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Abstract

In micro-heterogeneous media (e.g. membranes, micelles and colloidal systems), the fluorescence decay in the absence of
quencher is usually intrinsically complex, e.g. due to the existence of several sub-populations with different micro-
environments. In this case it is impossible to analyze data in detail (accounting for transient effects) and simpler formalisms
are needed. The objective of the present work is to present and discuss such simpler formalisms. The goal is to achieve simple
data analysis and meaningful, clear data interpretation in complex systems using microscopic models that consider several
sub-populations of chromophores. Two points are dealt with in detail. (i) It is shown that the approximation of the transient
effects by the quenching sphere-of-action model is not always possible. The quenching sphere-of-action concept can be
regarded as a valuable tool, although crude, only in a limited range of experimental conditions, namely time resolution. (ii)
The Stern-Volmer equation usually used for data analysis is only valid for a limited range of small and moderate equilibrium
association constants, Ka, although this is frequently overlooked in the literature. Self-consistency criteria are presented for
the proposed methods. The well-known downward curvature due to a fraction of fluorophores which is not accessible to the
quencher is only a limiting case from a set of possible situations which result in deviations to linearity. A systematic
classification of the different types of quenching is presented. ß 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

The use of the Smoluchowski equation (for a re-
view see e.g. [1]) to interpret the Stern-Volmer plots
in £uorescence quenching is a usual methodology to
obtain information on the structure and dynamics of
several compounds, including many species of bio-

logical interest, in a great variety of homogeneous
and micro-heterogeneous (e.g. micelles and mem-
branes) media. Nevertheless, this methodology can
only be applied to very simple systems, from both
the molecular (e.g. only one, homogeneous, popula-
tion of both £uorophores and quenchers) and kinetic
points of view. Therefore several alterations have
been introduced in this methodology to enable its
application to more complex systems. The most com-
mon ones, for instance, consider heterogeneous pop-
ulations of £uorophores and interactions involving
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the £uorophores in the ground state and quenchers.
Increased kinetic complexity includes reaction-con-
trolled processes and speci¢c reaction schemes. These
kinds of improvements are spread over the literature
and relevant reviews on the application of £uores-
cence quenching data analysis to complex systems
(such as the biochemical systems) have been pub-
lished in the last years, namely by Laws and Contino
[2] dedicated to microscopic models, and by Eftink
and Ghiron [3] dedicated mainly to kinetic models to
study protein £uorescence quenching.

Lehrer [4] rationalized downward deviations to lin-
ear Stern-Volmer plots of protein £uorescence
quenching by iodide, considering that a fraction of
the total chromophore population was `protected',
unable to contact with iodide due to its location in
hydrophobic pockets of the proteins. Thus, the light
emitted by these £uorophores is independent of the
concentration of the quencher, causing the men-
tioned downward deviation to linearity. Eftink and
Ghiron [5] discuss Stern-Volmer plots having upward
deviations to linearity caused by heterogeneities in
the quencher concentration and some restrictions in
the accessibility of the £uorophores by the quench-
ers. Owen and Vanderkooi [6] predict negative devi-
ations to linearity due to the di¡usion of the quench-
er in heterogeneous media before reaching the
chromophore. Slight deviations to linearity in
Stern-Volmer plots (in both steady and transient
states) are a consequence of the so-called transient
e¡ects in the Smoluchowski formulation, which was
later modi¢ed by Collins and Kimball (e.g. [7]).

In this work, a global approach accounting for
several of these interpretations is looked for. The
goal is to be able to interpret non-linear Stern-
Volmer plots in complex systems in a generalized
and simple way that involves the combination of
time-resolved and steady-state data. Particular atten-
tion is devoted to the quenching sphere-of-action
model [8] due to its ubiquitous utilization and
fame, which result from its simple and intuitive basic
concepts.

2. Theoretical background

One possible approach to the dynamic (i.e. di¡u-
sion-dependent) £uorescence quenching quanti¢ca-

tion involves Fick's di¡usion equation solution.
The basic idea is to calculate the concentration gra-
dient of the quencher species, Q, around a central
pool that gathers all the £uorophores population
(for more details see e.g. [9]). The quenchers cannot
get closer to this pool by less than distance RFQ (the
maximum approach distance). The assumptions are
that £uorescence quenching is started at the instant
of excitation by light and the process is not reversi-
ble. The rate of di¡usion of Q into the central pool
in£uences the quenching process velocity (see later).
These are important assumptions regarding the
boundary conditions applied to the solution of Fick's
equation.

There are two limit cases of great relevance for the
clear understanding of £uorescence quenching.

(1) In one of these limits, the quenching reaction
itself occurs in a time-scale smaller than the one nec-
essary for signi¢cant di¡usion. This is the case com-
patible with the boundary conditions used by Smo-
luchowski (e.g. [6]) : The concentration of Q at the
distance of maximum approach, RFQ, is zero for
ts 0. The reaction velocity is limited only by the
rate of Q reaching the surface of the shell at distance
RFQ from the pool, reacting. This is the so-called
di¡usion-controlled limit. The reaction rate is named
kd and is equal to:

kd � 4ZRFQDFQ �1�
(DFQ is the mutual di¡usion coe¤cient, i.e. is the
sum of both Q and £uorophore di¡usion coe¤cients)
for neutral species.

(2) The other limit is the opposite of the ¢rst one:
the reaction is much slower than di¡usion leading to
a completely di¡usion-independent process.

Therefore, a reaction probability between 0 and 1
is to be considered when a Q species (molecule,
atom, ion or radical) reaches RFQ. The reaction ve-
locity is dependent on the di¡usion of Q but not
exclusively. The central pool decreases the concentra-
tion of Q at the RFQ shell relative to instant zero and
a gradient of species Q is formed around the central
pool. The reaction probability, however, is not unit
and therefore the concentration of Q at RFQ is never
zero.

A steady state is reached some time after instant
zero, when the rate of reaction is compensated by the
£ux of Q that results from its concentration gradient
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around the central pool. The fact that the steady
state is not instantaneously achieved leads to some
peculiarities in £uorescence quenching, generally
named `transient e¡ects'.

The transition between these two limits can be
described by means of the following boundary con-
dition: the £uorescence quenching velocity is now
proportional to the concentration of Q in the spher-
ical shell of radius RFQ. This is the radiation boun-
dary condition (named this way due to its applica-
tion in the heat di¡usion) proposed by Collins and
Kimball (for a review see e.g. [1]). It should be re-
called that Smoluchowski considered the reaction ve-
locity to be proportional to the rate of collision of
one of the reactants with the surface border of the
central pool.

According to Collins and Kimball, the time de-
pendence of the bimolecular reaction constant is:

k�t� � kdka

kd � ka
1� ka

kd
exp

DFQt
R2

FQ

1� ka

kd

� �
2

" #(

erfc

�����������
DFQt

p
RFQ

1� ka

kd

� �" #)
�2�

(ka would be the reaction constant if the di¡usion
was in¢nitely fast and kd is the Smoluchowski limit,
kd = 4ZRFQDFQ).

Nevertheless, Eq. 2 is not easy to deal with and
a simpli¢ed version which results from exp-
(x2)erfc(x)W1/(xkZ), usually named the `long-time'
approximation, is considered:

k�t� � kdka

kd � ka
1� ka

kd � ka

RFQ��������������
ZDFQt

p !
�3�

In the typical experimental conditions usually found
in solution (DFQW1035 cm2 s31, RFQW0.5 nm and
kaWkd), Eq. 3 is a good approximation only for
ts 50 ps. However, in viscous media such as mem-
branes, micelles or colloidal systems, Eq. 3 holds as a
good approximation for t higher than a few ps (see
discussion in the Appendix of reference [10]). A quest
for an operational k(t) equation valid in a very
broad time range has been successfully undertaken
by several workers (e.g. [11,12]). This problem will
be addressed later.

Two other points deserve attention. (i) Most of the

heterogeneous systems cannot be considered to be
in¢nite in size and/or have reduced dimensionality.
If, for instance, a membrane was strictly bidimen-
sional, di¡erent boundary conditions for the Smolu-
chowski formalism should be applied [13]. The best
approach to the speci¢c situation of probe di¡usion
in a membrane is the one used by Owen [14], in
which the ¢nite bilayer width is considered (cylindri-
cal geometry). Owen [14] introduced a parameter
which de¢nes the transition instant from spherical
(3D) to the cylindrical geometry. This value is longer
than the lifetime of most of the £uorescent probes. In
agreement, Almgren [15], in a comparative study of
quenching in restricted dimensionality, states that
deviations from 3D occur only for very long £uores-
cence lifetimes.

2.1. Phenomenological approach

A phenomenological approach can be very useful
for the understanding of the processes we are de-
scribing (e.g. [16]). Consider the kinetic scheme rela-
tive to the irreversible reaction between A and B:

A� B �
k3d

kd

�AB�ÿ!ka P �4�

(ki�ÿd;d;a are the constants of each of the indicated
processes). The Smoluchowski limit is veri¢ed for
kaEkd. Therefore, in this limit, it is a process
uniquely controlled by the di¡usion of species A
and B. So, the kinetic constant for the £uorescence
quenching process (where A and B are the £uoro-
phore, F, and quencher, Q), kq, in steady-state con-
ditions is

kq � kd � 4ZNARFQDFQ �5�
(NA is Avogadro's constant, RFQ and DFQ are the
sum of the molecular radii and di¡usion coe¤cients
of £uorophore and quencher, respectively), this equa-
tion being similar to Eq. 1. If ka and kd are compar-
able, a similar situation to the one studied by Collins
and Kimball is obtained. The process is not only
di¡usion-controlled but also reaction-controlled.
This reaction control was interpreted in its simpler
formulation: the collisions between F and Q do not
always result in quenching. The Smoluchowski equa-
tion has to be modi¢ed, including an e¤ciency pa-
rameter, Q :
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kq � Q4ZNARFQDFQ �6�
which is

Q � ka

ka � k3d
�7�

The steady-state equation derived from the RBC for-
malism is equal to Eq. 6 [16]. Sometimes, Eq. 6 is
rewritten and presented in the form:

kq � 4ZNA�QRFQ�DFQ � 4ZNARFQ;efDFQ �8�
and RFQ;ef is the so-called e¡ective radius. The rea-
son for this kind of presentation is purely intuitive:
fewer reactive molecules should get closer in order to
react. This could lead to an e¡ective radius very
small as compared to RFQ, i.e. without direct phys-
ical meaning. A correct analysis implies the determi-
nation of Q, as discussed later, avoiding the e¡ective
radius concept. Certainly the correct approach is to
keep Q to describe the intrinsic reaction e¤ciency as
previously described.

2.2. Fluorescence intensity decay

Nemzek and Ware [10], based on the radiation
boundary condition, described a decay law for a £u-
orescent species in the presence of a quencher con-
centration [Q], in 3D:

I�t� � I�0�exp

3
t
d0
34ZR0FQDFQNA�Q�t 1� 2R0FQ��������������

ZDFQt
p !" #

�9�

where RPFQ is closely related to RFQUka/(ka+kd) and
d0 is the £uorescence lifetime for [Q] = 0. Eq. 9 is
valid in the same time range as Eq. 3: it is valid
only for data analysis in solution in the time range
ts 50 ps, which is more than the time resolution
available with modern laser systems. In viscous me-
dia such as membranes, micelles and colloids, Eq. 3
holds for very short times. The processes that origi-
nate the term dependent on kt in Eq. 9 are generally
referred to as the transient e¡ects. Integration leads
to the steady-state Stern-Volmer equation:

I f ;0

I f
� �1� 4ZRFQDFQNA�Q�d0�Y31 �10�

where If and If ;0 are the £uorescence intensities at Q
concentrations [Q] and 0, respectively, and:

Y � 13
L����
K
p ���

Z
p

exp
L2

K

� �
erfc

L����
K
p
� �

�11�

K � 1
d0
� 4ZR0FQDFQNA�Q� �12�

L � 4R02FQ

������������
ZDFQ

p
NA�Q� �13�

erfc
L����
K
p
� �

� 2���
Z
p
Z r

L=
���
K
p e3u2

du �14�

The function Y is not easy to deal with and its
approximation by an exponential function can be
performed within a range of L/kK with a certain er-
ror. When x approaches zero, ln(Y31(x))WxkZ, i.e.,

Y31 L����
K
p
� �

Wexp
L
���
Z
p����
K
p

� �
�15�

But,

L����
K
p � 4R02FQ

������������
ZDFD
p

NA�Q������������������������������������������������
1
d0
� 4ZR0FQDFQNA�Q�

r �16�

and the denominator can be approximated to 1/kd,
where d is the £uorescence lifetime in the presence of
quencher, ignoring transient e¡ects. Therefore,

L����
K
p � 4R02FQ

��������������
ZdDFQ

p
NA�Q� �17�

and

Y31 L����
K
p
� �

Wexp�4R02FQZ
�����������
dDFQ

p
NA�Q�� �18�

The exponential argument in Eq. 18 is usually pre-
sented as VPNA[Q], where

V 0 � 4ZR02FQ

�����������
DFQd

p �19�

has the units of volume. Combining Eqs. 10,18,19,

I f ;0

I f
W�1� KSV�Q��exp�V 0NA�Q�� �20�

KSV is named the Stern-Volmer constant,
KSV = 4ZRPFQDFQNA[Q]d0.

Eq. 20 has a central role in this work because it is
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used very often in the literature and its limitations
and interpretation are overlooked most of the time.
In fact, Eq. 20 was already used before the Nemzek
and Ware formulations. Weller [17] named VP the
molar volume of di¡usion. In this work it will be
shown that VP is related to the sum of the volumes
that the £uorophore occupies in its random walk
during the time d. For many elementary steps in
3D this sum of volumes would be equivalent to a
sphere.

We have just detailed how the transient term can
be approximated to an exponential (Eq. 20). As we
described, the time range of validity encompasses in
viscous media the time resolution of modern instru-
mentation (ps). Moreover, Periasamy et al. [18] have
shown that a better equation (i.e. valid even for
shorter times) than the one of Nemzek and Ware
(Eq. 9) should include an exponential decrease of
I0. This exponential would add to the one previously
described (Eq. 20).

2.3. The quenching sphere-of-action

An analogous equation to Eq. 20 can be obtained
from very simple and intuitive assumptions on the
microscopic level of the quenching process. This is
widely known as the quenching sphere-of-action
model (based on the formulations of F. Perrin [19]
and having a generalized form, involving di¡usive
and reactional control presented in [17]). Imagine
£uorophore and quencher random distributions at
the instant of excitation. There is a certain probabil-
ity (that in most experimental conditions can be ex-
pected to be described by Poisson distribution) that
at this instant, some £uorophore and quencher mol-
ecules are in contact. Fluorophore molecules in con-
tact with the quencher at the instant of excitation
will not £uoresce. At best, they have a non-unit
probability of £uorescing, Q, if the quenching reac-
tion is not totally e¤cient. Some of the other chro-
mophores will be quenched in a di¡usion dependent
manner. This leads to [20]:

I f ;0

I f
� �1� kq�Q�d0�exp�QVNA�Q�� �21�

where kq is as de¢ned in Eq. 6 and V is the sphere-of-
action volume, i.e. the volume of the sphere that
surrounds the chromophore within which the

quencher can be considered to be in contact with
the chromophore. Obviously, the radius of this
sphere is the distance of closest approach, RFQ.
Although Eq. 21 is deduced assuming F and Q as
point molecules, it holds for non-point molecules to
a good approximation because the probability of
¢nding one quencher molecule inside the sphere-of-
action is very close to the probability of ¢nding at
least one molecule inside the sphere-of-action (i.e.
excluded volume e¡ects are negligible).

Eq. 21 can be rewritten for the simplest case
(Q= 1):

I f ;0

I f
� �1� KSV�Q��exp�VNA�Q�� �22�

The formal similarity between Eqs. 20,22 is obvious.
The question is, what is the relation between VP and
V? Weller [17] suggested an intuitive interpretation
for VP that is not far from the notion of V, but can
VP be seen as the volume of a sphere with radius
RFQ, surrounding the chromophore? In more general
terms, how can the transient terms in the Nemzek
and Ware formulation be related to the quenching
sphere-of-action model? This is the question we will
try to answer in order to establish a simple method-
ology to interpret non-linear Stern-Volmer plots in
complex systems. As described, the complexity of Eq.
9 prevents its application in heterogeneous systems.
At variance, Eqs. 20,22 are simple.

2.4. The physical meaning of VP

Following Weller's suggestion, we can try to relate
VP to the volume of di¡usion. The ¢rst approach is
to consider the sum of volumes successively occupied
by the £uorophore in its random walk starting from
the instant of excitation. The simplest way is to con-
veniently transform Eq. 19, leading to Eq. 23 (in
3D),

V 0 � 4
���
n
p

n
���
6
p ZR2

FQn
�����������������
6DFQvd

p �
�����
16
6n

r
nV c �23�

Vc is the volume of the cylinder with radius RFQ and
length

�����������������
6DFQvd

p
. vd is the time it takes to the £uo-

rophore to complete one elementary step in its ran-
dom walk and n is the total number of elementary
steps during the period d. The physical meaning
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comes from the fact that this length is the distance
covered by the £uorophore in the elementary step of
the random walk, i.e. nVc is the total sum of volumes
occupied by the £uorophore during the excited state
period, d. So, the concept of VP should be critically
analyzed. VP only approximates nVc for one to three
elementary steps. Such interpretation is so restricted
(see later) that it is virtually meaningless. Another
way has to be followed. We looked for a relation
between V, a parameter with an immediate physical
meaning, and VP. What are the conditions in which
the volume VP can be interpreted as V?

The reader should recall that DFQ is the mutual
di¡usion coe¤cient, so it is no di¡erent to consider
static (relative to the lab. frame coordinates) £uoro-
phores and di¡using quenchers with DFQ (as Smolu-
chowski did) or vice versa (as we will use from now
on for the sake of simplicity).

When nCr and as long as rInl (r is the initial
to end distance in a random walk process and l is the
elementary step length), which is an almost universal
condition [21], the probability that the end position
(i.e. at instant d) is at a distance between r and r+dr
from the initial position (i.e. at instant zero) is :

g�r�dr � B���
Z
p
� �

3exp�3B2r2�4Zr2dr �24�

B � 1
l

�����
3
2n

r
�25�

The root mean square of this distribution is related
to the root mean square `pseudo-radius-of-gyration'
(i.e. the radius of gyration that would have a chain
linking all the intermediate positions of the chromo-
phores during the random walk) by [21]:������������

R2
g

D Er
�

�������
Gr2f

p ���
6
p �26�

For the sake of simplicity, this `pseudo-radius-of-gy-
ration' will be referred to as radius-of-gyration and
represented by Rg.

Now it is useful to calculate the distribution func-
tion, 6(R), associated to the density probability
function, g(r), which to our best knowledge has
been overlooked in the literature. The integration
of g(r) between 0 and a distance R (i.e. to calculate
the fraction of molecules for which the initial-to-end

distance is smaller than R) to obtain 6(R) is pre-
sented in Appendix I. The result is :

6�R� �
Z R

0
g�r�dr

� 2���
Z
p

Xr
i�0

�31�i�BR�2i�1

i!�2i � 1� 3BRexp�3B2R2�
 !

�27�

Perhaps the most important feature of this function
is that it depends only on the product BR with no
need to consider the individual values of B and R.
So, 6(BR) is a universal curve. This characteristic is
important because it makes it a general curve to be
used to help solving problems in random walk and
coiled polymers conformation. But why is this curve
helpful to us? Because its sigmoidal shape suggests
that it can be approximated by a step function (Fig.
1). A step function would mean that at each instant
the initial position is surrounded by a sphere inside
which it is impossible to ¢nd the £uorophore; the
£uorophores have moved in this space but at that
time all of them have crossed the frontier. As the
time progresses the critical distance increases. There
is an instant when the critical initial-to-end distance,
Rcrit, is such that it implies that the sum of volumes
occupied by the molecule is a sphere of radius RFQ.
If this instant is close to the sensitivity limit in the
time resolution of the apparatus used, then whatever
is occurring inside this sphere of radius RFQ can be
considered instantaneous. The analogy to the

Fig. 1. The probability of ¢nding the end position of a mole-
cule di¡using in a random walk between distances 0 and R
from the initial position (solid line) can be approximated by a
step function (dashed line). The solid line is a universal curve
and was plotted using Eq. 27 (see text) with 171 terms in the
summation involved.
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quenching sphere-of-action model is clear. Due to
instrumental limitations, the overall quenching proc-
ess can be divided into two phases: a static and a
dynamic one.

To make our interpretation clearer, two aspects
have to be made more explicit : (1) what is the in-
stant, tcrit, corresponding to Rcrit, and (2) what is the
relationship between Rcrit and the radius of the
sphere that is the sum of all the volumes successively
occupied by the £uorophore between instant t = 0
and tcrit, Rs. The relation between these variables is
depicted in Fig. 2. These two aspects will be our
concern now.

For a random walk in three dimensions the ele-
mentary step length, the number of steps, the time
interval and the di¡usion coe¤cient are related by:

Gr2f � nl2 � 6Dt �28�
Combining Eqs. 26,28:���������
GR2

gf
q

�
������
Dt
p

�29�

Admitting that nCr, as before, then it is reasonable
to assume that the sphere that is the sum of all the
volumes successively occupied by the £uorophore is
homogeneous (i.e. the density of visited places inside
this sphere is constant). So it is reasonable to assume
that:���������
GR2

gf
q

�
���
3
5

r
GRsf �30�

This is a crude approximation not only because it
assumes `random coils' as homogeneous spheres
but also because Rg and Rs are not monodispersed
(i.e. di¡erent £uorophores have di¡erent Rg and Rs).
For polydispersed systems the ratio between Rg and
Rs is higher than indicated in Eq. 30 [22]. The rela-
tionship between t and Rs resulting from a combina-
tion of Eqs. 29,30 (Eq. 31) has to be considered an
underestimated approximation.

GRsf �
��������
5
3
Dt

r
�31�

Fig. 2. Schematic representation of a random walk evolution of a molecule. The average elementary step takes time vd to occur. As
the number of steps, n, goes to in¢nity, the steps performed by the molecule approach a random coil of global spherical geometry of
radius Rs. Considering this sphere homogeneous, the radius of gyration is Rg = 0.775Rs. The initial-to-end distance (R) increases with
time and reaches a critical value at a critical instant, tcrit. At this instant, Rs is equal to RFQ (the sum of the molecular radii of £uoro-
phore and quencher).
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The reason why we have used the g(r) distribution
previously and are now using only average values for
Rg, instead of the distribution Rg(r) is explained in
Appendix II and results from the fact that when
nCr, Rg is no longer dependent on r.

Several times before we have assumed that nCr.
It is now time to illustrate the applicability of this
condition. We have simulated the di¡usion of the
ions Ca2�, Cl3 and Na� in water (square box with
640 water molecules at constant pressure). The sim-
ulations were carried out for 100 ps and the modulus
of the instantaneous velocity of each of the ions was
registered with 0.25 ps intervals. To guarantee that
the system was stabilized, only the last 200 registers
were taken into account when calculating the average
velocity. The average velocity of all the oxygen
atoms of the water molecules was also calculated in
the three cases. The results are depicted in Table 1.
In order to calculate the mean ionic velocities, mo-
lecular dynamics simulations in explicit water were
done using the GROMOS force ¢eld and suite of
programs [23].

In terms of random walk model, the instantaneous
velocity can be regarded as v = l/vd and

l �
������������
6Dvd
p

(Eq. 28). Thus,

vd � l2

6D
�32�

l � 6D
v

�33�

Considering a typical D in the order of magnitude
1035 cm2 s31 and a typical v = 0.5 nm/ps (Table 1),

we get l = 12 pm and vd= 24 fs. These small values
illustrate that the elementary steps in solution occur
at time and length scales much smaller that the ones
we probe (ps and nm, respectively). The processes
one probes occurs for nCr (nW103^106).

It is now the moment to return to our initial prob-
lem: what are the conditions in which the volume VP
can be interpreted as V? If the time resolution of the
£uorescence life-time apparatus cannot resolve what
is occurring in the sub-0.5 ns range, for instance,
then the phenomena occurring within a distance of
Rs = 0.9 nm (Eq. 31, considering a typical value
D = 1035 cm2 s31) can be regarded as instantaneous.
This is a typical value for the sum of molecular radii.
This is why the quenching sphere-of-action makes
sense in some cases. Viscous media (smaller D)
would demand higher t to obtain a similar Rs. The
whole quenching process is dynamic but the instru-
mental limitations enable a sometimes useful separa-
tion between `static' (i.e. phenomena occurring in
time scales below the instrumental resolution) and
dynamic (i.e. phenomena occurring in time scales
above the instrumental resolution) e¡ects. The
quenching sphere-of-action concept relies on this
idea of instantaneous (therefore static) quenching
due to molecular contact at instant t = 0. The time
(and therefore length) scale involved makes this a
useful idea to simplify the interpretation of experi-
mental data, mainly if complex systems are involved.

It should be stressed that it is a direct consequence
of Eq. 31 that the quenching sphere-of-action model
is prevented if the product Dtr di¡ers much from 0.3
nm2 (i.e. if GRsf di¡ers much from 0.7 nm, a typical
value for the molecular sum of radii), where tr is the
time resolution chosen for data analysis. Trying to
analyze data from complex systems with a very good
time resolution is pointless because the cumulative
transient e¡ects from several sub-populations is im-
possible to resolve. It is preferable to start data anal-
ysis from a time where the application of the quench-
ing sphere-of-action is meaningful, even in the case
where instrumental time resolution is better than this
limit. The separation between `static' and dynamic
e¡ects is always possible but a meaningful interpre-
tation of V is only achieved for DtrW0.3 nm2.

It should be recalled that if the quenching sphere-
of-action is being properly used then the radius of
the sphere of volume V is RFQ. Certainly unrealistic

Table 1
Average modulus of the velocity of some ions and water from
the simulation using the GROMOS package with square boxes
containing one ion and 640 water molecules at constant pres-
sure

Gvf/(nm/ps)

Na� 0.54
Cl3 0.43
Ca2� 0.39
H2Oa 0.61b

aEvaluated from the velocity of the oxygen atom.
bThe same result was obtained in three simulations.
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molecular radii could be used to de¢ne an `e¡ective'
quenching sphere-of-action, in parallel with the radi-
us of interaction in the radiation boundary condi-
tion, which can be very small to account for the
low e¤ciency of the quenching process. In our opin-
ion this should be avoided. If Q6 1 then the product
QV has to be considered instead of V (Eq. 21 instead
of Eq. 22).

3. Data analysis

3.1. Quenching sphere-of-action

From now on we will take advantage of the sim-
plicity of the quenching sphere-of-action model to
perform simple data analysis in complex, heteroge-
neous systems. Of course it will be assumed that the
experimental conditions are such that this model is
applicable (DtrW0.3 nm2, see above).

Imagine a simple, isolated single £uorophore for
which the £uorescence intensity decay is

I�t� � a0exp�3t=d0� �34�
This is Eq. 9 setting [Q] = 0 and I(0) = a0. We consid-
er the following quencher concentration dependence
for £uorescence lifetime and pre-exponential factor,
which are easily derived:

d0

d
� 1� kq�Q�d0 �35�

a � a0exp�3QVNA�Q�� �36�

Eq. 35 is the well-known Stern-Volmer plot for dy-
namic quenching. Eq. 36 quanti¢es the decrease in
the pre-exponential factor due to the increase in the
quencher concentration [20]. This re£ects the de-
crease in the £uorescence intensity at instant t = 0
(in reality, faster than the time resolution of the ap-
paratus in use, as explained before) due to the in-
creasing probability of having quencher molecules
in contact with the £uorophores. The intensity decay
is then described by the very simple Eq. 37 instead of
the rather complex Eq. 9.

I�t� � a0exp�3QVNA�Q��exp�3t=d� �37�
Moreover, if there are several independent sub-pop-
ulations of £uorophores, the total £uorescence decay

is simply:

I�t� �
X

i

a0;iexp�3QVNA�Q�i�exp�3t=di� �38�

Usually V and Q can be considered constant (i.e. not
to depend on i) and therefore are not referred to as
Vi and Qi, respectively. The steady-state Stern-Volmer
plot is

I f ;0

I f
�

X
i

a0;id0;iX
i

�a0;iexp�3QVNA�Q�i�di�
�39�

It should be stressed that Eq. 39 is an approxima-
tion. The decrease in amplitude accounts for most of
the transient e¡ect, except for a small contribution at
very early times (see Fig. 3). This contribution can be
safely ignored in most experimental conditions.

The appearance of a new and fast component in
the £uorescence intensity decay with the increase in
[Q] (the previously described transient term) has been
clearly experimentally detected by Nemzek and Ware
[10] using time domain techniques and by Lackowicz
[24] using frequency domain techniques. While this is
to be expected from Eq. 9, at ¢rst glance it looks
unexpected from Eq. 38. This is a consequence of
the adoption of the quenching sphere-of-action mod-
el. The transient e¡ects (i.e. the fast processes) are
regarded as instantaneous.

Fig. 3. Fluorescence intensity decays may be integrated and the
result compared to the data directly obtained in steady-state ex-
perimental conditions. Ignoring transient e¡ects (i.e. the linear-
ity deviation depicted in the ¢gure) introduces the error of ne-
glecting area A relative to the total area A+B. The contribution
of area A can be safely ignored in most experimental condi-
tions.
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3.2. Static quenching by ground-state complexation

If the £uorophore, F, and quencher, Q, associate
in the ground state forming non-£uorescent com-
plexes, FQ, then true static quenching occurs (i.e.
non-di¡usive). The system is described by the asso-
ciation constant, Ka, which in the case of 1:1 stoi-
chiometry is

Ka � �FQ�
�F��Q� �40�

Assuming experimental conditions that render
IfO[F], i.e.

I f � m�F� �41�
where m = 2.303GOPlI0 (G is an instrumental factor
dependent on the geometry of the system, P is the
£uorescence quantum yield, l is the light path, O is
the molar absorptivity and I0 is the incident light
intensity). From Eqs. 40,41 it is concluded that

I f ;0

If
� 1� Ka�Q� �42�

Nevertheless, [Q] is a di¤cult to handle variable, un-
less the approximation [Q]W[Q]t is valid ([Q]t is the
total quencher concentration; [Q]t = [Q]+[FQ]). This
only occurs for a limited range of small and moder-
ate Ka, except for very high quencher concentration
where [Q]tE[F]. A more general and useful equation
can be deduced from the combination of Eqs. 40^42:

I f ;0

I f
� 1� mKa

I f Ka �m
�Q�t �43�

Combining Eqs. 40,41,43:

I f ;0

I f
� 1� Ka

�FQ�
�Q� � 1

�Q�t �44�

If [FQ]I[Q] then Eq. 44 can be simpli¢ed to Eq. 45,
which is the `classical' equation to analyze static
quenching Stern-Volmer plots. The general equation
(Eq. 44) and underlying limitations to the use of Eq.
45 have been frequently overlooked in the literature.

I f ;0

I f
� 1� Ka�Q�t �45�

It is commonly believed that an upward curvature
in the steady-state Stern-Volmer plot indicates the

conjugation of static and dynamic e¡ects in quench-
ing. Eq. 43 demonstrates clearly that pure stat-
ic quenching by complexation also leads to upward
curvatures in Stern-Volmer plots. Only if [FQ]I[Q]
can this intrinsic curvature be ignored. For pure dy-
namic quenching an upward curvature is also ex-
pected from the transient e¡ects (the pseudo-static
e¡ects in the quenching sphere-of-action).

For transient-state data analysis we will assume
once more that Eq. 34 is valid for a simple, isolated
and single £uorophore. The pre-exponential factor is
not proportional to the total number of £uorophores
in solution, but to the number of free £uorophores in
solution. However, admitting that [Q]W[Q]t (i.e. Ka

is small enough and Eq. 45 is valid)

aO�F� � �F�t
1� Ka�Q�t �46�

So

a � a0

1� Ka�Q�t �47�

The £uorescence intensity decay of several sub-pop-
ulations of these chromophores is

I�t� �
X

i

a0;i

1� Ka�Q�t;iexp�3t=di� �48�

(assuming that [Q]t and Ka are constant for all sub-
populations) and the steady-state Stern-Volmer plot
is

I f ;0

I f
�

X
i

a0;id0;iX
i

a0;i

1� Ka�Q�t;idi

� � �49�

If no dynamic (i.e. di¡usion dependent) quenching is
occurring at all, then di is independent of [Q]t and so
di = d0;i.

3.3. Final remarks on data analysis

It is arti¢cial to make a clear separation between
static and dynamic quenching. Imagine the quench-
ing sphere-of-action model with an alteration: in-
stead of using Poisson statistics to calculate the prob-
ability of ¢nding at least one quencher inside the
sphere of action, an interaction energy between F

BBAMEM 77402 3-8-98

M.A.R.B. Castanho, M.J.E. Prieto / Biochimica et Biophysica Acta 1373 (1998) 1^1610



and Q is used. The Q distribution around F is no
longer random and takes into account an association
between F and Q in the ground state. From this
point of view the quenching sphere-of-action model
is just a limit for static quenching, as described pre-
viously by others (e.g. [7]). This becomes clear if one
recalls that exp(x)W1+x when x is small enough.
For small enough Ka[Q]t, 1+Ka[Q]t is approximately
exp(Ka[Q]t) which is equal to the quenching sphere-
of-action expression, exp(VNA[Q]t), setting Ka =
VNA. In fact, Andre et al. [25] in addition to the
transient contribution in Eq. 9 included a purely
static exponential term such as the one of the
quenching sphere-of-action formulations. Szabo [26]
predicted that a distant dependent bimolecular reac-
tion rate would result in the occurrence of static
quenching, leading to an additional exponential fac-
tor to the Stern-Volmer equation derived by Nemzek
and Ware.

A further problem consists in the de¢nition of
quencher concentration (e.g. in Eqs. 39,49) in heter-
ogeneous systems. If the quencher has a restricted
accessibility to the £uorophore, this e¡ect can be
accounted for in the use of local concentrations, in-
stead of global averaged concentrations. This was
recently applied to the quenching of a £uorescent
probe incorporated in a model system of membranes
[27]. The local quencher concentration, [Q]loc, is con-
sidered to be related to the global average concen-
tration, G[Q]f, by:

�Q�loc � bG�Q�f �50�
b is introduced to account for the fact that in the
micro-heterogeneous systems the quencher molecules
may not be distributed homogeneously relative to
£uorophores. However, this is not as straightforward
as it seems due to the possible implications of heter-
ogeneity in DFQ. To elucidate this question is one of
the goals of this work.

3.4. Examples of experimental data analysis

Eq. 38 or Eq. 48 can be used to simultaneously
analyze a set of £uorescence decays. A series of de-
cays, each one obtained with a di¡erent quencher
concentration, can be correlated in a global analysis
so that V (Eq. 38) or Ka (Eq. 48) can be calculated
from transient-state £uorescence data. Eq. 38 is a

limit of Eq. 48 for weak £uorophore-quencher inter-
actions. The steady-state data (e.g. Stern-Volmer
plots) are related to transient-state data by means
of Eqs. 39,49. If good estimates of V and Ka are
obtained from Eq. 38 or Eq. 48, experimentally
measured Stern-Volmer plots should be in agreement
to those predicted by Eq. 39 or Eq. 49, respectively.
This methodology has been applied before [20,28]. A
£uorophore (pentaene) incorporated in a model sys-
tem of membranes has a complex decay (two com-
ponents) [28]. Using this methodology, it was possi-
ble to clearly separate the e¡ect of quenching in each
of them separately and check the self-consistency of
the results by comparing the experimental Stern-
Volmer plots with the ones from Eqs. 39,49. Eq. 49
was used when Eq. 39 failed to reproduce the data
with a V value having a physical meaning. V must
correspond to a radius which is related to molecular
contact (RsWRFQ). In general, this methodology
made it possible to ascribe a speci¢c in-depth loca-
tion inside the lipid bilayer to each component in the
£uorescence decay. In another study [20], the com-
plex £uorescence decay (three components) of an ag-
gregate in aqueous solution was studied using this
methodology. The results pointed to an open struc-
ture since none of the components was completely
protected from aqueous quencher agents.

4. Interpretation of results

According to the previous section, the £uorescence
decays of chromophores having several sub-popula-
tions can be analyzed using Eqs. 38,48. These equa-
tions should lead to the following results, necessary
for a self-consistent set of results and interpretation:

1. The lifetime components for each sub-population
must vary with the quencher concentration ac-
cording to linear Stern-Volmer plots (i.e. d0;i/di

vs. [Q]), unless concentration-dependent quencher
aggregation is occurring [28]. Eq. 6 is then used to
obtain information on the dynamics of each sub-
population.

2. The reconstitution of the steady state Stern-Vol-
mer plot using Eqs. 39,49 must agree with the
experimental Stern-Volmer plot measured in
steady state conditions.
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3. The volume V must correspond to the radius RFQ.

It should be stressed that the data for the di¡erent
quencher concentrations should be globally analyzed
[29]. We shall now focus on the reasons why the
steady-state Stern-Volmer plot may not be linear
and how to rationalize such deviations to linearity
by means of Eqs. 39,49. If all the components have
identical quenching properties (i.e. KSV, Q, local [Q]
and V or Ka) then the steady-state Stern-Volmer plot
is linear with intercept 1 and slope KSV. Non-linear-
ities arise from di¡erential quenching properties be-
tween the components. V (i.e. RFQ) or Ka and Q can
be regarded as intrinsic properties, i.e. depending

only on the spectroscopic characteristics of £uoro-
phore and quencher, so we turn to the local [Q]
around each component i ([Q]i) and their di¡usion
coe¤cients, DFQ;i, (i.e. the local viscosity in their en-
vironments) to relate the Stern-Volmer plot linearity
deviations to the physical properties of the system
understudy. Q can be estimated from £uorescence
quenching experiments in homogeneous solvent.
Although Q is viscosity-dependent, in practical terms
this dependence is not restrictive in many cases
[30,31].

There are three clear limit situations from this
point of view:

(1) [Q]i = [Q]i�1 and DFQ;i gDFQ;i�1, 9i

Fig. 4. Schematic sequence of steps in data analysis and results interpretation in £uorescence quenching in complex systems. This
methodology enables one to overcome the di¤culties imposed by the transient e¡ects in micro-heterogeneous systems (i.e. with several
sub-populations of £uorophores present).
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In this case the curvature in the Stern-Volmer
plot is due to the di¡erence in the di¡usive properties
of the several sub-populations and is not at all re-
lated to the accessibilities of the quencher to the
chromophores. We shall name this kind of situation
pseudo-Lehrer. The plots may look like the ones
studied by Lehrer [4] but for completely di¡erent
reasons.

(2) Ai :[Q]i g [Q]i�1 and DFQ;i = DFQ;i�1, 9i

In these cases one has Lehrer-related situations
because the curvature in Stern-Volmer plots is re-
lated to the accessibility of the quencher to the chro-
mophores. Two limiting cases exist :

(2.1) Ai :[Q]i = 0; this is a typical Lehrer situation.
(2.2) 9i :[Q]i g 0; this is an atypical Lehrer situa-

tion.
The sequence in data analysis and results interpre-

tation in £uorescence quenching experiments by
means of microscopic models is depicted in Fig. 4.
It should be recalled that the deviations from linear-
ity in Stern-Volmer plots can also be explained using
purely kinetic models. Complex kinetic schemes may
be used to explain curvatures in the £uorescence
quenching of simple systems (e.g. free monomers in
homogeneous solvent) where microscopic models
make no sense.

5. Conclusions

This work is especially relevant for dealing with
complex systems, i.e. those where the intrinsic £uo-
rophore decay is non-monoexponential, as is usually
the case in membranes, micelles and colloidal sys-
tems. In all these cases it is not possible to statisti-
cally analyze transient e¡ects because those belong-
ing to di¡erent sub-populations are superimposed.
Fluorescence quenching experiments in complex, het-
erogeneous systems may be useful and informative as
long as proper and adequate data analysis and re-
sults interpretation is carried out. The use of micro-
scopic models and a clear notion of the concept of
quenching sphere-of-action and static quenching
leads to very simple multi-exponential equations for
transient-state data analysis. The integration of these
functions leads to the expected steady-state Stern-

Volmer plot. The self-consistency of the results is
easily evaluated from: (1) the physical meaning of
the quenching sphere-of-action volume, which has
to correspond to a radius equal to the distance of
closest approach, or, alternatively, from the £uoro-
phore-quencher association equilibrium constant, (2)
from the linearity in the transient-state Stern-Volmer
plot for each sub-population of chromophores, and
(3) from the agreement between expected steady-state
Stern-Volmer plots from transient state and directly
measured £uorescence data in steady state. More-
over, this kind of approach makes it possible that
sets of self-consistent results can be grouped accord-
ing to the reason why steady-state Stern-Volmer
plots may deviate from linearity. Linearity deviations
may be related to: (1) the di¡usion properties of
quencher and/or £uorophore, (2) the local concentra-
tion of the quencher around the £uorophore. The
¢rst reason is not at all related to the reasons pre-
viously studied by Lehrer [4] who related downward
curvature in Stern-Volmer plots to the lack of acces-
sibility of the quencher to a fraction of the £uoro-
phores. It is therefore a `pseudo-Lehrer' situation.
The second reason is related to Lehrer's studies. If
for at least one £uorophore sub-population the local
quencher concentration is zero (i.e. the £uorophore is
not accessible to the quencher) this is a `typical
Lehrer' situation. If the local quencher concentration
is di¡erent for at least one pair of sub-populations
but is not zero for any of them, then this is an `atyp-
ical Lehrer' situation.

The approximation of the transient e¡ects by the
quenching sphere-of-action model is not always pos-
sible. The quenching sphere-of-action concept can be
regarded as a valuable tool only in a limited range of
experimental conditions, namely time resolution.

The static quenching (involving non-£uorescent
complexes between £uorophore and quencher)
Stern-Volmer equation usually used for data analysis
is only valid for a limited range of small and mod-
erate equilibrium association constants, Ka, although
this is frequently overlooked in the literature. A cor-
rect awareness of data analysis validity conditions is
essential for meaningful results interpretation. This
work explores these limitations in £uorescence
quenching.
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Appendix I: The initial-to-end probability distribution
function in a random walk

The probability of a random walk to end at a
distance between r and r+dr from its initial point
is

g�r�dr � B���
Z
p
� �

34Zr2exp�3B2r2�dr �AI:1�

B � 1
l

�����
3
2n

r
�AI:2�

where l is the length of the elementary step and n is
the number of steps [21]. The probability distribution
function represents the probability of the distance
between the initial and ¢nal point of the random
walk to be between zero and a certain value, R.
This probability is

6�R� �
Z R

0
g�r�dr � 4Z

B���
Z
p
� �

3
Z R

0
r2exp�3B2r2�dr

�AI:3�

Our goal in this Appendix is to calculateR
R
0 r2exp�3B2r2�dr. It is convenient to make a change

of variable: B2r2 = z. So,

Z R

0
r2exp�3B2r2�dr � 1

2B3

Z �BR�2

0
z3=231exp�3z�dz

�AI:4�

The integral in the second term is an incomplete
gamma function [32], Q�K; x� � R x

0tK31exp�3t�dt,

where K is a constant. Therefore,

1
2B3

Z �BR�2

0
z3=231exp�3z�dz � Q�3

2
; B2R2� 1

2B3 �AI:5�

According to Davis [32]:
Q�K� 1; x� � KQ�K; x�3xKexp�3x� �AI:6�

Q�1=2; x� � ���
Z
p

erf� ���xp � �AI:7�

Transforming Eq. AI.5 according to Eq. AI.6 and
then Eq. AI.7:

Q�3=2; B2R2� 1
2B3

�
���
Z
p
2

erf�BR�3BRexp�3B2R2�
� �

1
2B3 �AI:8�

Substituting erf(BR) by its series expansion [33] (Eq.
AI.9) leads to the result aimed for (Eq. AI.10).

erf�BR� � 2���
Z
p
Xr
i�0

�31�i�BR�2i�1

i!�2i � 1� �AI:9�

6�R� �
Z R

0
g�r�dr

� 2���
Z
p

Xr
i�0

�31�i�BR�2i�1

i!�2i � 1� 3BRexp�3B2R2�
 !

�AI:10�

Appendix II: The radius of gyration dependence on the
initial-to-end distance in a random walk

In this Appendix we shall refer to the radius of
gyration, Rg, of a random walk meaning the Rg

that would have a polymer chain linking all the
points in space visited by the moving molecule dur-
ing the random walk for a period d. It is, of course, a
pseudo-radius of gyration but for the sake of sim-
plicity we shall name it radius-of-gyration and repre-
sent it by Rg.

It is important to recall that the relation between
the radius of gyration and the initial-to-end distance
in a random walk is not bi-univocous, i.e. molecules
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having the same Rg may not have the same initial-to-
end distance and vice versa. Therefore, for each ini-
tial-to-end distance, r, there is an average Rg that we
will represent by GRgf(r). As it is more convenient to
work with the squared Rg and squared initial-to-end
distance, in practice GR2

gf�r2� is more useful to work
with. The Rg averaged over all the population is
constant and simply referred to as GRgf. GR2

gf also
refers to a total population average.

For a speci¢c random walk, the Rg depends on the
distance between each of the elementary steps:

R2
g �

1
�n� 1�2

Xn

j�i�1

Xn31

i�1

r2
ij �AII:1�

(rij is the shortest distance between steps i and j).
The whole process is random, so the average distance
between any j3i steps is the same �Gr2

ijf � �j3i � 1�l2�
and the average R2

g is

GR2
gf �

1
�n� 1�2

Xn31

k�1

�n3k�Gr2
i;i�kf

� l2

�n� 1�2
Xn31

k�1

�n3k��k � 1� �AII:2�

Eq. AII.3 is now applied in Eq. AII.2 and the result
is Eq. AII.4.Xn31

i�1

�n3i�i � n33n
6

�AII:3�

GR2
gf �

Gr2f

6
n2 � 3n34
�n� 1�2 �AII:4�

When nCr Eq. AII.4 can be approximated by
the very well-known relationship (Eq. AII.5) used
for random coils.

GR2
gf �

Gr2f

6
�AII:5�

A similar sequence is used in the deduction
of GR2

gf�r2� with a small di¡erence. We shall
now consider the initial-to-end distance, r = r1n,
apart from the rest of the inter-step distances in
Eq. AII.2:

GR2
gf�r2� � 1

�n� 1�2
Xn31

k�1

�n3k�Gr2
i;i�kf

� 1
�n� 1�2 r2 �

Xn31

j�2

Gr2
1;jf�

Xn

j�i�1

Xn31

i�2

Gr2
ijf

 !

� 1
�n� 1�2 r2 � l2 n� 1

2
�n32� �

Xn

j�i�1

Xn31

i�2

�j3i � 1�
 !" #

�AII:6�

Applying Eq. AII.7 and then Eq. AII.3 to Eq. AII.6
gives the result aimed for (Eq. AII.8).Xn

j�i�1

Xn31

i�2

�j3i � 1� �
Xn31

k�1

k�n3k�
 !

3�n31� �AII:7�

GR2
gf�r2� � 1

�n� 1�2

r2 � l2 3�n32��n� 1� � n�n31��n� 1�36�n31�
6

� �� �
�AII:8�

Substituting r2 by Gr2f=nl2 in Eq. AII.8, Eq. AII.4
is obtained, as expected.

The meaningful characteristic of Eq. AII.8 for this
work is that when nCr, the term r2/(n+1)2C0; i.e.
the average square radius-of-gyration loses its de-
pendence on r and therefore becomes a constant.
The constant value is GR2

gf�r2� � GR2
gf � Gr2f=6 � Dt

(Rg depends only on the di¡usive properties of the
molecules involved).
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