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The Pearson type II distribution is well known and is used in the general framework of
real normed division algebras and Riesz distribution theory. Also, the so called Pearson type
II-Riesz distribution, based on the Kotz—Riesz distribution, is presented in a unified way valid in
the context of real, complex, quaternion and octonion random matrices. Specifically, the central
nonsingular matric variate generalised Pearson type II-Riesz distribution and beta-Riesz type I dis-
tributions are derived in the addressed multiple numerical field settings.

© 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Matrix distribution theory has transformed the vision of statis-
tics applications in the last century; the usual real and univari-
ate setting was generalised for large random objects in the
standard numerical fields, constituting powerful techniques
used in several branches of knowledge. That tendency allowed
that any imaginable approach and application of univariate
statistics could be taught in a greater framework. As usual,
matrix generalisations based on real Gaussian models
appeared in numerous papers over the past 50 years; verbatim
copies of those classical results were translated separately into
the complex and quaternion cases, without showing the under-
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lying fact theories of
mathematics.

Extensions to matrix variate non-Gaussian models opened
an interesting perspective in the context of generalised invariant
statistics and propitiate some strong results which are now
widely applied in recent areas such as statistical shape theory
and MANOVA. For example, transition to unified studies, of
special families of distributions such as Pearson type I1, took sev-
eral years and required strong mathematical theories, which
were usually out of the scope of statistical papers. In this case,
the addressed distribution emerges in the following context: let
X and U; be random matrices independently distributed as
matrix multivariate normal distribution and a Wishart distribu-
tion, respectively; then the random matrix R = L™'X, where Lis
any square root of U = L*L = U; + X*X, has a matric variate
Pearson type II distribution. In the real case under normality,
the matric variate Pearson type II distribution (also known as
matric variate inverted T distribution) was studied separately by
Khatri (1959), Dickey (1967) and Press (1982). Recently, in a
general and unified setting, Diaz-Garcia and Gutiérrez-Jaimez
(2012) studied the real, complex, quaternion and octonion ver-
sions of this distribution.

explained by certain abstract
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Within the context of Bayesian inference, the posterior
mean and generalised maximum likelihood estimators were
found by Fang and Li (1999), assuming a matric variate Pear-
son type II distribution as the sampling model, and considering
the posterior and marginal laws as the corresponding nonin-
formative prior distributions. Meanwhile, with the frequentist
approach, Diaz-Garcia and Gutiérrez-Jaimez (2006) and Kotz
and Nadarajah (2004) studied the normal regression based on
Studentised errors.

In multivariate analysis the matric variate Pearson type II
distribution is a source of interesting potential studies, for
example, let R be a matric variate Pearson type II random
matrix, then R*R follows a matrix multivariate beta type I dis-
tribution, a law which plays a fundamental role in MANOVA
theory, see Khatri (1959, 1970) and Muirhead (1982).

A family of distributions on symmetric cones, termed the
matrix multivariate Riesz distributions, was first introduced
by Hassairi and Lajmi (2001) under the name of Riesz natural
exponential family (Riesz NEF); it was based on a special case
of the so-termed Riesz measure from Faraut and Koranyi
(1994, p. 137), going back to Riesz (1949). This Riesz distribu-
tion generalises the matrix multivariate gamma and Wishart
distributions, containing them as particular cases. Subse-
quently, Diaz-Garcia (2015c,a) proposed two versions of the
Riesz distribution and two generalisations of a class of Kotz
type distributions. The addressed general laws are termed
matrix multivariate Kotz—Riesz distribution and contains the
matrix multivariate normal distribution as a particular case.

With a similar philosophy, we can search a generalisation
of the matric variate Pearson type II distribution, in the fol-
lowing way: let R =XL™', where L is a upper triangular
matrix such that U = L'L = U; + X*X; if we assume that X
and U, are independently distributed matrix multivariate
Kotz—Riesz distribution and matrix multivariate Riesz distri-
bution, then we can derive the required distribution of R,
which will be called the matric variate Pearson type II-Riesz
distribution.

In the last 30 years, the theory of random matrix distri-
butions has reached a substantial development involving cer-
tain special areas of mathematics. Essentially, these advances
have been archived through two approaches based on the
theory of Jordan algebras and the theory of real normed divi-
sion algebras. A basic source of the mathematical tools of
theory of random matrices distributions under Jordan alge-
bras can be found in Faraut and Koranyi (1994); and specif-
ically, some works in the context of theory of random
matrix distributions based on Jordan algebras are provided
in Massam (1994), Casalis and Letac (1996), Hassairi and
Lajmi (2001) and Hassairi et al. (2005), and the references
therein. Parallel results on theory of random matrix distribu-
tions based on real normed division algebras have been also
developed in random matrix theory and statistics, see Gross
and Richards (1987), Dumitriu (2002), Forrester (2005) and
Diaz-Garcia and Gutiérrez-Jaimez (2011, 2013), among
others. Instead of using Jordan algebras, Ishi (2000) and
Boutouria and Hassiri (2009) studied several basic properties
of the matrix multivariate Riesz distribution under the
structure theory of normal j-algebras and theory of Vinberg
algebras, respectively.

Finally, the application of some particular fields as the octo-
nions seems to be unclear at present. An excellent review of the

history, construction and properties of octonions can be found
in Baez (2002); moreover, that author comments:

“Their relevance to geometry was quite obscure until 1925,
when Elie Cartan described ‘triality’ — the symmetry between
vector and spinors in 8-dimensional Euclidian space. Their
potential relevance to physics was noticed in a 1934 paper
by Jordan, von Neumann and Wigner on the foundations of
quantum mechanics. . .Work along these lines continued quite
slowly until the 1980s, when it was realised that the octionions
explain some curious features of string theory... However,
there is still no proof that the octonions are useful for under-
standing the real world. We can only hope that eventually this
question will be settled one way or another.”

For the sake of completeness, the octonions will be consid-
ered in this work, but we must recognise that the application of
the associated results can only be conjectured. Even so, some
expectations are emerging, for example, Forrester (2005,
Section 1.4.5, pp. 22-24) proved that the bi-dimensional eigen-
value density function of a 2 x 2 octonionic matrix Gaussian
ensemble is obtained from the eigenvalue general joint density
function of a Gaussian ensemble with m =2 and ff =8, see
notation in Section 2. Moreover, according to Faraut and
Koranyi (1994) and Sawyer (1997), it is easy to check that
the results of this work are valid for the algebra of Albert,
i.e., when the involved hermitian matrices or certain products
of hermitian matrices are 3 x 3 octonionic matrices.

The present paper is organised as follows: basic concepts
and notations of abstract algebra and Jacobians are sum-
marised in Section 2; and, definitions and properties of the
nonsingular central matric variate Pearson type II-Riesz and
beta type I distributions are studied in Section 3. We emphasise
that the results are derived in the context of real normed divi-
sion algebras, a useful integrated and unified approach recently
implemented in matrix distribution theory.

2. Preliminary results

A detailed discussion of real normed division algebras can be
found in Baez (2002) and Neukirch et al. (1990). For conve-
nience, we shall introduce some notation, although in general
we adhere to standard notation forms.

Let F be a field. An algebra 2 over [ is a pair (2; m), where
A is a finite-dimensional vector space over F and multiplication
m:AxA— A4 is an [F-bilinear map; that is, for all
reF,x,y,ze A,

m(x, Ay + z) = 2m(x;y) + m(x; z),

m(Ax + y;z) = dm(x;z) + m(y; z).

Two algebras (2;m) and (€;n) over F are said to be isomor-
phic if there is an invertible map ¢ : A — € such that for all
x,y e,

b(m(x,y)) = n($(x), $(»))-

By simplicity, we write m(x;y) = xy for all x,y € .
Let A be an algebra over F. Then 2 is said to be

1. alternative if x(xy) = (xx)y and x(y) = (xy)y for all
xyed,
2. associative if x(yz) = (xy)z for all x,y,z € A,
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3. commutative if xy = yx for all x,y € A, and
4. unital if thereisa 1 € A such that x1 = x = lx for all x € A.

If U is unital, then the identity 1 is uniquely determined.

An algebra U over [ is said to be a division algebra if A is
nonzero and xy = Oy = x = Oy or y = Oy for all x,y € 2.

The term “‘division algebra”, comes from the following
proposition, which shows that, in such an algebra, left and
right division can be unambiguously performed.

Let U be an algebra over . Then 21 is a division algebra if,
and only if, 2 is nonzero and for all a,b € A, with 70y, the
equations bx = a and yb = a have unique solutions x, y € 2.

In the sequel we assume F = R and consider classes of divi-
sion algebras over R or “‘real division algebras” for short.

We introduce the algebras of real numbers R, complex
numbers €, quaternions § and octonions O. Then, if U is an
alternative real division algebra, then 2 is isomorphic to ‘R,
€ 9 or .

Let A be a real division algebra with identity 1. Then 2 is
said to be normed if there is an inner product (-,-) on 2 such
that

(xy,xy) = (x,x)(y,y) forall x,y € A

Let 2 be a division algebra over the real numbers. Then 2
has dimension either 1, 2, 4 or 8. In other branches of mathe-
matics, the parameters o =2/f and ¢ = /4 are used, see
Edelman and Rao (2005) and Khatri (1984), respectively.

Finally, observe that

R is a real commutative associative normed division
algebra,

€ is a commutative associative normed division algebra,
$ is an associative normed division algebra,

O is an alternative normed division algebra.

Let £F

n,m

be the set of all # x m matrices of rank m < n over
A with m distinct positive singular values, where 2 denotes a
real finite-dimensional normed division algebra. Let ™" be the
set of all n x m matrices over 2. The dimension of A" over
Ris fmn. Let A € A", then A* = AT denotes the usual con-
jugate transpose.

Table 1 sets out the equivalence among the same concepts
in the four normed division algebras.

We denote by €/ the real vector space of all S € A" such
that S = S”. In addition, let ‘B,/f? be the cone of positive definite

matrices S € A" Thus, PP consist of all matrices S = XX,

with X € £ - then B}, is an open subset of &,
Let D,ﬁn consisting of all D € A", D = diag(d,,...,d,)

and let ¥ (m) be the subgroup of all upper triangular matrices

For any matrix X € A", dX denotes thematrix of differen-
tials (dx;). Finally, we define the measure or volume element

(dX) when X € A" & D) or VI .
Gutiérrez-Jaimez (2011, 2013).

If X €A™ then (dX) (the Lebesgue measure in A"")
denotes the exterior product of the fmn functionally indepen-

dent variables

see Diaz-Garcia and

n -m

/\/\dx,, where dx; =

i=1j=

/\dx(M.

If S€ & (or Se I (m) with 1, >0,i=1,...
(dS) (the Lebesgue measure in S or in T¥ (m)) denotes the
exterior product of the m(m — 1) /2 4+ m functionally indepen-
dent variables,

,m) then

m m

/\ds,, /\ /\ds

i>j k=1

Observe that the Lebesgue measure (dS) requires that S € B
i.e., S must be a non singular Hermitian matrix (Hermitian
definite positive matrix).

If A € D/ then (dA) (the Lebesgue measure in D’ ) denotes
the exterior product of the fm functionally independent
variables

/\ /\dN
i=lk=

If H, € V,/im then

m n

(HjaH,) = /\ /\ hjdh
i=1 j=i+1
where H = (H;|H})" = (hy,...,h,lh,.1,....h,)" € Wn). It

can be proved that this differential form does not depend on
the choice of the H, matrix. When n = 1; A

"1 defines the unit
sphere in A", an (m — 1)p-dimensional surface in A”. When
n = m and denoting H, by H, (HdH") is termed the Haar mea-
sure on W (m).

The surface area or volume of the Stiefel manifold Vﬁ,n is

om 7.,:nmﬁ/Z

By — ) [ —
VolVna) = /H]ev,/f,n (it = I, lnB/21° "

where I’ [a] denotes the multivariate Gamma function for the
=h

space &,,. This can be obtained as a particular case of the gen-

eralised gamma function of weight x for the space eﬁ, with

T € A" such that 1 =0 for 1 <i<j<m k= (ki ky, ... ky) € R", taking x = (0,0,...,0) € R". In
Table 1 Notation.
Real Complex Quaternion Octonion Generic notation
Semi-orthogonal Semi-unitary Semi-symplectic Semi-exceptional type foq ;
Orthogonal Unitary Symplectic Exceptional type u/’( )
Symmetric Hermitian Quaternion hermitian Octonion hermitian 651
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general, for Re(a) = (m —1)B/2 — k,,, Gross and Richards
(1987) and Faraut and Koranyi (1994) have defined,

m

T [0, ] = / etr{—A}AI" "y (A)(dA)
Ae‘lﬁff,

m

= w0 [+ k(1 1/2) @
— [alTdl ?

where etr(-) = exp(tr(-)), | - | denotes the determinant, and for
Acéc

m—1

K ki—kis
[T1Ad" 4)

i=1

q.(A) = [A,

with A, = (ay), r,s=1,2,...,p, p=1,2,... ,mis termed the
highest weight vector, see Gross and Richards (1987). Also,

]—'ﬁ’[a] = /A y etr{*AHA‘a_(m_l)ﬁD_l(dA)

_ Tcm(m—l)l?/“Hr‘[a — (i — l)ﬁ/z]’
i=1

and Re(a) > (m —1)/2.

In other branches of mathematics the highest weight vector
q.(A) is also termed the generalised power of A and is denoted
as A.(A), see Faraut and Koranyi (1994) and Hassairi and
Lajmi (2001).

Several properties of ¢,.(A) can be easily obtained, a list of
them is given next:

1. Let A=L'DL be the L’DL decomposition of A € ‘BZ,

where L€ I (m) with I;=1,i=12,...,m and
D =diag(4y,...,4n), 4 =0, i=1,2,...,m. Then
a.(A) =T[4 ®)
i1
2.
0.(A7") = ¢, (A), (6)
where
K* = (k,,,,km,l, A ,kl), —K" = (*kmv 7km—l sy 7kl);
m—1
0.(8) = A, [T )
=1
and
g:(A) = [ [, (8)
i=1
see Faraut and Koranyi (1994, pp. 126-127 and

Proposition VII.1.5).

Alternatively, let A = T*T the Cholesky decomposition of
matrix A e P’ with  T= (1) €I (m), then
Ai=10,1; 20,i=1,2,...,m See Hassairi and Lajmi
(2001, p. 931, first paragraph), Hassairi et al. (2005, p. 390,
lines -11 to -16) and Kotodziejek (2014, p.5, lines 1-6).

3.ifk=(p,...
qt{(A) = |A|p7 (9)

in particular if p = 0, then ¢,(A) = 1.

,D), then

4. ift=(t;,t0,...,tn),t1 =t = - =1, =0, then
Gii:(A) = q,(A)g.(A), (10)
in particular if t = (p,p,...,p), then
Gei-(A) = g, (A) = [A['q, (A). (11)

5. Finally, for B €I/ (m) in such a manner that

C=BBec¢&/,
q.(B"AB) = ¢,(C)q,(A) (12)

and

q.(B"'AB™") = (¢,(C)) "¢, (A) = ¢_(C)q,(A),  (13)

see Hassairi et al. (2008, p. 776, Eq. (2.1)).

Remark 1. Let P(Sf) be the algebra of all polynomial
functions on 6,’:1, and Pk(ef;) the subspace of homogeneous
polynomials of degree k and let P*(€”) be an irreducible
subspace of P(€#) such that

Pu(El) =D e P(E)).

Note that g, is a homogeneous polynomial of degree k, more-
over g, € P*(GF), see Gross and Richards (1987).

In (3), [a]f denotes the generalised Pochhammer symbol of
weight x, defined as

m

[l = [J(a— (i = 1)B/2),,

i=1
VIR Tla+ ki — (i = 1)B/2)
[l

T a,x]
M’

where Re(a) > (m —1)f/2 — k,, and

(@), =ala+1)---(a+i—1)

is the standard Pochhammer symbol.
An alternative definition of the generalised gamma function
of weight x is proposed by Khatri, 1966:

) a, —K] = / etr{—A}A|" "G (AT (dA)  (14)
Aepl)

m

m

_ nm(mfl)ﬁ/“HF[a — ki — (m—1i)p/2]
i—1

(=1)'Thld]

T Carm-Dp2 1l 13
where Re(a) > (m — 1)/2 + k.

Consider also the following generalised beta functions ter-
med, generalised c-beta function, see Faraut and Koranyi
(1994, p. 130) and Diaz-Garcia (2015b),
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Bl [a,x;b,1]

- / IS (S, =S g 1, = 9)(a)
<S<y

1)p/2—1 —(a+b
= [ R R Ry 1+ R) R
R€§ m

L la, )T, b, ]

H1[a+b K+T}
where K= (k],kz,...,km) S 9("1,‘[:(1,‘1,1‘2,... m) S iRm
Re(a) > (m—1)/2 -k, and Re(b) > (m—1)§/2 —t,.

Similarly defined is the generalised k-beta function as, see
Diaz-Garcia (2015b),
Bl la,—;b,—1]

m

:A . |s|u—(m—l)/i/2—lqw(s—])llm78‘17—011—1)/3'/2—1‘]1((Im7S)—l>(ds)
<S<ln

L
Rew,

" g R+ R (1, R) ) (@R)

_Dla.—x]T) (b, —1]
m[a+b 7K7T] 7
where k= (ki,kz,....,kn) € R", 1= (t1,t2,...,1,) € R,
Re(a) > (m —1)B/2 + ky and Re(b) > (m—1)B/2 + t,.

Finally, the following Jacobians involving the f§ parameter,
reflects the generalised power of the algebraic technique; they
can be seen as extensions of the full derived and unconnected
results in the real, complex or quaternion cases, see Faraut and
Koranyi (1994) and Diaz-Garcia and Gutiérrez-Jaimez (2011).
These results are the base for several matrix and matric variate
generalised analyses.

Proposition 1. Let X and Y € LP be matrices of functionally

nm

independent  variables, and let Y =AXB+C, where
Ac Cﬁn,B € Lﬂ mand C € En m are constant matrices. Then
(dY) _ |A*A|’"W2\B*B|""'ﬂ/2(dX), (16)

Proposition 2. Let X and Y € G be matrices of functionally
independent variables, and let Y = AXA" + C, where A € Eﬂ

and C € €' are constant matrices. Then

(dY) = [A"A[" VP (aX), (17)
Proposition 3. Let X € L be matrix of functionally indepen-
dent variables, and write X =V,|T, where V, € Vﬁm and
Te l@(m) with  positive  diagonal  elements.  Define
S=X'X ¢ B!, Then

(@X) =2 (@) (Vi) (18)

3. Matric variate Pearson type II-Riesz distribution

Two versions of the matric variate Pearson type II-Riesz distri-
butions and the corresponding generalised beta type I distribu-
tions are obtained in this section.

A discussion of Riesz distribution may be found in Hassairi
and Lajmi (2001) and Diaz-Garcia (2015a); and a description
of Kotz—Riesz distribution is given in Diaz-Garcia (2015b).
For convenience, we adhere to standard notation stated in
Diaz-Garcia (2015a,b). Now, consider the following two

definitions.
Definiton 1. Let X ec®’ Oc®f e and
k= (ki,ky,....ky) € R™. And let Ye ijm and

U(B) € 1@(n), such that B =U(B)'U(B) is the Cholesky
decomposition of B € G then:

1. Tt is said that Y has a Kotz—Riesz distribution of type I and
its density function is

B np2)
rb2 0 [nf/2, )22 (@7
x etr{—ptr[E (Y —p)' @ (Y —p)] }
X g U = w) @7 (Y — () (@) (19)

with Re(nfi/2) > (m —
tion as

Y~ KR

1)p/2 — k,; denoting this distribu-

K? ”7 ®7 2)'

M><n1(

2. And it is said that Y has a Kotz—Riesz distribution of type
I and its density function is

mn/i/Z—Zk,
ﬂ = )]7[nﬂ/2]
nmn/}/Zl“’/i [nﬁ/27 _K”Z'nﬁ/Z‘@'m[i/Z

x etr{—ptr[E(Y —p) @ (Y —p)] }

<o (o - e o e ) )
(20)

—1)B/2 + ky; denoting this distribu-

with Re(nf/2) > (m
tion as

Y ~ KREE (1, u, ©,X).

nxm

Definition 2. Let E ¢ (I)f’n and x = (ki,ka, ..., k,) € R”, then:

1. It is said that V has a Riesz distribution of type I if its den-
sity function is

ﬁam-%—zzllk
Ila,k]|E['q,(E)

for Ve B? and Re(a) = (m — 1)B/2 — k,,; denoting this
distribution as V ~ RE(a, x, E).

m

2. And, it is said that V has a Riesz distribution of type II if its
density function is

ﬁam— le,v
I la,—x]|E['q (2"

etr{—BE VIV (V)@v)  (21)

etr{—pE'V}|[V|“" "G (v (av)

(22)
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for V€ B? and Re(a) > (m —1)B/2 + k;; denoting this
distribution as V ~ R (a, k, E).

Theorem 1. Let k= (ki,ka, ... . ky) €N, and
T=(t1,t2,...,ty) € R". Also define R € L‘fm as

R

=XL!,

where L € T (m) is such that U=LL=U, +X'X is the
Cholesky decomposition of U,

1.

with Uy ~ REL(vB/2, K, 1,), Re(vB/2) > (m — 1)B/2 — ky;
independent of X ~ KRE! (7,0,1,,1,), Re(nf/2) > (m — 1)
B/2 — tw. Then U~ R ((v+n)p/2,k +1,1,) independent
of R with Re((v+n)B/2) > (m —1)B/2 — ky — t. Further-
more, the density of R is
Thlnp 2L, — RRI 2
b2 BB (v /2, 1;nB/2, 7]

qy (Im - R*R)qr (R*R) (dR)7

(23)
which shall be termed the matric variate Pearson type

1I-Riesz distribution type I, where 1, — R'R € ‘Bﬂ

m*°

cwith Uy ~ R (vB/2,x,1,,), Re(vB/2) > (m — 1)B/2 + ki,

independent of X ~ KR! (7,0,1,,1,,), Re(nf/2) > (m — 1)

nxm

B/2+ti. Then U~ REM((v4+n)B/2,x + 1,1, independent
of R with Re((v+n)B/2) > (m — 1)B/2 + ky + t,. Further-
more, the density of R is

T /211, — ROR|C 0
2B [vB/2, —ic;nf )2, —1]

% g [(RR)™'] (aR), (24)

a. [(Im ~R'R)"

which shall be termed the matric variate Pearson type II-
Riesz distribution type II, where I,, — R*R € ‘Bfr

Proof.

1.

X

From Definitions 1 and 2, the joint density of U; and X is

U2 e {— B(UL + X7X) } g, (U1 g (XX) (dUy ) (dX),

where the constant of proportionality given by

m

\'))16/2+Zk,- mn/?/2+zr,
pT g T o

m

“TIPLB/2 k] TP ()2, ]

m

Making the change of variable U; = (U —X"X) and
X = RL, where U = L"L, then by (16)

(dU,)(dX) = |L'L|"(dU)(dR) = |U|""?(dU)(dR),

and observing that |U;|=|U—-X"X|=|U—-L'R*'RL| =
|U||L,, — R*R|, the joint density of U and R is

o |U|(v+n—m+l)[i/2— 1 etr{iﬁU}qkJrr (U) |Im
—RR|" 5 g (I, — R'R)g,(RR)(dU) (dR).

Finally, note that the joint density of U and R is

m

(v+n)m/3/2+Z(k,+t,)
i=1

B

_ ! | ‘(\*+n—m+])[i/2—l
l(v+m)p/2,1+1]

I—g’ [Vﬂ/27 K] |Im _ R*R|(\‘fm+l)/3/27l
n’””/f/zB,’;[vﬁ/Z,K;n/)’/Z,T}

etr{—fU}q,..(U)(dU) x
qx(lm -R” R)qr(R*R)(dR)

which shows that U~ R ((v+n)p/2,x +1,1,) and is
independent of R.

2. The proof follows the same method used for proving
item 1. O

An alternative way to define the matric variate Pearson
type II-Riesz distributions is collected in the following
result.

Corollary 1. Let k1 = (ki ki, ..o ki) € R, and
7 = (11, tiay - -+, tin) € R". Also define Ry € £5,m as

R, =LY,

with Ly € T (n) is such that V.= L,L} =V, + YY" is the Cho-
lesky decomposition of 'V,

1. where Vi ~ R¥M(aB/2,x1,1,), Re(aB/2) > (n — 1)B/2 — ki,
independent of Y = X" ~ KRF! (1,,0,1,,1,), Re(mf/2) >
(n—1)B/2—t1,. Then U~RM((a+m)B/2,k +11,1,)
independent of R, with Re((a+m)f/2) > (n—1)p/2—
ki, — t1,. Furthermore, the density of R, is

T mp/2 |1, — R R;| P

b2 Bl a2, k15 npB/2, 1)
Xy, (RIRT)(de)v (25)

qlq (I" - RIRT)

which shall be termed the matric variate Pearson type II-
Riesz distribution type I, where 1,, — R|R] € 513,’;

2. where Vy ~ R (aB/2,x1,1,), Re(vB/2) > (n — 1)B/2+kn;
independent of Y = X" ~ ICRE’X”M(‘C],OJWI,W), Re(mf/2) >
(n—1)B/2+t. Then V~RM((a+m)B/2,x +11,1,)
independent of R, with Re((a+m)f/2) > (n—1)/2+
ki1 + tiy. Furthermore, the density of R, is

T¥mp/2)|1, — RR;| P2
nmn/f/ng[aﬁ/Z, —K;nf/2,—1]

% g, | (RiR}) | (@R)),

4 |1~ RiR) ]

(26)

which shall be termed the matric variate Pearson type II-
Riesz distribution type II, where I, — R|R] € "Bf
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Proof. The proofis a verbatim copy of the proof of Theorem 1.
Alternatively, observe that densities (25) and (26) can be
obtained from densities (23) and (24), respectively, making
the following substitutions,

R—R] m—n, n—-m, v—a, (27)

and thus, k — x;, T—1,and k;, > k;; t;,—t;. O

Corollary 2. Let Q = U(Q) 'RUE) + u, R as in Theorem 1,
and U(Q) € T} (n) and U(E) € T (m) are constant matrices
such that Q@ =UQ)UQ) € P! and E=UE)UE) € P,
8

m,n

respectively, and pu € LI is constant.

1. Then, from (23) the density of Q is
x |E-(Q - w)'QQ— w2
X ¢, [E = (Q— 1) QQ - w]g.[(Q — 1) Q(Q — w)(dQ),
with constant of proportionality
Lonp/2)|Q""
w2 B0 [vB 2, B2, )[BT g (8)

where E— (Q — p)"Q(Q — u) € B.. This distribution is
denoted as
Q ~ PRy

nxm

2. And from (24) the density of Q is
x[E-(Q—p)'Q(Q—p"
xg.[E- Q- w'eQ-w) ]e.[(@-weQ-u"]
(dQ),
with constant of proportionality

g2
m B [vB[2, i 2, —e][E| T g (27)

(v7 K7 T’ ”? Q? E)'

where E— (Q — u)"Q(Q — u) € B.. This distribution is
denoted as

Q~ PR

mxn

(v, i, 7, 1, Q, F).
Proof.
1. The proof follows from (23) and (24), respectively, observ-
ing that, by (16)
(dR) = |Q""|E[""(dQ),
and
(L, —RR) = (I, —U(E)"(Q — ) ULR) UL)Q — wU(E) ")
=UE) T E-(Q-p)'AQ-mUE) .

2. It can be obtained by applying a similar procedure for
proving item 1. [

Next some basic properties of the matric variate Pearson
type II-Riesz distributions are studied.

Corollary 3. Ler Q, = U(Q)RU(E) ™" + u, R as in Corollary 1,
and U(Q)" € T (n) and U(E)" € T (m) are constant matrices

such that Q =UQU(R)" € B}, and E=UEUE)" € B,

. tively B e e
respectively, and p € L,, , is constant.

1. From (25) the density of Q, is
|2 (Q - wEQ — )| g, (2 - (Q - WEQ -~ p)']
X4, [(Q) —mwE(Q, _.“)*](dQl)7
with constant of proportionality

T mp/2)|E|""
2B a2, 1 mp/2, 1]| QT g ()

where Q@ — (Q, — WE(Q, — p)*) € BL. This distribution is
denoted as

Q ~ PﬂRﬁfm(a, Ki,T1, 4, 2, 2).
2. Similarly, from (26) the density of Q is

x 12 (Q - WEQ - [ g, (@~ (@ - wEQ - )]

% 4, (@~ wEQ - w)") ] (@Q)),

with constant of proportionality

I mp/2] /="
nmn[}/ZB’f[aﬁ/z7 —K1; mﬁ/27 _Tl} ‘Q|(a+mfn+l)/}/271q

(@™

K1+71]

where Q@ — (Q, — WE(Q, — pu)*) € B This distribution is
denoted as

Qi ~ PRy (a, 1,7, 1, Q,E).

mxn

Proof.

1. The proof follows from (25) and (26), respectively, observ-
ing that, by (16)

(dRy) = || & (dQ)),
and
(I —RiR}) = (L, ~U(2) ' (Q,

~ WUEUE) (Q — w U
=UR) Q- (Q - WEQ, — p) U

2. It can be obtained by applying a similar procedure for
proving item 1. [

Now c-beta-Riesz type I and k-beta-Riesz type I distribu-
tions can be obtained, see Diaz-Garcia (2015b). Let n = m

and let B € B° defined as B = R*R then, under the conditions

m
of Theorem 1, we have

B=RR=L"'XXL"'=L"'WL"'
where W = X*X, L € ¥ (m) and U= L'L = U, + X"X is the
Cholesky decomposition of U. Therefore:

Theorem 2.

1. Assuming that R ~ PrRE (v,1,71,0,1,,1,). Then, the den-

nxm

sity of B, such that 1,, — B € qgfn is
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|B| (n—m+1)p/2—1

B vB/2, kB2, ] L, — B|(\'—m+l)/3/2—1qx(lm ~ B)q.(B)(dB).

(28)

B is said to have a matric variate c-beta-Riesz type 1
distribution.
2. Suppose that R ~ P RE! (v,1,1,0,1,,1,). Then the den-

nxm

sity of B, such that 1,, — B € B is
|B|(nfm+1)/}/271
B IvB/2, —;nB/2, —1]

xq.[(B)"")(dB). B is said to have a matric variate k-beta-
Riesz type I distribution.

|Im _ B‘(v—nﬂr])ﬁ/Z—]qK[(Im _ B)—l} (29)

Proof.

1. From (23) the density function of R is
o [L, = R'R["" P2 (1, — RR)g.(RR)(dR).
Now make the change of variable B = R'R, so that
(dR) = 27" [B{" 7 (aB) (ViaV),
with V; € V¥ The joint density of B and V; is then
o 1, = B g, (1, — B)q. (BB (aR)
x (VidVy).
Integrating with respect to V; using (1), gives the stated
marginal density of B.

2. This is obtained in a similar way to the obtained in item
. O

In addition, assume that n» < m and let B, € %f defined as
B, = R;R] then, under the conditions of Corollary 1 we have

B=L'YYL'=L'WL™,
where W; = YY". Hence:

Theorem 3.

1. Assuming that R ~ PﬂRf’XIm(a,Kl,rl,O, L,L,).
density of By is
‘B] ‘(m—)H»l)/f/Z—l
Bllap/2,ki;mp/2,7]

Then, the

L, =By g (1, —By)g,, (By)(dBy),
(30)

wherel, — B, € %ﬁf , also, we say that B, has a matric variate
c-beta-Riesz type I distribution.
2. Similarly, assuming that R ~ PIIRf’XI{n(a, K1,71,0,L,,L,).
Then the density of By is
|B1 ‘(m—n+l)/i/2—l

BllaB/2,—xi;mB/2, 1]

‘In _ Bl |(u—n+1)/f/2—lqlq [(In _Bl)—l]

31)

Xq,, [(B))'](dB,), where 1, — By € B!. We say that B, has a
matric variate k-beta-Riesz type I distribution.

Proof. The proof follows a similar procedure given for
Theorem 2. [

Alternatively, observe that densities (30) and (31) can be
obtained from densities (28) and (29), respectively, by making
the following substitutions

B—-B, m—n n—m v—a, (32)

and consequently k — k|, t©— 1, and k; — ky; t; — t);.
We end this section, deriving the non-standardised densities
of the c-, and k-beta distributions.

Corollary 4. Define C = U(®) BU(®), where U(®) € Th (m) is
such that @ = U(®) U(O) is the Cholesky decomposition of ©.

1. Assume that B has the density (28), then the density of the
random matrix C is

o[ e — ¢ (@ — C)g.(C)(dC),

(33)

with constant of proportionally
1
B),[vB/2,k:n/2,7]|@[" " g, (@)
for ® —C e P,

2. Suppose that B has the density (29), then the density of the
random matrix C is

)

€ e — g, [(© - ) g (CT) (),
(34)

with constant of proportionally

1
BEvB/2, —i;nB )2, —<]|@| R,

@)

K+T

for ® —Cc R,

Proof. This immediate from (17). O

4. Conclusions

Modern, integrated and unified statistics requires a number of
concepts and results of abstract algebra; the generalised theory
has a robust, concise and elegant exposition; but it is out of the
common language of statisticians. In opposite context, a noto-
rious tendency about unconnected translations of matrix dis-
tribution results in real-Gaussian to real-non Gaussian,
complex-Gaussian, complex-non Gaussian, ruled the statistical
theory for decades. We expect that publications in the line pro-
posed in this work will increase their impact on statistical the-
ory. Some of these statistical results can be cited, for example
Micheas et al. (2006) addressed the problem of point estima-
tion of parameters in complex shape theory. Also, Khatri
(1965) considered the estimation of parameters of a complex
matrix multivariate normal distribution and established a test
of hypothesis about the mean. In the quaternionic context,
Bhavsar (2000) set test statistics and their corresponding
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asymptotic distributions for two interesting particular hypoth-
esis. As suggested by the reviewer of this work, classical and
influential statistical results provided by Muirhead (1982)
and Fang and Zhang (1990) can be studied in the context of
real normed division algebras; but first we need to research
upon several aspects, in fact, some of them were obtained here.
In particular, Pearson type II distribution in the context of real
normed division algebras and Riesz theory, performs a crucial
role in the addressed generalised theory; taking into account
the published parallel results involving the Kotz type
distribution.
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