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We define two classes of functions which contain the classes of nondecreasing
submultiplicative and subadditive functions. Then we discuss the properties of these
classes and use them to give generalizations of some well-known integral
inequalities like the Bellman—Bihari inequality.  © 1986 Academic Press, Inc.

The attractive Gronwall-Bellman inequality [16] plays a vital role in
studying stability and asymptotic behavior of solutions of differential
equations (see [7] and [8]). Many linear and nonlinear generalizations
have appeared in the literature [30,3]. An extensive survey of these
generalizations is given by Beesack [3]. On the basis of a linear
generalization given by Pachpatte [18] and its general version by Agarwal
[2] various motivations have appeared in the literature (see, e.g., Agarwal
and Thandapani {1]). In all these nonlinear generalizations, the nonlinear
functions appearing in the right side are supposed to belong to the class of
submultiplicative or (and) subadditive functions with some monotonicity
properties. No attempt has been made to use another class of functions
which relax the submultiplicativity and subadditivity conditions.

Dhongade and Deo [ 14] were the first who defined a class F of functions
w(u), which are continuous, positive and nondecreasing on [0, ov), and
satisfy the condition

1
Lewze(2). uzovso (*)
o o
In point of fact, the previous condition implies that g(u)=g(1)u for u>0.
To avoid this triviality, an essential modification has been given by Beesack
[3], namely to require (*) to hold only for u20, v= 1.
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In Section 2 we define two classes of functions and discuss their proper-
ties. In Section 3 we extend some of the nonlinear generalizations of
Gronwall-Bellman inequalities, where the nonlinear functions appearing in
the right side belong to the classes of functions defined in Section 2. Also,
we obtain several integral inequalities similar to the Bellman-Bihan
inequality [9, Sect.4] is devoted to the nonlinear versions of the main
inequality of Pachpatte [18] and its extension by Agarwal [2].

DEerFINITION 1. A function w: [0, o0) — [0, o) is said to belong to the
class H if

(H;) w(u) is nondecreasing and continuous for x 2 0 and positive for
u>0.

(H,) There exists a function ¢, continuous on [0, co) with w(au) <
(o) wu) for >0, u=0.

Several examples and properties of the class H have been obtained by the
author in [11]. In particular, H includes all functions we F, with
corresponding function ¢ defined by d(a)=1 (0Za=1), dla)=0a (a=1).
Also H includes all submultiplicative functions which satisfy (H,), with
corresponding function ¢ = w.

DerINITION 2. A function w: [0, o0) = [0, c0) is said to belong to the
class M if

(M,) w(u)is nondecreasing and continuous for u = 0 and positive for
u>0.

(M,) There exists a functiony, continuous on [0, o) with
w(a+u) L y(a) + w(u) for >0, uz=0.

ExampLE 1. Every function w which is continuous and nondecreasing
on [0, o) with w(u)>0 for u>0 and which is subadditive is of class M
with = w.

ExaMPLE 2. Any nondecreasing continuous function w on [0, c0) with
w(u) >0 for u >0 which satisfies a Lipschitz condition of order n >0,

w(a+u) —w(u) < Ka",

is of class M with = Ka”, where K is a nonnegative constant.
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ExampLE 3. The function w(u)=In(cosh u) belongs to M with y(a)=
In(2 cosh a).

ExampLE 4. The function w(u) = u?/(u® + 1) belongs to M with y(x) =
(e*/(e® + 1)) + ko, for any k= 3.
Now we note some properties of the function y{a).

(a) Y(x)=0 for « = 0. This follows from
w(u) = w(u+o) < wlu)+y(a)
(b) If w(0)=0, then w(a) < y(a) for x=0.

In what follows we give some properties of the class M.

LEMMA 1. Let w(u)e M with corresponding function y(a). Then T(u)=
(1/u) 5 w(s) ds for u>0 with T(0)=w(0) is of class M.

Proof. 1t follows from [10] that T(u) satisfies M,. Now we note that

T(x+u)= ﬁ [aT(oc) + f: w(a +6) d()]

1
o+ u

_ ¢ T(a) + uf (o) + uT(u)

a+u X+ u

S T(w)+ [Y(a) + T(o) 1

<

|:aT(oz) ] Wi+ wo)) d@}

so T satisfies M, with corresponding function (T + ).

LEMMA 2. Let F(u) be a convex continuous function on [0, c0) with
F(0)=0 and F(u)>0 for u>0, which satisfies M, with corresponding
SJunction Y(a). Assume also that G(u) is a concave continuous function on
[0, o0) with G(0)=0 for which there exists a function y defined on [0, o0)
such that Gu+a)zy(a)+Gu) for uz0, a>0. If in addition,
lim, _, o, Y(a2)/x(a) = A exists (finite), then F(u)/G(u) is of class M.

Proof. Observe that G(a) = y(o) >0 for >0, so F(u)/G(u) is defined,
positive, and continuous for u> 0. By [10], F/G is also nondecreasing on
(0, 0), and since F(u)/G(u)>0 for wu>0, it follows that
B=1lim, 4, F(u)/G(u) exists (B=0). Now, we show that if the function
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F/G is defined to have the value B for =0, then it is of class M. For, as
now proved, it satisfies M,. For «a >0, u=0,

Flatu) _y(@)+Fu) _y(=)  F)

Gla+u) ™ x(a) + G(u) = x(a) ~ Glu)

A corresponding function for F/G is therefore the function ¢(«) defined by
#(0)=A, ¢(a)=y(a)/x(x) for a>0; ¢ is thus continuous on [0, o) as
required by M,.

LEMMA 3. Let f(x)e M with corresponding function y(a). Then
flax) = ([a]+ D Y(x)+/(0)  for 220,x20,

where [a] is the largest integer less than or equal to o.

Proof. Since fe M, then
Jx+ ) SY(x) +1(y).
Putting y =0, one obtains

f(x) 2¥(x)+/(0).

Therefore

Sx+y) S (x)+¥(y)+/(0)

and

F(2x) =29 (x) + f(0).
It is easy to prove by induction that

flax) Lo (x) +£(0),

for « belongs to natural numbers (N). If « does not belong to N, then
m<a<m+ 1, where me N. Hence

Slax) S f((m+1) x) £ (m+ 1) §(x) +£(0).

The proof is complete.

3

In this section further generalizations of the Bellman—Bihari inequality
have been obtained. In what follows we prove a similar result to that of



BELLMAN-BIHARI-TYPE INEQUALITIES 635

Pachpatte [237, where the nonlinear function belongs to H rather than just
to F.

THEOREM 1. Let x(t), f(2), g(t), p(t), and k() be real-valued positive
Sfunctions defined on I= [0, 00), let w(u)e H with corresponding multiplier
function ¢ and let k(1) also be a monotonic, nondecreasing function, for which
the inequality

X SK(O)+p(1) [ (5)x(5) ds+ [ g(5) w(x(5)) s (1)

holds for all te I Then

MO SKO 10 W W)+ [ 0 Sk e as |, @

s

(s)
for te [0, b], where

r(t):1+p(t)Uo'f(s)exp(jfp(e)f(e)de))ds], tel.  (3)
W(r)=j'ﬂ F>0 (ry>0) (4)

o W(s)’

and W= is the inverse function of W, and te [0, b] < I so that

W)+ j;z(l—s—)g(s) #(k(s)) $(r(5)) ds & Dom(W ")

Proof. Since k(t) is positive, monotonic, nondecreasing, we observe
from (1) that

XD <1400 |

ro X(s) (s)
k([): 0

X t
f(s)st+fomw(x(s))ds. (5)

Let z(¢) = x(t)/k(t) and use the fact that we H. Then from (5) we have
(1) S 1+p(0) j’f(s) 2(s) ds+ { h(s) w(z(s)) ds, (6)
0 0

where h(s) = g(s) p(k(s))/k(s).
Now, define

n(t)=1+ .r h(s) w(z(s)) ds, n(0)=1 (7

409/120/2-16
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and observe that n(¢) is positive monotonic nondecreasing. We obtain from
Theorem 1 in [23] and (6) the following estimate for z(¢),

z(t) Sn(t) r(1). (8)
Further,
w(z(1)) < ¢(r(2)) win(r))

since we H. Hence

h(1) w(z(1))

W) = h(1) ¢(r(2)).

Because of (4) and (7), this reduces to

% Wi(n(t)) < h(t) ¢(r(1)).

Now, integrating from 0 to ¢, we obtain

Win(1) = WS [ h(s) gir(s)) ds ©)

The desired bound in (2) follows from (8) and (9).

Now we establish an extension of Theorem 5.6 [3], where the nonlinear
function under the integral sign belongs to M and is not just subadditive as
in [3].

We note that, somewhat earlier, Deo and Murdeshwar [13] had
obtained the same estimate as that given in [3, Theorem 5.67], but the
proof in [13] is unfortunately incorrect. See also Beesack [4], Theorem 1.

THEOREM 2. Let x(1), a(t), k(t), and h(t) be real-valued nonnegative con-
tinuous functions defined on J=1[0, B). Let g(u)e M with corresponding
Sfunction ¢ on an interval I such that x(J)< I and a(J) < I. Suppose also that
the function h is monotonic, nondecreasing on an interval K such that O e K,
h(K)< I. Then

x(t)§a(t)+h[Jlk(s)g(x(s))ds}, teJ, (10)
0
implies

x()Za(t)+h {G‘ [ft k(s)ds+ G <Jl k(s) ¢(a(s)) ds)]} (11)
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for 0Zt<p,, where G(u)=[% dy/g(h(y)) for u,u,eK and B,=
min(u,, u,, uy) with

u, =sup {ueJ: a(t)
+h <j'k(s)g(x(s))ds)e1, 0§t§u},
1, = sup {u eJ: f k(s) [¢(a(s))
0
+ goh (j k(8) g(x()) dB)] dse K},
0
Uy =sup {ueJ: r k(s) ds

+G <jrk(s) #(als)) ds> €G(K), 0<t<T

0

lIA
liA

u}.
The proof can be accomplished in a similar way to that of Theorem 5.6 [3]
or Theorem 1 of [4].

Remark 1. 1t is not difficult to show that the same estimation for x()
can be obtained when k(¢) is nonpositive and A(¢) is nonincreasing.

Remark 2. When h(u)=u, Theorem 2 reduces to a generalization of
Lemma 2 by Muldowney and Wong [17].

The case when the nonlinear function 4 in (10) is multiplied by b(¢) has
been considered in detail by Beesack [5, Theorem 5.4; 4, Theorem 2; 3,
p. 81-827]. Under several sets of conditions on (x, a, b, A, k, g), different
incomparable estimates for x(7) have been obtained.

COROLLARY. Let x, a, k, g all be as in Theorem 2 and suppose b(t) is
nonnegative, continuous, and nondecreasing on I=1[0, 1. If

x(t)§a(t)+b(t)Jlk(s)g(x(s))ds, tel, (12)
0
then

x()<a()+G! [b(t) j’ k(s)ds+ G (b(t) Ik k(s) ¢(a(s)) ds)]

(127)
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Jor 0<t< 1y, where G, G~ are defined in Theorem 2, but with h(u)=u
there,

b(t)JOl k(s)ds+G<b(t)£ k(s)¢(a(s))ds>eDom(G‘l).

The proof of this corollary follows by an argument similar to that in the
proof of Corollary 1 given in [11].

In what follows we give an estimate for x(7) under different set of con-
ditions on (x, a, b, h, k, g).

THEOREM 3. Let x(t), a(t), k(1), b(t) be continuous and nonnegative on
J=1{0, 8] with b(t)>0 and a(t)/b(t) <y for some positive constant y. Let
glu) be of class H with corresponding function ¢. Suppose that h{u) is con-
tinuous, nonnegative and nondecreasing on [0, o0). If

x(t)éa(l)+b(t)h(L)[k(s)g(x(s))d-?) tel, (13)
then
x(f)§a(f)+b(f)h°L'(ﬂk(s)ﬂﬁ(b(s))dS)’ 0si<f, (14)
where
(")zﬂﬁﬁ’ uz0,
and
B, =sup {t eJ: L k(s) g(b(s)) dse L(R* )}.
Proof. Let

dnzﬂungﬂnm.

Then from (13) and the hypotheses on g and q, b it follows that

dz

7 = K0 g(x(1)) = k(1) gLa(t) + b(1) h(z(1)) ]

Sk(1)o(b(1) g [Z—E;—;M(Z(!))]
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and

dz
y+h(z)

< k(1) g(b(1)) dr. (15)
Integrating both sides of (15) from O to ¢, one obtains

L)< jo' k(s) $(b(s)) ds

and
z§L'1U’k(s)¢(b(s))ds], 0<1<p,. (16)
0
The substitution of (16) in (13), implies (14).

Remark 3. In Theorem 3 it is clear that hypotheses b>0 and a/b<y
can be replaced by a>0 and b/a <7y, therefore ¢(b(s)) in (14) will be
replaced by ¢(a(s)) and

L(u)=j: dz/g(1 + yh(2)).

Remark 4. Let g(u)=u’/(1 4+ u). Then g(u) is not submultiplicative and
does not satisfy the condition g(u)/v < g(u/v) for u>0 and v = 1. Therefore,
all Theorems in [4,12,5,3] are not applicable. Theorem 3 can be applied,
since w*/(1+u) is of class H with corresponding function ¢ defined by
pla)=a (0Sasl), gla)=0o’ (x21).

Remark 5. In the case when g is strictly increasing and h=g ' we

obtain from Theorem 3 the following estimate for x(z),

s zan+b0g oL ([ ko) o) as),

where now L(u) = [ dz/g(y + g '(2)).
This estimate is not comparable with a result obtained by Gollwitzer
[15, Theorem 1].

We obtain another upper bound for x(¢) when g satisfies different, but
general conditions. The following result essentially is the variation of
Gollwitzer’s Theorem 1 in which the conditions: g convex and sub-
multiplicative, are replaced by: ge Hn M.

THEOREM 4. Let a(t), b(t), and k(t) be continuous, nonnegative functions
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on J=1[0, B] with b(t)>0 and ge H and M with corresponding functions ¢
and i, respectively. Assume also that g is strictly increasing. Then

x(1)<a(t)+b(t) g~ (j k s)g(x(s))ds) ted, (17)
implies
x(t)S<b(r)g~'(B(r)), 1[0, 6], (18)
where
a(t) ! a(s)
B0 =4 () + [ kGs) bt ()
X EXp (j'k(e) ¢(b(6))d0> ds- - (19)
and

B, = sup{z eJ: jo k(s) $(b(s)) B(s) dse g(R* )}.

Proof. From (17) it follows that

x(n) _alt) x(s)
e ([ros (i) oo ) .

Let x(¢)/b(1) = z(¢) and use the hypotheses on g, to obtain

2w (3)+ [ kob s e

Considering g(z) as a function, using the most general linear Gronwall
inequality (see, e.g, Beesack [3, Theorem2.1]), it follows that
g(z(1)) < B(t), so z(t) < g '(B(1)), but since x(1) = b(1) z(t), (18) follows.

4
Several integral inequalities similar to Bellman-Bihari type have been
obtained by Pachpatte [18-297]. Most of these inequalities are based on a

main inequality [18], in which an estimate for x(r) has been obtained,
when

1)< xo+ jo'f(s) x(s) ds + fo'f(s) <f0 2(8) x(0) d0> ds
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where f(¢), g(t), and x(z) are supposed to be nonnegative with x, is a
positive constant and 7€ [0, o).

Later Agarwal [2] proved a general version of Pachpatte inequality,
when x(7) satisfies the inequality

x(1)p(0)+ [ fi(s) x(e) ds+ [ f(s) [ f(0) x(0) B, 120,

(22)

Several linear and nonlinear generalizations have been obtained by
Agarwal and Thandapani in their interesting paper [1].

In the following two theorems we consider nonlinear versions of (22).

These two theorems are related to the special case m =2 of Theorems 11
and 13 of [ 1], which dealt with g, he F rather than g, he H or g, he M. See
also the case k=2 of Theorem 1 of Beesack [6] for related results.

THEOREM 5. Let x(t), a(t), k(t), Ut), and m(t) be real-valued
nonnegative, continuous functions on I=1[0,00) with a(t) positive,
nondecreasing. Assume that g(u) and h(u) belong to H with corresponding
multiplier functions ¢(u) and Y(u), respectively, with ¢(u)<cu for u=1,
where ¢ is a positive constant. Then

x(1) < al1) +j' k(s) g(x(s)) ds + j I(s) j m(0) h(x(0)) df ds, 1€l

(23)
implies that
K0 SR B L H0) + [ ko) p(Fo) ds} 0<r
(24)
where
F(z):GI[G(l)+cj'kl(s)ds], (25)
k(1) = k(1) dlat))a(1) (26)
m(0) Wla(®))
a(0) = 1(0) || e o, (27)

H(z):j" ds/h(s), G(u)=r ds/g(s), u>0(uy>0).  (28)

ug uo
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H™ ' and G™' are the inverse functions of H and G, respectively,
B=min(b,, b,),

b, =sup {te[: G(1)+crk1(s) dseDom(G‘)}
o
and

b, = sup {tc—]: H(1)+f'kz(s) W(F(s)) dseDom(H‘)}.

Proof. Let x(t)/a(t)=y(¢t). Since g and & belong to H, from (23) it
follows that

Y1) R(1), (29)
where
Rty =1+ [ L0 o(3)) s
+j0 l(s)j(:%h(y(e))do ds, tel  (30)

From (30) and the nondecreasing property of g and A4 one obtains
R k(1) g(R)+ k(1) (R),  R(O)=1. (31)
Integrating (31) from 0 to ¢ we obtain
R()<1 +j'k2(s) h(R(s)) ds+j'kl(s)g(R(s)) ds, el (32)
0 0
Putting

n(t)=1 +f'k2(s) h(R(s)) ds (33)

and using [11, Theorem 1], we obtain

p(n(s))
n(s)

R(t)gn(z)G-‘[ (1)+fk() ] 0<r<bh,. (34)

Since ¢(n)/n = c, from (34) it follows that

R(t) =n(1) K1), (35)
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where F(¢) is defined by (25). Further,
R(1)) S Y(F(1)) h(n(1))
since he H. Hence,

ka(1) h(R(1))
h(n(1))

Because of (29) and (33), this reduces to

< ky(1) Y(E(1)).

d

= Hn(1) k(1) Y(F(1)

Now integrating from 0 to ¢, we obtain

H(n(1)) < HO)+ [ keolo) W(FGs)) d. (36)

The desired bound in (24) follows from (36), (35), and (29).

We point out that the conditions g(au) < ¢(x) g(u) < cag(u) for u=0,
a1, imply that g(u)=g(1) u/c for O<u <1, and g(u) < cg(u)u for u=1
(and that ¢ >1).

Remark 6. We get a similar bound for x(¢), when the condition
¢(u) < cu is replaced by y(u) < cu for uz>1.

THEOREM 6. Let x(t), a(t), k(t), I(t), and m(t) be real-valued nonnegative
continuous functions on I=[0,00), let g and h be of class M with
corresponding functions ¢(u) and Yy(u) respectively and let (1) ge H or
(i1) he H with corresponding multiplier function y such that y(u) < cu, where
¢>0is a constant. Then

x(1) < a(t) + j k(s) g(x(s)) ds + j I(s) j m(0) h(x(0)) db ds

for te I, implies for case (i) that
x(1) < a(t)+r(1) N(t)+ H! {r(t) j'p(s) ds

+ |0 [ po)wirts) N as . (38)
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while in case (ii), one has

x()<a(t)+r,(1) Nty + G {rl(z)j’k(s)ds

+G [rl(t) || k(s) gtr.5) Nes)) ds}} (38)

for te [0, B, where
rl(z)zyx[H(1)+cj'p(s)ds], (39)
0
H and G are as defined in Theorem 5, H™" and G ™" are the inverse functions
of H and G, respectively,

Ny =] [k(s) Ha(s)) +15) [ (0) a(@)) d0] ds, (40)

p(1)=1(1) j()'m(s) ds, (41)

r(z):G”[G(l)wj'k(s)ds], (42)
0

B =min(B,, B,),

p.=sup {uel; G(l)+cjlk(s)dseDom(G“), 0§t§u},
By =sup {uelz r(t)rp(s)ds
0

+H[r(t) J’p(s) Y (r(s)) N(s)ds] eDom(H '), 0=<< u}.
0

Proof. 1t suffices to consider case (i), since case (ii) can be treated in a
similar way. Let

R(t)=L: k(s) g(x(s)) ds+j0' l(s)j m(0) h(x(0)) d0 ds,  tel.

s
0

Since g and s e M one obtains

RO SK() #a(0) + K0 2(RO)+ | 10) | m(s)ds | RO
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and

R(t)gN(z)+j'k(s)g(R(s))ds+j'p(s)h(R(s))ds, el (44)
0 0
If we put

M(t)= N(2)+ [ p(s) W(R(s)) ds (45)

then from [11, Theorem 1] it follows that

R(1)< M(1) G~ [G(1)+£%{gm)ds} (46)

for te [0, ), where f is defined by (43). Since G and G~ ' are strictly
increasing and y(M) < cM, then from (45) one obtains

ROVSHO NG +r(0) [ ps)(R6) s, 1[0, (47)

Now, the use of Corollary 1 completes the proof.

Remark 7. When g(u)=h(u)=u, Theorem 6 reduces to Lemma 1 of
Agarwal [2].
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