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We define two classes of functions which contain the classes of nondecreasing 
submultiplicative and subadditive functions. Then we discuss the properties of these 

classes and use them to give generalizations of some well-known integral 
inequalities like the Bellman-Bihari inequality. ((7 1986 Acadenuc Press, Jnc 

The attractive Gronwall-Bellman inequality [ 161 plays a vital role in 
studying stability and asymptotic behavior of solutions of differential 
equations (see [7] and [8]). Many linear and nonlinear generalizations 
have appeared in the literature [30, 31. An extensive survey of these 
generalizations is given by Beesack [3]. On the basis of a linear 
generalization given by Pachpatte [18] and its general version by Agarwal 
[2] various motivations have appeared in the literature (see, e.g., Agarwal 
and Thandapani [ 11). In all these nonlinear generalizations, the nonlinear 
functions appearing in the right side are supposed to belong to the class of 
submultiplicative or (and) subadditive functions with some monotonicity 
properties. No attempt has been made to use another class of functions 
which relax the submultiplicativity and subadditivity conditions. 

Dhongade and Deo [ 141 were the first who defined a class F of functions 
W(U), which are continuous, positive and nondecreasing on [0, co), and 
satisfy the condition 

In point of fact, the previous condition implies that g(u) = g( 1)~ for u > 0. 
To avoid this triviality, an essential modification has been given by Beesack 
[3], namely to require (*) to hold only for u 2 0, u 2 1. 
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In Section 2 we define two classes of functions and discuss their proper- 
ties. In Section 3 we extend some of the nonlinear generalizations of 
GronwalllBellman inequalities, where the nonlinear functions appearing in 
the right side belong to the classes of functions defined in Section 2. Also, 
we obtain several integral inequalities similar to the Bellman-Bihari 
inequality [9, Sect. 41 is devoted to the nonlinear versions of the main 
inequality of Pachpatte [ 181 and its extension by Agarwal [2]. 

DEFINITION 1. A function w: [0, co) -+ [0, co) is said to belong to the 
class H if 

(Hi) w(u) is nondecreasing and continuous for u 2 0 and positive for 
2.4 > 0. 

(H,) There exists a function 4, continuous on [0, co) with W(W) 5 
&LIT) w(u) for a > 0, 24 2 0. 

Several examples and properties of the class H have been obtained by the 
author in [ 111. In particular, H includes all functions w  E F, with 
corresponding function 4 defined by d(a) = 1 (0 5 a 5 l), 4(a) = c( (CI 2 1). 
Also H includes all submultiplicative functions which satisfy (H ,), with 
corresponding function 4 = w. 

DEFINITION 2. A function w: [0, co) + [0, co) is said to belong to the 
class M if 

(M i) w(u) is nondecreasing and continuous for u 2 0 and positive for 
24 > 0. 

(M2) There exists a function $, continuous on [0, co) with 
w(c( + 24) 5 $(cr) + w(u) for a > 0, u 2 0. 

EXAMPLE 1. Every function w  which is continuous and nondecreasing 
on [0, co) with w(u) > 0 for u > 0 and which is subadditive is of class M 
with I,+ = w. 

EXAMPLE 2. Any nondecreasing continuous function w  on [0, m) with 
w(u) > 0 for u > 0 which satisfies a Lipschitz condition of order n > 0, 

W(CI + u) - w(u) 2 Kd’, 

is of class M with $ = Ku”, where K is a nonnegative constant. 
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EXAMPLE 3. The function W(U) = ln(cosh U) belongs to A4 with $(a) = 
ln(2 cash CX). 

EXAMPLE 4. The function w(u) = u’/(u’+ 1) belongs to M with $(LY) = 
(a’/(~‘+ 1)) + ku, for any k 2 2. 

Now we note some properties of the function $(cc). 

(a) $(a) 2 0 for a 2 0. This follows from 

w(u) 5 w(u + a) 5 w(u) + $(a). 

(b) If w(O)=O, then w(LY)~$(cc) for ~~10. 

In what follows we give some properties of the class M. 

LEMMA 1. Let w(u) E A4 with corresponding function $(a). Then T(u) = 
(W).k~(W f s or u > 0 with T(0) = w(0) is qf class M. 

Proof It follows from [lo] that T(u) satisfies M,. Now we note that 

1 
T(LY+u)=- 

C?+Zl 
w(c( + 0) de 1 

<L 
=CX+u 

($(cI) + w(0)) de 1 
=L T(a)+ d(a) + UT(U) 

Ct+Zl a+u 

5 T(u) + Crl/(a) + T(a)l; 

so T satisfies M, with corresponding function (T+ $). 

LEMMA 2. Let F(u) be a convex continuous function on [0, cc) with 
F(0) =0 and F(u) >O for u> 0, which satisfies 44, with corresponding 
function $(a). Assume also that G(u) is a concave continuous function on 
[0, co) with G(0) = 0 for which there exists a function x defined on [0, co) 
such that G(u+cc)~x(a)+ G(u) for ~20, cx>O. Zf in addition, 
lim M+o+ll/(cz)/x(cr) = A exists (finite), then F(u)/G(u) is of class M. 

Proof. Observe that G(a) 2 X(X) > 0 for c1> 0, so F(u)/G(u) is defined, 
positive, and continuous for u > 0. By [lo], F/G is also nondecreasing on 
(0, co), and since F(u)/G(u) >O for u >O, it follows that 
B=lim u ,o+F(u)/G(u) exists (B >= 0). Now, we show that if the function 
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F/G is defined to have the value B for u = 0, then it is of class M. For, as 
now proved, it satisfies M,. For c( > 0, u 2 0, 

F(a + u) I $(a) + f-(u) I ICI(a) + F(u) -- 
G(a + u) - x(a) + G(u) - x(a) G(u)’ 

A corresponding function for F/G is therefore the function &CC) defined by 
&O)=A, ~$(a)= $(a)/x(a) for a >O; 4 is thus continuous on [0, co) as 
required by M,. 

LEMMA 3. Let f(x) E A4 with corresponding function *(CC). Then 

f(Ex)S([cr]+l)ti(x)+f(O) for ~12O,x20, - 

where [cl] is the largest integer less than or equal to a. 

Proof: Since f E M, then 

.f(x + Y) s Ii/(x) +f(v). 

Putting y = 0, one obtains 

f(x) 5 ti(x) +f (0). 

Therefore 

and 

f(x+.Y)S$(x)+4W)+f(O) 

f(2x) 5 W(x) +f(O). 

It is easy to prove by induction that 

f (ax) I a$(x) +f (O), 

for LY belongs to natural numbers (N). If c( does not belong to N, then 
m<cr<m+l, where mEN. Hence 

f(xx) Sf((m + 1) x) S (m + 1) $(x) +f(O). 

The proof is complete. 

3 

In this section further generalizations of the Bellman-Bihari inequality 
have been obtained. In what follows we prove a similar result to that of 
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Pachpatte [23], where the nonlinear function belongs to H rather than just 
to F. 

THEOREM 1. Let x(t), f(t), g(t), p(t), and k(t) be real-valued positive 
functions defined on Z= [0, oo), let w(u) E H with corresponding multiplier 
function 4 and let k(t) also be a monotonic, nondecreasing function, for which 
the inequality 

x(t) 5 k(t) +p(t) j’f(4 x(s) ds + [;x(s) 44s)) ds (1) 
0 

holds for all t E I. Then 

g(s) 4W(s)) 4(r(s)) ds 1 y (2) 

for t e [0, b], where 

r(t)= 1 +p(t) i’.f(s)exp (~‘p(Q)/.(Qd~) ds], t E z, (3) 
0 s 

r>O (ro>O) (4) 

and W-’ is the inverse function of W, and t E [0, b] c Z so that 

w(l)+J-;& g(s) 4@(s)) d(r(s)) ds E DOW We ‘1. 

Proof: Since k(t) is positive, monotonic, nondecreasing, we observe 
from (1) that 

~~l+p(t)~‘f(s)~ds+~~~w(x(s))ds. 
0 

(5) 

Let z(t) = x(t)/k( t) and use the fact that w  E H. Then from (5) we have 

z(t) 5 1 +A[) j;f(d z(s) ds + 1; h(s) 44s)) & 

where h(s) =g(s) rj(k(s))/k(s). 
Now, define 

(6) 

n(t) = 1 + {‘h(s) w(z(s)) ds, n(0) = 1 
0 

(7) 

409/120/2-16 
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and observe that n(t) is positive monotonic nondecreasing. We obtain from 
Theorem 1 in [23] and (6) the following estimate for z(t), 

Further, 

z(t)~n(t)r(t). (8) 

since w  E H. Hence 

Because of (4) and (7), this reduces to 

$ Wn(t)) 5 h(t) 4(r(t)). 

Now, integrating from 0 to t, we obtain 

The desired bound in (2) follows from (8) and (9). 
Now we establish an extension of Theorem 5.6 [3], where the nonlinear 

function under the integral sign belongs to M and is not just subadditive as 
in [3]. 

We note that, somewhat earlier, Deo and Murdeshwar [ 131 had 
obtained the same estimate as that given in [3, Theorem 5.63, but the 
proof in [ 131 is unfortunately incorrect. See also Beesack [4], Theorem 1. 

THEOREM 2. Let x(t), a(t), k(t), and h(t) he real-valued nonnegative con- 
tinuous functions defined on J = [0, fl). Let g(u) E A4 with corresponding 
function ~+4 on an interval I such that x(J) c I and a(J) c I. Suppose also that 
the function h is monotonic, nondecreasing on an interval K such that 0 E K, 
h(K) c I. Then 

x(t)S4t)+h jfkoa(x(W~ , 1 t E J, (10) 
0 

(11) 
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for 05t<P,, where G(u) =Ji,, dy/g(h(y)) for u, Z+,E K and fl, = 
min(u,, u2, u3) with 

u’=sup uEJ: a(t) 
i 

+ h 1; k(s) MS)) ds E 1, 
> 

JSk(B)g(x(8))df3 dseK , 
0 )I I 

jo’k(s)q5(o(s))ds)tG(K), OjtjTju). 

The proof can be accomplished in a similar way to that of Theorem 5.6 [3] 
or Theorem 1 of [4]. 

Remark 1. It is not difficult to show that the same estimation for x(t) 
can be obtained when k(t) is nonpositive and h(t) is nonincreasing. 

Remark 2. When h(u) = u, Theorem 2 reduces to a generalization of 
Lemma 2 by Muldowney and Wong [ 171. 

The case when the nonlinear function h in (10) is multiplied by b(t) has 
been considered in detail by Beesack [S, Theorem 5.4; 4, Theorem 2; 3, 
p. 81-821. Under several sets of conditions on (x, a, 6, h, k, g), different 
incomparable estimates for x(t) have been obtained. 

COROLLARY. Let x, a, k, g all be as in Theorem 2 and suppose b(t) is 
nonnegative, continuous, and nondecreasing on Z= [0, /?I. Zf 

then 

x(t) 5 a(r) + b(r) j’ k(s) g(x(s)) ds, t E z, (12) 
0 

x(t)ra(t)+G-’ b(t) j’ k(s) q+(a(s)) ds)] 
0 

(12’) 
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for 0 s t 5 t,, where G, G-l are defined in Theorem 2, but with h(u) = u 
there, 

b(t) i,‘k(s) ds+ G (h(t) j’k(s) q4(a(s)) ds) EDom(G--I). 
0 

The proof of this corollary follows by an argument similar to that in the 
proof of Corollary 1 given in [ 111. 

In what follows we give an estimate for x(t) under different set of con- 
ditions on (x, a, b, h, k, g). 

THEOREM 3. Let x(t), a(t), k(t), b(t) be continuous and nonnegatioe on 
J= [0, 81 with b(t) > 0 and a(t)/b(t) 5 y for some positive constant y. Let 
g(u) be of class H with corresponding function 1. Suppose that h(u) is con- 
tinuous, nonnegative and nondecreasing on [0, a). If 

x(t) 5 a(t) + b(t) h 1’ k(s) g(x(s)) ds , 
0 > 

then 

x(t)Sa(t)+b(t)hoL-’ 

t E J, (13) 

ost<fl, (14) 

where 

L(“)=j;g(y+d;h(z))2 
u 2 0, 

and 

/?,=sup tEJ: ok(s)g(b(s))ds~L(R+) 
i J 

Proof: Let 

z(t) = J“ k(s) g(x(s) ds. 
0 

Then from (13) and the hypotheses on g and a, b it follows that 

dz 
z = k(t) Ax(t)) 5 k(t) gIla + b(t) Wt))l 
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and 

dz 
-5 k(t) rj(b(t)) dt. 
Y + h(z) - 

Integrating both sides of (15) from 0 to t, one obtains 

and 

(15) 

(16) 

The substitution of (16) in (13), implies (14). 

Remark 3. In Theorem 3 it is clear that hypotheses h > 0 and a/b 5 y 
can be replaced by a >O and b/aSy, therefore #(b(s)) in (14) will be 
replaced by d(a(s)) and 

L(u) = sU dz/g( 1 + yh(z)). 
0 

Remark 4. Let g(u) = u’/( 1 + u). Then g( ) u ts not submultiplicative and 
does not satisfy the condition g(u)/v 5 g(u/v) for u > 0 and v 11. Therefore, 
all Theorems in [4, 12, 5, 31 are not applicable. Theorem 3 can be applied, 
since u’/( 1 + u) is of class H with corresponding function q5 defined by 
&a.) = a (0 5 as l), &a) = CC2 (a 2 1). 

Remark 5. In the case when g is strictly increasing and h-g -’ we 
obtain from Theorem 3 the following estimate for x(t), 

x(t)5a(t)+b(t)gP’oL-’ 

where now L(u)=j;;dz/g(~+g~‘(z)). 
This estimate is not comparable with a result obtained by Gollwitzer 

[ 15, Theorem 11. 

We obtain another upper bound for x(t) when g satisfies different, but 
general conditions. The following result essentially is the variation of 
Gollwitzer’s Theorem 1 in which the conditions: g convex and sub- 
multiplicative, are replaced by: g E H n M. 

THEOREM 4. Let a(t), b(t), and k(t) be continuous, nonnegative functions 



640 FOZI M. DANNAN 

on J = [0, fl] with b(t) > 0 and g E H and M with corresponding functions 4 
and $, respectively. Assume also that g is strictly increasing. Then 

x(t)5a(t)+b(t)gp1 j~4)g(l(r))d~), 
( 

t E J, (17) 

implies 

x(t) 5 b(t) g-‘(W)), tE co, PII, (18) 

where 

x exp 

and 

PI =sup r.J:~;k(s)&b(s))B(s)ds~g(R+)~. 

Proof From (17) it follows that 

Let x(t)/b(t) = z(t) and use the hypotheses on g, to obtain 

(19) 

(20) 

Considering g(z) as a function, using the most general linear Gronwall 
inequality (see, e.g., Beesack [3, Theorem 2.11) it follows that 
g(z(t))iB(t), so z(t)sg-‘(B(t)), but since x(t)=b(t)z(t), (18) follows. 

4 

Several integral inequalities similar to Bellman-Bihari type have been 
obtained by Pachpatte [18-291. Most of these inequalities are based on a 
main inequality [18 3, in which an estimate for x(t) has been obtained, 
when 

x(t) 5 x0 + j-!f(s) x(s) ds + j’f(s) (j; g(e) x(e) do) ds, 
0 0 



BELLMAN-BIHARI-TYPE INEQUALITIES 641 

where f(t), g(t), and x(t) are supposed to be nonnegative with x0 is a 
positive constant and t E [0, co). 

Later Agarwal [2] proved a general version of Pachpatte inequality, 
when x(t) satisfies the inequality 

(22) 

Several linear and nonlinear generalizations have been obtained by 
Agarwal and Thandapani in their interesting paper [ 11. 

In the following two theorems we consider nonlinear versions of (22). 
These two theorems are related to the special case m = 2 of Theorems 11 

and 13 of [ 11, which dealt with g, h E F rather than g, h E H or g, h E M. See 
also the case k = 2 of Theorem 1 of Beesack [6] for related results. 

THEOREM 5. Let x(t), a(t), k(t), l(r), and m(t) be real-valued 
nonnegative, continuous functions on I= [0, co) with u(t) positiue, 
nondecreasing. Assume that g(u) and h(u) belong to H with corresponding 
multiplier functions d(u) and ICI(u), respectively, with d(u) 5 cu for u 2 1, 
where c is a positive constant. Then 

x(t) 5 u(t) + 1’ k(s) g(x(s)) ds + 1’ l(s) I’ m(Q) h(x(0)) de ds, fEZ 
0 0 0 

implies that 

(23) 

x(~)5-a(t)V’(t)H-’ H(l)+f’k,(s)g(F(s))ds , 
I 

o<tsp, 
0 

(24) 

where 

F(t)==G-’ 
[ 

G(l)+c[‘k,(s)ds , 
I 

(25) 
0 

k,(t) = k(t) 44t)Mfh (26) 

(27) 

H(t) = j” ds/h(s), 
WI 

G(u)=f” ds/g(s), u>O(u,>O). 
uo 

(28) 
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HP’ and G-’ are the inverse functions of H and G, respectively, 
B = min(h, U, 

tEI:G(l)+c~‘kl(s)d~EDom(G-i) 
0 

and 

ttsl: H(l)+/‘kJs) II/(F(s))dsEDom(H-‘) 
0 

Proof Let x( t)/a(t) = y(t). Since g and h belong to H, from (23) it 
follows that 

where 

v(t) 5 R(t), (29) 

R(t) = 1 + j; ‘(‘)$(‘))g( y(s)) ds 

+ j; l(s) j; m(O;;;;(n)) h(y(8)) df3 ds, t E I. (30) 

From (30) and the nondecreasing property of g and h one obtains 

R’ 5 k,(t) g(R) + k,(t) h(R), R(0) = 1. (31) 

Integrating (31) from 0 to t we obtain 

R(t) ~5 1 + j’k,(s) h(R(s)) ds + j’ k,(s) g(Ns)) 4 t E I. (32) 
0 0 

Putting 

n(t) = 1 + jrRz(s) h(R(s)) ds (33) 
0 

and using [ 11, Theorem 11, we obtain 

Since q5(n)/n 5 c, from (34) it follows that 

R(t) S n(t) F(t), 

OSt5b,. (34) 

(35) 
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where F(t) is defined by (25). Further, 

since h E H. Hence, 

Because of (29) and (33), this reduces to 

Now integrating from 0 to t, we obtain 

Wn(t)) 5 H(l) + J’bb) $(F(s)) ds. (36) 
0 

The desired bound in (24) follows from (36), (35), and (29). 
We point out that the conditions g(cru) 5 &cc)g(u) 5 ccrg(u) for u&O, 

cc> 1, imply that g(u)>g(l)u/c for 0~~5 1, and g(u)scg(u)u for ~2 1 - - 
(and that c 2 1). 

Remark 6. We get a similar bound for x(t), when the condition 
4(u) 5 cu is replaced by $(u) 5 cu for ~2 1. 

THEOREM 6. Let x(t), a(t), k(t), l(t), and m(t) he real-valued nonnegative 
continuous functions on I = [0, co), let g and h be of class M with 
corresponding functions d(u) and tj(u) respectioely and let (i) gE H or 
(ii) h E H with corresponding multiplier function 1 such that x(u) =< cu, where 
c > 0 is a constant. Then 

x(t) 5 u(t) + 1’ k(s) g(x(s)) ds + j’ l(s) i” m(0) h(x(8)) do ds 
0 0 0 

(37) 

for t E I, implies for case (i) that 

x(t)Sa(t)+r(t)N(t)+H-’ r(t)jip(s)ds 
1 

+ H r(t) ji p(s) $(r(s) N(s)) ds]}, (38) 
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while in case (ii), one has 

+ G r,(t) j’k(s) 
0 

for t E [0, /3], where 

(38’) 

r,(t) = H-’ [H(l)+$W~]~ (39) 

H and G are as defined in Theorem 5, HP ’ and G ~ ’ are the inverse functions 
of H and G, respectively, 

N(t) = 1’ [ 4s) ti(a(s)) + 4s) 1’ m(e) $(a(@) de] 4 
0 0 

P(C) = f(t) 1’ 4s) & 
0 

(40) 

(41) 

r(t)=G-‘[G(l)+ciik(s)ds], (42) 

j,=sup uEZ:G(l)+cl’k(s)d$EDom(G-I), 
0 (43) 

P,=sup{uttr(t)/ip(s)ds 

r(t)/ip(s)$(r(s))N(s)ds EDom(H-‘), 
1 

Proof It suffices to consider case (i), since case (ii) can be treated in a 
similar way. Let 

R(t) = Irk(s) g(x(s)) ds + J“ I(s) 1’ m(e) h(x(B)) de ds, t E I. 
0 0 0 

Since g and h E M one obtains 

R’(t) Sk(f) $(a(f)) + Wt)g(Nt)) + [l(t) ji 4s) ds] h(Wt)) 
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and 

R(t) 5 N(t) + j’ k(s) g(M)) ds + j-)W h(W)) 4 tel. (44) 
0 

If we put 

M(f) = N(t) + j-k4 h(W)) 4 
0 

then from [ 11, Theorem l] it follows that 

R(t)SM(t)G-’ G(l)+jdk(‘);:(‘))ds] 
L 

(45) 

(46) 

for t E [0, /?), where /? is defined by (43). Since G and G-’ are strictly 
increasing and X(M) 5 CM, then from (45) one obtains 

R(f) 5 r(t) N(t) + r(c) j-i-44 h(Ns)) ds, t E rJ, B). (47) 
0 

Now, the use of Corollary 1 completes the proof. 

Remark 7. When g(u) = h(u) = U, Theorem 6 reduces to Lemma 1 of 
Agarwal [2]. 
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