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Abstract

Being motivated by John Tantalo’s Planarity Game, we consider straight line plane drawings of a planar graph G with edge
crossings and wonder how obfuscated such drawings can be. We define obf (G), the obfuscation complexity of G, to be the
maximum number of edge crossings in a drawing of G. Relating obf (G) to the distribution of vertex degrees in G, we show
an efficient way of constructing a drawing of G with at least obf (G)/3 edge crossings. We prove bounds (δ(G)2/24 − o(1)) n2

≤

obf (G) < 3 n2 for an n-vertex planar graph G with minimum vertex degree δ(G) ≥ 2.
The shift complexity of G, denoted by shift(G), is the minimum number of vertex shifts sufficient to eliminate all edge crossings

in an arbitrarily obfuscated drawing of G (after shifting a vertex, all incident edges are supposed to be redrawn correspondingly). If
δ(G) ≥ 3, then shift(G) is linear in the number of vertices due to the known fact that the matching number of G is linear. However,
in the case δ(G) ≥ 2 we notice that shift(G) can be linear even if the matching number is bounded. As for computational complex-
ity, we show that, given a drawing D of a planar graph, it is NP-hard to find an optimum sequence of shifts making D crossing-free.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

This note is inspired by John Tantalo’s Planarity Game [10] (another implementation is available at [13]). An
instance of the game is a straight line drawing of a planar graph with many edge crossings. In a move the player
is able to shift one vertex of the graph to a new position; the incident edges will be redrawn correspondingly. The
objective is to achieve a crossing-free drawing in a possibly smaller number of moves.

Let us fix some relevant terminology. By a drawing we will always mean a straight line plane drawing of a graph
where no vertex is an inner point of any edge. An edge crossing in a drawing D is a pair of edges having a common
inner point. The number of edge crossings in D will be denoted by obf (D). We define the obfuscation complexity of
a graph G to be the maximum obf (D) over all drawings D of G. This graph parameter will be denoted by obf (G).

Given a drawing D of a planar graph G, let shift(D) denote the minimum number of vertex shifts making D
crossing-free. The shift complexity of G, denoted by shift(G), is the maximum shift(D) over all drawings of G.

Our aim is a combinatorial and a complexity-theoretic analysis of the Planarity Game from the standpoint of a
game designer. The latter should definitely have a library of planar graphs G with large shift(G). Generation of
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planar graphs with large obf (G) is also of interest. Though large obfuscation complexity does not imply large shift
complexity (see the discussion in Section 4), the designer can at least expect that a large obf (D) will be a psychological
obstacle for a player to play optimally on D.

A result of direct relevance to the topic is obtained by Pach and Tardos [8]. Somewhat surprisingly, they prove that
even cycles have large shift complexity, namely, n − O((n log n)2/3) ≤ shift(Cn) ≤ n − b

√
nc.

We first address the obfuscation complexity. In Section 2 we relate this parameter of a graph to the distribution of
its vertex degrees. This gives us an efficient way of constructing a drawing D of a given graph G so that obf (D) ≥

obf (G)/3. As another consequence, we prove that obf (G) ≥ (δ(G)2/24 − o(1))n2 for an n-vertex planar graph with
minimum vertex degree δ(G) ≥ 2. On the other hand, we prove an upper bound obf (G) < 3 n2. In Section 3 we
discuss the relationship between the shift complexity of a planar graph and its matching number. We also show that
the shift complexity of a drawing is NP-hard to compute. Section 4 contains concluding remarks and questions.

Related work. Investigation of the parameter shift(G) is well motivated from a graph drawing perspective. Several
results were obtained in this area independently of our work and appeared in [3,9,2] soon after the present note was
submitted to the journal. The Planarity Game is also mentioned in [3,9] as a source of motivation.

Goaoc et al. [3] independently prove that computing shift(D) for a given drawing D is an NP-hard problem, the
same result as stated in our Theorem 8. They use a different reduction, allowing them to show that shift(D) is even
hard to approximate. Our reduction has another advantage: It shows that it is NP-hard to untangle even drawings of as
simple graphs as matchings.

Spillner and Wolff [9] and Bose et al. [2] obtain general upper bounds for shift(G), which quantitatively improve
the classical Wagner–Fáry–Stein theorem (cf. Theorem 4 in Section 3). The stronger of their bounds [2] claims that
shift(G) ≤ n −

4
√

n/9 for any planar G. Even better bounds are established for trees [3] and outerplanar graphs [9].
The series of papers [3,9,2] gives also lower bounds on the variant of shift(G) for a broader notion of a “bad drawing”.

Notation. We reserve n and m for, respectively, the number of vertices and the number of edges in a graph under
consideration. We use the standard notation Kn , Ks,t , and Cn for, respectively, complete graphs, complete bipartite
graphs, and cycles. The vertex set of a graph G will be denoted by V (G). By kG we mean the disjoint union of k
copies of G. The number of edges emanating from a vertex v is called the degree of v and denoted by deg v. The
minimum degree of a graph G is defined by δ(G) = minv∈V (G) deg v. A set of pairwise non-adjacent vertices (resp.,
edges) are called an independent set (resp., a matching). The maximum cardinality of an independent set (resp., a
matching) in a graph G is denoted by α(G) (resp., ν(G)) and called the independence number (resp., the matching
number) of G. A graph is k-connected if it stays connected after removal of any k − 1 vertices.

2. Estimation of the obfuscation complexity

Note that obf (G) is well defined for an arbitrary, not necessary planar graph G. As a warm-up, consider a few
examples.

obf (Kn) =
(n

4

)
. Indeed, let D be a drawing of Kn . obf (D) is computable as follows. We start with the initial value

0 and, tracing through all pairs {e, e′
} of non-adjacent edges, increase it by 1 once e and e′ cross. Consider

the set S of 4 endpoints of e and e′. In fact, S corresponds to exactly 3 pairs of edges. If the convex hull of
S is a triangle, then none of these three pairs is crossing. If it is a quadrangle, then 1 of the three pairs is
crossing and 2 are not. It follows that obf (D) does not exceed the number of all possible S. This upper bound
is attained if every S has a quadrangular hull, for instance, if the vertices of D lie on a circle.

obf (Ks,t ) =
(s

2

)(t
2

)
. The upper bound is provable by the same argument as above, where a 4-point set S has 2 points

in the s-point part of V (D) and 2 points in the t-point part. Such an S corresponds to 2 pairs of non-adjacent
edges, at most 1 of which is crossing. This upper bound is attained if we put the two vertex parts of Ks,t on
two parallel lines.

obf (Cn) = n(n − 3)/2 if n is odd. The value of n(n − 3)/2 is attained by the n-pointed star drawing of Cn . This is
the maximum by a simple observation: n(n − 3)/2 is the total number of pairs of non-adjacent edges in Cn .

Let us state the upper bound argument we just used for the odd cycles in a general form. Given a graph G with m
edges, let

ε(G) =

(
m

2

)
−

∑
v∈V (G)

(
deg v

2

)
.
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Note that ε(G) =
1
2 (m(m + 1) −

∑
v deg2 v), where the latter term is closely related to the variance of the vertex

degrees. Since ε(G) is equal to the number of pairs of non-adjacent edges in G, we have obf (G) ≤ ε(G). Notice also
a lower bound in terms of ε(G).

Theorem 1. ε(G)/3 ≤ obf (G) ≤ ε(G). Moreover, a drawing D of G with obf (D) ≥ ε(G)/3 is efficiently
constructible.

Proof. Fix an arbitrary n-point set V on a circle. We use the probabilistic method to prove that there is a drawing
D with V (D) = V having at least ε(G)/3 edge crossings. Let D be a random straight line embedding of G with
V (D) = V , which is determined by a random map of V (G) onto V . For each pair e, e′ of non-adjacent vertices of
G, we define a random variable Xe,e′ by Xe,e′ = 1 if e and e′ cross in D and Xe,e′ = 0 otherwise. Let S be a 4-point
subset of V . Under the condition that the set of endpoints of e and e′ in D is S, these edges cross one another in D
with probability 1/3. It follows that Xe,e′ = 1 with probability 1/3. Note that obf (D) =

∑
{e,e′}

Xe,e′ . By linearity

of the expectation, we have E [obf (D)] =
∑

{e,e′}
E
[
Xe,e′

]
=

1
3 ε(G) and hence obf (D) ≥

1
3 ε(G) for at least one

instance D of D. Such a D is efficiently constructible by standard derandomization techniques, namely, by the method
of conditional expectations, see, e.g., [1, Chapter 15]. �

As a consequence of Theorem 1, we have obf (G) = Θ(n2) for a planar G whenever δ(G) ≥ 2 (the latter condition
excludes the cases like obf (K1,s) = 0). Indeed, ε(G) < 9

2 n2 because m < 3n for any planar graph. This bound is
sharp in the sense that ε(G) ≥

9
2 n2

− O(n) for maximal planar graphs of bounded vertex degree. A sharp lower
bound for ε(G) is stated below.

Theorem 2. ε(G) ≥

(
δ(G)2

8 − o(1)
)

n2 for a planar graph G with δ(G) ≥ 2. The constant δ(G)2/8 cannot be better

here.

Proof. Let Ak(G) = {v ∈ V (G) : deg v < k} and denote

ak(G) = |Ak(G)| and sk(G) =

∑
v∈V (G)\Ak (G)

deg v.

West and Will [12] prove that, if k ≥ 12, then for every planar G on n ≥
3
2 k − 1 vertices we have

ak(G) ≥
(k − 8)n + 16

k − 6

and

sk(G) < 2 n − 16 +
12(n − 8)

k − 6
.

We begin with the bound

ε(G) >
1
2

(
m2

−

∑
v∈V (G)

deg2 v

)
.

Set δ = δ(G). Let σ = sk(G)/n (to simplify the notation, we do not indicate the dependence of σ on k). Suppose that
k is large enough, namely, k ≥ 14. Note that 0 ≤ σ < 2 + 12/(k − 6). We now estimate m from below and

∑
v deg2 v

from above.

m =
1
2

∑
v

deg v =
1
2

( ∑
v∈Ak (G)

deg v +

∑
v /∈Ak (G)

deg v

)

≥
1
2

(δ(G)ak(G) + sk(G)) >
1
2

(
δ(k − 8)

k − 6
+ σ

)
n.
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Furthermore,∑
v

deg2 v =

∑
v∈Ak (G)

deg2 v +

∑
v /∈Ak (G)

deg2 v < (k − 1)2n + f (σ )n2,

where

f (σ ) =


2 + (σ − 2)2 if 2 ≤ σ < 2 + 12/(k − 6),

1 + (σ − 1)2 if 1 ≤ σ < 2,

σ 2 if 0 ≤ σ < 1.

Thus,

ε(G) > g(σ ) n2
−

(k − 1)2

2
n, where g(σ ) =

1
2

(
1
4

(
δ(k − 8)

k − 6
+ σ

)2

− f (σ )

)
.

A routine calculation shows that

min
{

g(σ ) : 0 ≤ σ < 2 +
12

k − 6

}
= g(0) =

δ2

8

(
k − 8
k − 6

)2

.

We conclude that

ε(G) >
δ2

8

(
k − 8
k − 6

)2

n2
−

(k − 1)2

2
n >

(
δ2

8
−

δ2

2(k − 6)
−

(k − 1)2

2n

)
n2

whenever k ≥ 14 and n ≥
3
2 k − 1. Recall that δ(G) ≤ 5 for any planar G. If we make k a function of n that grows to

the infinity slower than
√

n, then the factor in front of n2 becomes δ2/8 − o(1) and we arrive at the claimed bound.
The optimality of the constant δ2/8 is ensured by regular planar graphs (i.e., cycles and cubic, quartic, and quintic

planar graphs). �

As was already mentioned, for planar graphs we have obf (G) ≤ ε(G) < 9
2 n2, where the bound for ε(G) cannot

be improved. However, for obf (G) we can do somewhat better.

Theorem 3. obf (G) < 3 n2 for a planar graph G on n vertices.

Proof. Note that, if K is a subgraph of H , then obf (K ) ≤ obf (H). It therefore suffices to prove the theorem for the
case that G is a maximal planar graph, that is, a triangulation. Let E be a (crossing-free, not necessary straight line)
plane embedding of G. Denote the number of triangular faces in E by t and note that 3t = 2m. Based only on facial
triangles, let us estimate from below the number of non-crossing edge pairs in an arbitrary straight line drawing D of
G. Let P denote the set of all pairs of adjacent edges occurring in facial triangles. Here we have |P| = 3t edge pairs
which are non-crossing in D. Furthermore, for each pair of edge-disjoint facial triangles {T, T ′

} we take into account
pairs of non-crossing edges {e, e′

} with e from T and e′ from T ′. Since at most 3t/2 pairs of facial triangles can share
an edge, there are at least

(t
2

)
−

3t
2 such {T, T ′

}. We split this amount into two parts. Let A consist of vertex-disjoint
{T, T ′

} and B consist of {T, T ′
} sharing one vertex. As easily seen, every {T, T ′

} in A gives us at least 3 edge pairs
{e, e′

} which are non-crossing in D. Every {T, T ′
} in B contributes at least 2 pairs of non-adjacent edges and exactly

4 pairs of adjacent edges. However, 2 of the latter 4 edge pairs can participate in P . We conclude that in D there are
at least |P| + (3|A| + 4|B|)/4 non-crossing edge pairs. The factor of 1/4 in the latter term is needed because an edge
pair {e, e′

} can be contributed by 4 triangle pairs {T, T ′
}. Thus,

obf (D) ≤

(
m

2

)
− 3t −

3
4

((
t

2

)
−

3t

2

)
<

1
2

m2
−

3
8

t2
=

1
3

m2.

Since m < 3n as a simple consequence of Euler’s formula, we have obf (D) < 3n2. As D is arbitrary, the bound for
obf (G) follows. �
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Fig. 1. G2 and F in D2.

3. Estimation of the shift complexity

A basic fact about shift(G) is that this number is well defined.

Theorem 4 (Wagner, Fáry, Stein (see, e.g., [6])). Every planar graph G has a straight line plane drawing. In other
words, shift(G) ≤ n − 3 if n ≥ 3.

If we seek for lower bounds, the following example is instructive despite its simplicity: shift(mK2) = m − 1. It
immediately follows that

shift(G) ≥ ν(G) − 1.

Theorem 5. Let G be a connected planar graph on n vertices.

1. If δ(G) ≥ 3 (in particular, if G is 3-connected) and n ≥ 10, then shift(G) ≥ (n − 1)/3.
2. If G is 4-connected, then shift(G) ≥ (n − 3)/2.
3. There is an infinite family of connected planar graphs G with δ(G) = 2 and shift(G) ≤ 2.

Proof. Item 1 follows from the fact that, under the stated conditions on G, we have ν(G) ≥ (n + 2)/3 (Nishizeki–
Baybars [5]). Item 2 is true because every 4-connected planar G is Hamiltonian (Tutte [11]) and hence ν(G) ≥

(n − 1)/2 in this case. Item 3 is due to the bound shift(K2,s) ≤ 2. The latter follows from the elementary fact of plane
geometry stated in Lemma 6 below. �

Lemma 6. For any finite set of points Z there are two points x and y such that the segments with one endpoint in
{x, y} and the other in Z do not cross each other and have no inner points in Z.

Proof. Let L denote the set of all lines going through at least two points in Z . Fix the direction “upward” not in
parallel to any line in L . Pick up x above every line in L and y below every line in L . �

The next question we address is this: How close is the relationship between shift(G) and ν(G)? By Theorem 5, if
δ(G) ≥ 3 then both graph parameters are linear. However, if δ(G) ≤ 2, the existence of a large matching is not the
only cause of large shift complexity.

Theorem 7. There is a planar graph Gs on 3s + 3 vertices with δ(Gs) = 2 such that ν(Gs) = 3 and shift(Gs) ≥

2s − 6.

Proof. A suitable Gs can be obtained as follows: take the multigraph which is a triangle with multiplicity of every
edge s and make it a graph by inserting a new vertex in each of the 3s edges (see Fig. 1). Using Lemma 6, it is not
hard to show that shift(Gs) ≤ 2s + 3. We now construct a drawing Ds of Gs with shift(Ds) ≥ 2s − 6. Put vertices
z1, . . . , z3s in this order in a line and the remaining vertices c0, c1, c2 somewhere else in the plane. Connect zi with
c j iff j 6= i mod 3. Therewith Ds is specified. Denote the fragment of Ds induced on {z1, z2, z4, z5, c0, c1, c2} by F .
It is not hard to see that F cannot be disentangled by moving only c0, c1, and c2. In fact, if in place of z1, z2, z4, z5
we take any quadruple zi , z j , zk, zl with i < j < k < l, i ≡ k (mod 3), and j ≡ l (mod 3), this will give us a
fragment completely similar to F . To destroy all such fragments, we need to move at least two vertices in every triple
z3h+1, z3h+2, z3h+3 (0 ≤ h < s) with possible exception for at most 3 of them. Therefore, making 2(s − 3) shifts is
unavoidable. �
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Finally, we prove a complexity result.

Theorem 8. Computing the shift complexity of a given drawing is an NP-hard problem.

Proof. In fact, this hardness result is true even for drawings of graphs mK2. Given such a drawing D, consider its
intersection graph SD whose vertices are the edges of D with e and e′ adjacent in SD iff they cross one another in D.
Since computing the independence number of intersection graphs of segments in the plane is known to be NP-hard
(Kratochvı́l–Nešetřil [4]), it suffices for us to express α(SD) as a simple function of shift(D). Fix an optimal way of
untangling D and denote the set of edges whose position was not changed by E . Clearly, E is an independent set in SD
and hence shift(D) ≥ m −|E | ≥ m −α(SD). On the other hand, shift(D) ≤ m −α(SD). Indeed, fix an independent set
I in SD of the maximum size α(SD). Then D can be untangled this way: we leave the edges in I unchanged and shrink
each edge not in I by shifting one endpoint sufficiently close to the other endpoint. Thus, α(SD) = m − shift(D), as
desired. �

4. Concluding remarks and problems

1. By Theorem 1 we have 1
3 ε(G) ≤ obf (G) ≤ ε(G). The upper bound cannot be improved in general as

obf (Cn) = ε(Cn) for odd n. Can one improve the factor of 1
3 in the lower bound?

2. By Theorems 1–3 we have (δ(G)2/24 − o(1))n2
≤ obf (G) ≤ 3 n2 where δ(G) ≥ 2 is necessary for the lower

bound. Optimize the factors in the left- and the right-hand sides.
3. As follows from the proof of Theorem 1, there is an n-point set V (in fact, this can be an arbitrary set on the border

of a convex body) with the following property: Every graph G of order n has a drawing D with V (D) = V such
that obf (D) ≥

1
3 obf (G). Can this uniformity result be strengthened? Is there an n-point set V on which one can

attain obf (D) = obf (G) for all n-vertex G?
4. The following remarks show that the obfuscation and the shift complexity of a drawing have, in general, rather

independent behavior.
Maximum obf (D) does not imply maximum shift(D). Consider 3K1,s , the union of 3 disjoint copies of the s-star.

It is not hard to imagine how a drawing attaining obf (3K1,s) = 3s2 should look (where every two non-
adjacent edges cross) and it becomes clear that such a drawing can be untangled just by 2 shifts. However,
shift(3K1,s) ≥ s is provable similarly to Theorem 7 (an upper bound shift(3K1,s) ≤ s + 2 follows from
Lemma 6).

Maximum shift(D) does not imply maximum obf (D). The simplest example is given by a drawing of the disjoint
union of K2 and K1,2 with only one edge crossing.

Large obf (D) does not imply large shift(D). This can be shown by drawings of obf (K2,s). Indeed, we know that
obf (K2,s) =

(s
2

)
from Section 2 and shift(K2,s) ≤ 2 from Section 3 (the latter bound is exact if s ≥ 4).

Large shift(D) does not imply large obf (D). Pach and Tardos [8, Fig. 2] show a drawing D of the cycle Cn with
linear shift(D) and obf (D) = 1.

5. In spite of the observation we just made that large obf (D) does not imply large shift(D), in some interesting cases
it does. Pach and Solymosi [7] prove that every system S of m segments in the plane with Ω(m2) crossings has two
disjoint subsystems S1 and S2 with both |S1| = Ω(m) and |S2| = Ω(m) such that every segment in S1 crosses all
segments in S2. As shift(S) ≥ min{|S1|, |S2|}, this result has an interesting consequence: If D is a drawing of mK2
with obf (D) = Ω(m2), then shift(D) = Ω(m).

6. Theorem 8 shows that computing shift(D) for a drawing D of a graph G can be hard even in the cases when
computing shift(G) is easy. Is shift(G) hard to compute in general? Theorem 1 shows that obf (G) is polynomial-
time approximable within a factor of 3. Is the exact computation of obf (G) NP-hard (Amin Coja-Oghlan)?
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