluid temperature is highlighted in Fig. 4. It is observed
that the fluid temperature increases near the wall and decreases

negligibly far from the wall. As the flow develops along a ver-
tical wall, one way of dealing with boundary layer transition
(flow separation) is to suck the thin boundary layer through

the vertical porous surface. As this method reduces drag, heat
is escaped away from the flow regime; hence the temperature
reduces as magnitude of suction increases. The variation of

parameter c on the micro-rotation field is sketched in Fig. 5



Table 4 Values of �h0ð0Þ and �/0ð0Þ for various values of k when n ¼ 3; Gr ¼ Gc ¼ 1; Da ¼ 0:05; x ¼ 0:2; Ra ¼ 0:2; K1 ¼ 1;

c ¼ 0:5; L1 ¼ 1; Pr ¼ 0:71; Sc ¼ 0:22; h ¼ 3; n ¼ 1; hw ¼ /w ¼ 0:1 and g1 ¼ 6.

�h0ð0Þ �/0ð0Þ
k ¼ 1 �1:267063097902801 �0:798091264284715

k ¼ 2 �1:271242106782623 �1:013393523684787

k ¼ 3 �1:274992930640617 �1:234174531599102
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Figure 8 Micro-rotation profiles for different values of Ra.

Table 5 Values of �h0ðg ¼ 0Þ and �h0ðg ¼ 6Þ for various values

k ¼ 1; K1 ¼ 1; L1 ¼ 1; Pr ¼ 0:71; Sc ¼ 0:22; h ¼ 3; n ¼ 1; hw ¼ /

�h0ðg ¼ 0Þ
Ra ¼ 0:2 �0:9186841992

Ra ¼ 0:4 �0:8287101392

Ra ¼ 0:6 �0:7650655725

Ra ¼ 0:8 �0:7165032539

Ra ¼ 1 �0:6776289171
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when n ¼ 3. It is found that hðgÞ is a decreasing function of c
near the wall ð0 6 g < 0:25Þ, increasing function thereafter

ð0:27 < g 6 1:9Þ and a positive decreasing function thereafter
as g ! 6. The effect of suction parameter on the chemical
species concentration in the boundary layer is depicted in

Fig. 6 as the species migrates from the region of lower concen-
tration /ðg ¼ 0Þ ¼ 0:1 to region of higher concentration
/ðg ¼ 6Þ ¼ 1. From this figure, it is seen that the species con-

centration within the boundary layer increases with an increase
in the magnitude of c. Numerical results for the heat transfer

�h0ð0Þ and the mass transfer �/0ð0Þ as a function of ther-

mophoretic velocity k are shown in Table 4. It is observed from
the table that both heat transfer and mass transfer decrease
with an increase in the magnitude of k.

The variations of temperature and micro-rotation profiles
along with similarity variable with different values of radiation
parameter are shown in Figs. 7 and 8. At a constant value of

n ¼ 3; K1 ¼ 1 and other parameters, it is seen that tempera-
ture of the fluid decreases with an increase in the magnitude
of Ra. Physically, thermal radiation is found to be energy
transfer by the emission of electromagnetic waves which carry

energy away as the fluid flows along vertical surface moving
through binary mixture. Since the increase in radiation param-
eter means increase in the rate at which heat energy is released

from the flow region, this accounts for decrease in temperature
distribution as the magnitude of parameter Ra increases. It is
worth noticing that the significant decrease in temperature of

the fluid within the domain greatly affects the micro-rotation
as shown in Fig. 8. It is observed that, owing to the decrease
in temperature profiles with an increase in Ra, the micro-
rotation profiles decrease near the wall (hw ¼ 0:1) and increase

thereafter. Table 5 shows the effects of radiation parameter Ra

on the heat transfer (temperature gradient) at the wall (g ¼ 0)
and at the freestream (g ¼ 6). From the table, it is worth men-

tioning that the corresponding value of heat transfer is depen-
dent on the value of Radiation parameter. Hence, the slope of
the linear regression line SLR through data points is estimated

to explain the relationship. The SLR through data points in
�hðg ¼ 0Þ and Ra is estimated as 0.297158724731983. In addi-
tion, the SLR through data points in �hðg ¼ 6Þ and Ra is esti-
of Ra when n ¼ 3; c ¼ 0:1; Gr ¼ Gc ¼ 1; Da ¼ 0:05; x ¼ 0:2;

w ¼ 0:1 and g1 ¼ 6.

�h0ðg ¼ 6Þ
55 �0:004155246447

34 �0:020586841751

59 �0:036772192146

07 �0:052725901562

87 �0:068460930666
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mated as �0:080375214124880. Physically, the amount of heat
energy at the wall is small and hence the temperature at this
region is small. In view of this, the rate at which heat energy

is transferred toward the wall increases with an increase in
the magnitude of Ra. This accounts for the reason why
SLR > 0 and SLR < 0 in the other case. As magnitude of Ra

is increased from 0.2 to 1, the percentage increase of
�hðg ¼ 0Þ is estimated as 26.23% while the percentage
decrease of �hðg ¼ 6Þ is estimated as 1547.57%.

5. Conclusion

The present studies describes the boundary layer flow of

unsteady convection with thermophoresis, chemical reaction
and radiative heat transfer in a micropolar fluid flow past a
porous vertical surface moving through a binary mixture. In

a case of fluid flow along a vertical surface, the surface must
be kept at temperature higher than that of the free stream in
order to accurately utilize classical Boussinesq’s approxima-
tion. If otherwise, modification of Boussinesq’s approximation

model and temperature dependent variable fluid viscosity
model is necessary in order to accurately investigate the flow
behavior. The governing partial differential equations are con-

verted into ordinary differential equations by using similarity
transformation before being solved numerically using the
Runge–Kutta method along with shooting technique for

g 2 ½0; 6�. The accuracy of the analysis is achieved by compar-
ing the numerical solutions of Runge–Kutta with Shooting
and bvp4c. Results for the skin friction coefficient, Nusselt
number, velocity, temperature profiles as well as concentration

profiles are presented for different values of the governing
parameters. This study is able to acquaint us with the follow-
ing facts and behavior of the fluid flow:

1. Velocity profile increases with an increasing temperature
dependent variable fluid viscosity parameter. According

to the obtained results, we conclude that velocity increases
significantly near the wall where influence of heat energy
generated by n and free stream are significant.

2. Due to temperature dependent variable fluid viscosity, the
micro-rotation of particles decreases very close to the wall
and increases significantly within the fluid domain where
the effect of heat energy generated by both n and hðgÞ at

g ¼ 6 can be greatly felt. Temperature of micropolar fluid
as it flows along a surface moving through binary mixture
is a decrease function of thermal radiation parameter.

3. The suction increases velocity near the wall where heat
energy is low and decreases velocity close to free stream
where heat energy is high. The effect of suction over veloc-

ity and micro-rotation of particles can be highly controlled
by parameter n. Due to suction, both temperature and con-
centration inside the boundary layer increase.

4. Both heat transfer and mass transfer rates decrease with an

increase in thermophoretic parameter. The imposition of
Radiation heat transfer is to decrease the rate of heat trans-
fer at freestream significantly.

5. The Modified Boussinesq Approximation will give better
and correct analysis of fluid flow along vertical melting heat
transfer surface. This recommendation is based on the fact

that boundary conditions of temperature as in the case of
melting heat transfer satisfy T m < T1.
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