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a b s t r a c t

We identify a class of Sturm–Liouville equations with transmission conditions such
that any Sturm–Liouville problem consisting of such an equation with transmission
condition and an arbitrary separated or real coupled self-adjoint boundary condition has a
representation as an equivalent finite dimensional matrix eigenvalue problem. Conversely,
given any matrix eigenvalue problem of certain type and an arbitrary separated or real
coupled self-adjoint boundary condition and transmission condition, we construct a class
of Sturm–Liouville problems with this specified boundary condition and transmission
condition, each of which is equivalent to the given matrix eigenvalue problem.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we explore relationship between regular self-adjoint Sturm–Liouville problems with transmission
conditions of Atkinson type and matrix eigenvalue problems in the form

VX = λWX, (1.1)

where V andW are l × l (l ∈ Z, l > 3) matrices over the reals R andW is diagonal.
In [1], the authors Kong et al. considered the relationship between a class of Sturm–Liouville problems of Atkinson type

and matrix eigenvalue problems and show that, the eigenvalue problem of this class of Sturm–Liouville problems with
arbitrary self-adjoint boundary conditions (either separated or coupled) are equivalent to the matrix eigenvalue problems.
Such a connection can be used to ‘‘transfer’’ results from one problem to the other. For the corresponding applications for
S–L case please see [2,3]. Recently, we prove that the Sturm–Liouville problems(SLPs) with transmission conditions also
have a finite spectrum, see [4].

Following [5,1,4], in this paper, we consider the Sturm–Liouville equation

− (py′)′ + qy = λwy, on J = (a, c) ∪ (c, b), c ∈ (a, b), with − ∞ < a < b < +∞ (1.2)

together with boundary conditions of the form

AY (a) + BY (b) = 0, Y =


y
py′


, A, B ∈ M2(C), (1.3)
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and the transmission conditions

CY (c−) + DY (c+) = 0, (1.4)

where c is inner discontinuity point, λ is the spectral parameter, and C = (cij)2×2,D = (dij)2×2 are real valued 2×2matrices
satisfying det(C) = ρ > 0, det(D) = θ > 0. M2(C) denotes the set of square matrices of order 2 over C. The coefficients
satisfy the conditions

r = 1/p, q, w ∈ L(J, R), (1.5)

where L(J, R) denotes the real valued functions which are Lebesgue integrable on J [6–8].
The BC (1.3) is said to be self-adjoint if the following two conditions are satisfied:

rank(A, B) = 2, AEA∗
= BEB∗ with E =


0 −1
1 0


. (1.6)

The SLP with transmission condition (1.2)–(1.4) is said to be self-adjoint if its associated operator T is self-adjoint. The
operator T is self-adjoint if and only if

rank(A, B) = 2,
1
ρ
AE−1A∗

=
1
θ
BE−1B∗ with E =


0 −1
1 0


. (1.7)

For details on the self-adjointness of SLPs with transmission conditions please see [9,10].
It is well known [11] that under the condition (1.5), the BCs (1.3) fall into two disjoint classes: separated and coupled.

The separated boundary conditions have the canonical representation:

cosαy(a) − sinα(py′)(a) = 0, 0 ≤ α < π

cosβy(b) − sinβ(py′)(b) = 0, 0 < β ≤ π.
(1.8)

The real coupled boundary conditions have the canonical representation:

Y (b) = KY (a) with K = (kij), kij ∈ R, 1 ≤ i, j ≤ 2, det(K) = 1. (1.9)

Let u = y and v = (py′). Then we have the system representation of equation (1.2) [7]:

u′
= rv, v′

= (q − λw)u, on J. (1.10)

In the classical case when r and w in (1.2) are positive a.e. on J and the BCs (1.3) and transmission conditions (1.4)
are self adjoint, SLPs with transmission conditions (1.2)–(1.4) have a discrete spectrum consisting of an infinite number of
real eigenvalues [5,9,10,12]. In our recent works, we proved SLPswith transmission conditions of Atkinson type have a finite
number of eigenvalues. Hence, in this paper,we identify this class of Sturm–Liouville equationswith transmission conditions
of Atkinson type, and show that, given any member of this class, and an arbitrary self-adjoint BC (1.3), either separated or
coupled, and proper transmission condition (1.4), there is a matrix eigenvalue problem in the form of (1.1) with exactly the
same eigenvalues as the corresponding SLP with transmission condition (1.2)–(1.4). Conversely, given a matrix eigenvalue
problem (1.1) satisfying appropriate conditions, there exist SLPs with arbitrary self-adjoint separated or real coupled BC and
transmission condition having exactly the same eigenvalues as the matrix problem. This reveals a connection between the
SLPs with transmission conditions of Atkinson type and certain matrix eigenvalue problems. Such a connection can be used
to ‘transfer’ results from one problem to the other as illustrated below.

2. Matrix representations of SLPs with transmission conditions of Atkinson type

Following [1,4,13] we still associate a special class of SLPs with transmission conditions with the name of Atkinson.

Definition 2.1. A Sturm–Liouville equation (1.2) with transmission condition is said to be of Atkinson type if, for some
positive integersm, n ≥ 1, there exists a partition of the interval J

a = a0 < a1 < a2 < · · · < a2m+1 = c, c = b0 < b1 < b2 < · · · < b2n+1 = b (2.1)

such that

r =
1
p

= 0 on [a2k, a2k+1], k = 0, 1, . . . ,m − 1, and [a2m, a2m+1),

 a2k+1

a2k
w ≠ 0, k = 0, 1, . . . ,m,

r =
1
p

= 0 on (b0, b1] and [b2i, b2i+1], i = 1, 2, . . . , n,
 b2i+1

b2i
w ≠ 0, i = 0, 1, . . . , n;

(2.2)
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and

q = 0 = w on [a2k+1, a2k+2],

 a2k+2

a2k+1

r ≠ 0, k = 0, 1, . . . ,m − 1,

q = 0 = w on [b2i+1, b2i+2],

 b2i+2

b2i+1

r ≠ 0, i = 0, 1, . . . , n − 1.
(2.3)

In this section, we construct matrix eigenvalue problems which have exactly the same eigenvalues as the corresponding
SLPs with transmission conditions of Atkinson type.

Definition 2.2. A SLPwith a transmission condition of Atkinson type is said to be equivalent to amatrix eigenvalue problem
if the former has exactly the same eigenvalues as the latter.

Before we can state our theorems we need to introduce some additional notation. Given (2.1)–(2.3), let

pk =

 a2k

a2k−1

r

−1

, k = 1, 2, . . . ,m; qk =

 a2k+1

a2k
q, wk =

 a2k+1

a2k
w, k = 0, 1, . . . ,m;

p̃i =

 b2i

b2i−1

r

−1

, i = 1, 2, . . . , n; q̃i =

 b2i+1

b2i
q, w̃i =

 b2i+1

b2i
w, i = 0, 1, . . . , n.

(2.4)

We note from (2.2) and (2.3) that pk, wk, p̃i, w̃i ∈ R \ {0}, and no sign restrictions are imposed on them.
From (2.2) and (2.3) we see that, for any solution u, v of (1.10), u is constant on the intervals where r is identically zero

and v is constant on the intervals where q and w are both identically zero. Let

uk = u(x), x ∈ [a2k, a2k+1], k = 0, . . . ,m − 1, um = u(x), x ∈ [a2m, a2m+1),

ũ0 = u(x), x ∈ (b0, b1], ũi = u(x), x ∈ [b2i, b2i+1], i = 1, . . . , n;
vk = v(x), x ∈ [a2k−1, a2k], k = 1, . . . ,m, ṽi = v(x), x ∈ [b2i−1, b2i], i = 1, . . . , n,

(2.5)

and set

v0 = v(a0) = v(a), ṽn+1 = v(b2n+1) = v(b),
vm+1 = v(a2m+1−) = v(c−), ṽ0 = v(b0+) = v(c+).

(2.6)

Lemma 2.1. Assume Eq. (1.2) is of Atkinson type. Then for any solution u, v of Eq. (1.10) we have

pk(uk − uk−1) = vk, k = 1, 2, . . . ,m, (2.7)

vk+1 − vk = uk(qk − λwk), k = 0, 1, . . . ,m, (2.8)

p̃i(ũi − ũi−1) = ṽi, i = 1, 2, . . . , n, (2.9)

ṽi+1 − ṽi = ũi(q̃i − λw̃i), i = 0, 1, . . . , n. (2.10)

Conversely, for any solution uk, k = 0, 1, . . . ,m, vk, k = 0, 1, . . . ,m + 1 and ũi, i = 0, 1, . . . , n, ṽi, i = 0, 1, . . . , n + 1, of
system (2.7)–(2.10), there is a unique solution u(x) and v(x) of Eq. (1.10) satisfying (2.5) and (2.6).

Proof. From the first equation of (1.10), for k = 1, 2, . . . ,m, we have

uk − uk−1 = u(a2k) − u(a2k−2) =

 a2k

a2k−2

u′
=

 a2k

a2k−2

rv =

 a2k

a2k−1

rv = vk

 a2k

a2k−1

r = vk/pk.

This establishes (2.7).
Similarly, from second equation of (1.10), for k = 1, 2, . . . ,m, we have

vk+1 − vk = v(a2k+1) − v(a2k−1) =

 a2k+1

a2k−1

v′
=

 a2k+1

a2k−1

(q − λw)u

=

 a2k+1

a2k
(q − λw)u = uk

 a2k+1

a2k
(q − λw) = uk(qk − λwk),

and for k = 0, we still have the same result. This establishes (2.8).
(2.9) and (2.10) can be proved in the same way.
On the other hand, if uk, vk satisfy (2.7) and (2.8), ũi, ṽi satisfy (2.9) and (2.10), then we define u(x) and v(x) according to

(2.5) and (2.6), and then extend them continuously to thewhole interval J as a solution of (1.10) by integrating the equations
in (1.10) over subintervals. �
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To discuss the matrix representation of the Sturm–Liouville equation with transmission condition (1.4) and BC (1.3), let
G = (gij) = −D−1C and for each of the separated BC (1.8) and real coupled BC (1.9), we will state our theorems in two cases
when g12 ≠ 0 or g12 = 0.

First, we consider SLP with transmission condition (1.2)–(1.4) with separated BC (1.8).

Theorem 2.1. Assume α ∈ [0, π), β ∈ (0, π] and g12 ≠ 0. Define an (m + n + 2) × (m + n + 2) tridiagonal matrix

Pαβ =



p1 sinα + cosα − p1 sinα

− p1 p1 + p2 − p2
· · · · · · · · ·

− pm−1 pm−1 + pm − pm
− pm pm +

g11
g12

−
1

g12
−

ρ

θ
1

g12
p̃1 +

g22
g12

− p̃1
− p̃1 p̃1 + p̃2 − p̃2

· · · · · · · · ·

− p̃n−1 p̃n−1 + p̃n − p̃n
− p̃n sinβ p̃n sinβ − cosβ


, (2.11)

and diagonal matrices

Qαβ = diag(q0 sinα, q1, . . . , qm, q̃0, . . . , q̃n−1, q̃n sinβ),

Wαβ = diag(w0 sinα, w1, . . . , wm, w̃0, . . . , w̃n−1, w̃n sinβ).
(2.12)

Then SLP with transmission condition (1.2), (1.4), (1.8) is equivalent to matrix eigenvalue problem

(Pαβ + Qαβ)U = λWαβU, (2.13)

where U = [u0, u1, . . . , um, ũ0, . . . , ũn]
T . Moreover, all eigenvalues are geometrically simple, and unique up to constant

multiples, the eigenfunction u(x) of SLP with transmission condition (1.2), (1.4), (1.8) and the corresponding eigenvector U of
the matrix eigenvalue problem (2.13) associated with the same eigenvalue are related by u(x) = uk, x ∈ [a2k, a2k+1], k =

0, . . . ,m − 1, u(x) = um, x ∈ [a2m, a2m+1), u(x) = ũ0, x ∈ (b0, b1], u(x) = ũi, x ∈ [b2i, b2i+1], k = 1, 2, . . . , n.

Proof. There is a one-to-one correspondence between the solutions of system (2.7)–(2.10) and the solutions of the following
system:

p1(u1 − u0) − v0 = u0(q0 − λw0), (2.14)
pk+1(uk+1 − uk) − pk(uk − uk−1) = uk(qk − λwk), k = 1, 2, . . . ,m − 1, (2.15)

vm+1 − pm(um − um−1) = um(qm − λwm), (2.16)

p̃1(ũ1 − ũ0) − ṽ0 = ũ0(q̃0 − λw̃0), (2.17)

p̃i+1(ũi+1 − ũi) − p̃i(ũi − ũi−1) = ũi(q̃i − λw̃i), i = 1, 2, . . . , n − 1, (2.18)

ṽn+1 − p̃n(ũn − ũn−1) = ũn(q̃n − λw̃n). (2.19)

In fact, assume that uk, k = 0, 1, 2, . . . ,m, and vk, k = 0, 1, 2, . . . ,m + 1, is a solution of system (2.7), (2.8). Then (2.14)–
(2.16) follow from (2.7), (2.8). Similarly, (2.17)–(2.19) follow from (2.9), (2.10) by assuming that ũi, i = 0, 1, 2, . . . , n, and
ṽi, i = 0, 1, 2, . . . , n+ 1, is a solution of system (2.9), (2.10). On the other hand, assume uk, k = 0, 1, 2, . . . ,m, is a solution
of system (2.14)–(2.16). Then v0 and vm+1 are determined by (2.14) and (2.16), respectively. Let vk, k = 1, 2, . . . ,m, be
defined by (2.7). Then using (2.14) and by induction on (2.15) we obtain (2.8). Similarly for (2.9) and (2.10).

Therefore by Lemma 2.1, any solution of Eq. (1.10), and hence of (1.2), is uniquely determined by a solution of system
(2.14)–(2.19). Note that from BC (1.8) we have

u0 cosα = v0 sinα, ũn cosβ = ṽn+1 sinβ, (2.20)

and from the transmission condition (1.4) we have

ũ0 = g11um + g12vm+1, ṽ0 = g21um + g22vm+1, (2.21)

since g12 ≠ 0 and det(G) = −
ρ

θ
, thus from (2.21) we have

vm+1 =
1
g12

ũ0 −
g11
g12

um, ṽ0 =
g22
g12

ũ0 −
ρ

θ

1
g12

um, (2.22)

The equivalence follows from (2.14)–(2.22). �
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Theorem 2.2. Assume α ∈ [0, π), β ∈ (0, π] and g12 = 0. Define an (m + n + 1) × (m + n + 1) tridiagonal matrix

Pαβ =



p1 sinα + cosα − p1 sinα

− p1 p1 + p2 − p2
· · · · · · · · ·

− pm−1 pm−1 + pm − pm
− g22pm

g22pm
+g11 p̃1+g21 − p̃1

− g11p̃1 p̃1 + p̃2 − p̃2
− p̃2 p̃2 + p̃3 − p̃3

· · · · · · · · ·

− p̃n−1 p̃n−1 + p̃n − p̃n
− p̃n sinβ p̃n sinβ − cosβ


, (2.23)

and diagonal matrices

Qαβ = diag(q0 sinα, q1, . . . , qm−1, g22qm + g11q̃0, q̃1, . . . , q̃n−1, q̃n sinβ),

Wαβ = diag(w0 sinα, w1, . . . , wm−1, g22wm + g11w̃0, w̃1, . . . , w̃n−1, w̃n sinβ).
(2.24)

Then SLP with transmission condition (1.2), (1.4), (1.8) is equivalent to matrix eigenvalue problem

(Pαβ + Qαβ)U = λWαβU, (2.25)

where U = [u0, u1, . . . , um, ũ1, . . . , ũn]
T . Moreover, all eigenvalues are geometrically simple, and unique up to constant

multiples, the eigenfunction u(x) of SLP with transmission condition (1.2), (1.4), (1.8) and the corresponding eigenvector U of
the matrix eigenvalue problem (2.25) associated with the same eigenvalue are related by u(x) = uk, x ∈ [a2k, a2k+1], k =

0, . . . ,m − 1, u(x) = um, x ∈ [a2m, a2m+1), u(x) = g11um, x ∈ (b0, b1], u(x) = ũi, x ∈ [b2i, b2i+1], k = 1, 2, . . . , n.

Proof. Since g12 = 0, transmission condition (1.4) is the same as

ũ0 = g11um, ṽ0 = g21um + g22vm+1. (2.26)

From (2.16), (2.17), (2.18) and (2.26) we have

p̃1(ũ1 − g11um) − g21um − g22[pm(um − um−1) + um(qm − λwm)] = g11um(q̃0 − λw̃0), (2.27)

p2(ũ2 − ũ2) − p̃1(ũ1 − g11um) = ũ1(q̃1 − λw̃1). (2.28)

Then the equivalence follows from (2.14)–(2.16), (2.18)–(2.20) and (2.27)–(2.28). �

Corollary 2.1. (i) Assume α, β ∈ (0, π) and g12 ≠ 0. Define an (m + n + 2) × (m + n + 2) tridiagonal matrix

Pαβ =



p1 + cotα − p1
− p1 p1 + p2 − p2

· · · · · · · · ·

− pm−1 pm−1 + pm − pm
− pm pm +

g11
g12

−
1

g12
−

ρ

θ
1

g12
p̃1 +

g22
g12

− p̃1
− p̃1 p̃1 + p̃2 − p̃2

· · · · · · · · ·

− p̃n−1 p̃n−1 + p̃n − p̃n
− p̃n p̃n − cotβ


, (2.29)

and diagonal matrices

Qαβ = diag(q0, q1, . . . , qm, q̃0, . . . , q̃n), Wαβ = diag(w0, w1, . . . , wm, w̃0, . . . , w̃n). (2.30)

Then SLP with transmission condition (1.2), (1.4), (1.8) is equivalent to matrix eigenvalue problem

(Pαβ + Qαβ)U = λWαβU, (2.31)

where U = [u0, u1, . . . , um, ũ0, . . . , ũn]
T .

(ii) If α = 0 and/or β = π then a similar statement holds with matrices P,Q ,W obtained from matrices (2.29), (2.30) by
deleting their first row and column if α = 0 and/or the last row and column if β = π .

Proof. (i) In this case, we divide the first and the last rows of system (2.13) by sinα and sinβ , respectively to obtain (2.31).
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(ii) If α = 0 then u0 = 0 so the first row and column of thematrices P,Q ,W can be deleted. Similarly, if β = π then ũn = 0
so the last row and column can be deleted. �

Corollary 2.2. (i) Assume α, β ∈ (0, π) and g12 = 0. Define an (m + n + 1) × (m + n + 1) tridiagonal matrix

Pαβ =



p1 + cotα − p1
− p1 p1 + p2 − p2

· · · · · · · · ·

− pm−1 pm−1 + pm − pm
− g22pm

g22pm
+g11 p̃1+g21 − p̃1

− g11p̃1 p̃1 + p̃2 − p̃2
− p̃2 p̃2 + p̃3 − p̃3

· · · · · · · · ·

− p̃n−1 p̃n−1 + p̃n − p̃n
− p̃n p̃n − cotβ


, (2.32)

and diagonal matrices

Qαβ = diag(q0, q1, . . . , qm−1, g22qm + g11q̃0, q̃1, . . . , q̃n),
Wαβ = diag(w0, w1, . . . , wm−1, g22wm + g11w̃0, w̃1, . . . , w̃n).

(2.33)

Then SLP with transmission condition (1.2), (1.4), (1.8) is equivalent to matrix eigenvalue problem

(Pαβ + Qαβ)U = λWαβU, (2.34)

where U = [u0, u1, . . . , um, ũ1, . . . , ũn]
T .

(ii) If α = 0 and/or β = π then a similar statement holds with matrices P,Q ,W obtained from matrices (2.32), (2.33) by
deleting their first row and column if α = 0 and/or the last row and column if β = π .

Proof. The proof is similar with Corollary 2.1 by operating on Theorem 2.2. �

Theorem 2.1, Theorem 2.2 and their Corollaries show that all SLPs with transmission conditions of Atkinson type with a
self-adjoint separated BC have representations by tridiagonal matrix eigenvalue problems. Next we show that all SLPs with
transmission conditions of Atkinson type with a real couple self-adjoint BC also have matrix representations. In this case,
the matrix P is ‘‘almost tridiagonal’’ in the sense that the entries in the upper right and lower left corners are nonzero.

Theorem 2.3. Consider the BC (1.9)with k12 = 0 and assume that g12 ≠ 0. Define an (m+ n+ 1)× (m+ n+ 1) matrix which
is tridiagonal except for the (1, m + n + 1) and (m + n + 1, 1) entries

P0 =



−k11k21+p1
+k211 p̃n

− p1 − k11p̃n
− p1 p1 + p2 − p2

· · · · · · · · ·

− pm−1 pm−1 + pm − pm
− pm pm +

g11
g12

−
1

g12
−

ρ

θ
1

g12
p̃1 +

g22
g12

− p̃1
− p̃1 p̃1 + p̃2 − p̃2

· · · · · · · · ·

− p̃n−2 p̃n−2 + p̃n−1 − p̃n−1

−k11p̃n − p̃n−1 p̃n−1 + p̃n


, (2.35)

and diagonal matrices

Q0 = diag(q0 + k211q̃n, q1, . . . , qm, q̃0, . . . , q̃n−1),

W0 = diag(w0 + k211w̃n, w1, . . . , wm, w̃0, . . . , w̃n−1). (2.36)

Then SLP with transmission condition (1.2), (1.4), (1.9) is equivalent to matrix eigenvalue problem

(P0 + Q0)U = λW0U, (2.37)

where U = [u0, u1, . . . , um, ũ0, . . . , ũn−1]
T .

Proof. Since k12 = 0, BC (1.9) is the same as

ũn = k11u0, ṽn+1 = k21u0 + k22v0, (2.38)
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where k11k22 = 1, and since g12 ≠ 0, the transmission condition (1.4) has the form of (2.22). We claim that there is a one-
to-one correspondence between the solutions consisting of system (2.7)–(2.10), BC (2.38) and transmission condition (2.22)
and the solutions of the following system:

[−k11k21 + (p1 + q0 − λw0) − k211(p̃n + q̃n − λw̃n)]u0 − p1u1 − k11p̃nũn−1 = 0, (2.39)

pk+1(uk+1 − uk) − pk(uk − uk−1) = uk(qk − λwk), k = 1, 2, . . . ,m − 1, (2.40)

1
g12

ũ0 −
g11
g12

um − pm(um − um−1) = um(qm − λwm), (2.41)

p̃1(ũ1 − ũ0) −


g22
g12

ũ0 −
ρ

θ

1
g12

um


= ũ0(q̃0 − λw̃0), (2.42)

p̃i+1(ũi+1 − ũi) − p̃i(ũi − ũi−1) = ũi(q̃i − λw̃i), i = 1, 2, . . . , n − 2, (2.43)

p̃n(k11u0 − ũn−1) − p̃n−1(ũn−1 − ũn−2) = ũn−1(q̃n−1 − λw̃n−1). (2.44)

In fact, assume that uk, k = 0, 1, 2, . . . ,m, ũi, i = 0, 1, 2, . . . , n, and vk, k = 0, 1, 2, . . . ,m+1, ṽi, i = 0, 1, 2, . . . , n+1, is
a solution of system (2.7)–(2.10), (2.38) and (2.22). Then (2.40)–(2.43) follow from (2.7)–(2.10) and (2.22) easily. From (2.7)
with k = 1 and (2.8) with k = 0 we have

v0 = p1(u1 − u0) − u0(q0 − λw0). (2.45)

From (2.9) and (2.10) with i = n we have

ṽn+1 = p̃n(ũn − ũn−1) + ũn(q̃n − λw̃n). (2.46)

Combining (2.38), (2.45), and (2.46) we obtain that

p̃n(k11u0 − ũn−1) + k11u0(q̃n − λw̃n) = k21u0 + k22[p1(u1 − u0) − u0(q0 − λw0)]. (2.47)

Note that k11k22 = 1. Then (2.47) becomes (2.39). From (2.43) with i = n − 1 and (2.38) we have

p̃n(k11u0 − ũn−1) − p̃n−1(ũn−1 − ũn−2) = ũn−1(q̃n−1 − λw̃n−1). (2.48)

On the other hand, assume uk, k = 0, 1, 2, . . . ,m, ũi, i = 0, 1, 2, . . . , n, is a solution of system (2.39)–(2.44). Then
ũn, v0 and vn+1 are determined by (2.38), (2.45), and (2.46), respectively. Let vk, k = 0, 1, 2, . . . ,m, be defined by (2.7) and
ṽi, i = 0, 1, 2, . . . , n, be defined by (2.9). Then using (2.45), (2.22) and by induction on (2.46) we obtain (2.8) and (2.10).
From (2.45)-(2.47) we see that ṽn+1 = k21u0 + k22v0. Hence BC (2.38) is satisfied.

Therefore, by Lemma 2.1, any solution of SLP with transmission condition (1.10), (1.9) and (1.4), hence of SLP with
transmission condition (1.2), (1.9) and (1.4), is uniquely determined by a solution of system (2.39)–(2.44). �

Theorem 2.4. Consider the BC (1.9)with k12 ≠ 0 and assume that g12 ≠ 0. Define an (m+ n+ 2)× (m+ n+ 2) matrix which
is tridiagonal except for the (1,m + n + 2) and (m + n + 2, 1) entries

P1 =



p1 −
k11
k12

− p1 1
k12

− p1 p1 + p2 − p2
· · · · · · · · ·

− pm−1 pm−1 + pm − pm
− pm pm +

g11
g12

−
1

g12
−

ρ

θ
1

g12
p̃1 +

g22
g12

− p̃1
− p̃1 p̃1 + p̃2 − p̃2

· · · · · · · · ·

− p̃n−1 p̃n−1 + p̃n − p̃n
1

k12
− p̃n p̃n −

k22
k12


, (2.49)

and diagonal matrices

Q1 = diag(q0, q1, . . . , qm, q̃0, . . . , q̃n), W1 = diag(w0, w1, . . . , wm, w̃0, . . . , w̃n). (2.50)

Then SLP with transmission condition (1.2), (1.4), (1.9) is equivalent to matrix eigenvalue problem

(P1 + Q1)U = λW1U, (2.51)

where U = [u0, u1, . . . , um, ũ0, . . . , ũn]
T .
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Proof. BC (1.9) is the same as

ũn = k11u0 + k12v0, ṽn+1 = k21u0 + k22v0.

Since k11k22 − k12k21 = 1, this can be written as

v0 = −
k11
k12

u0 +
1
k12

ũn, ṽn+1 = −
1
k12

u0 +
k22
k12

ũn. (2.52)

Note that the transmission condition has the form (2.22), then the proof is similar with Theorem 2.3. �

Theorem 2.5. Consider the BC (1.9) with k12 = 0 and assume that g12 = 0. Define an (m + n) × (m + n) matrix which is
tridiagonal except for the (1,m + n) and (m + n, 1) entries

P2 =



−k11k21+p1
+k211 p̃n

− p1 − k11p̃n
− p1 p1 + p2 − p2

· · · · · · · · ·

− pm−1 pm−1 + pm − pm
− g22pm

g22pm
+g11 p̃1+g21 − p̃1

− g11p̃1 p̃1 + p̃2 − p̃2
− p̃2 p̃2 + p̃3 − p̃3

· · · · · · · · ·

− p̃n−2 p̃n−2 + p̃n−1 − p̃n−1

− k11p̃n − p̃n−1 p̃n−1 + p̃n


, (2.53)

and diagonal matrices

Q2 = diag(q0 + k211q̃n, q1, . . . , qm−1, g22qm + g11q̃0, q̃1, . . . , q̃n−1),

W2 = diag(w0 + k211w̃n, w1, . . . , wm−1, g22qm + g11w̃0, w̃1, . . . , w̃n−1).
(2.54)

Then SLP with transmission condition (1.2), (1.4), (1.9) is equivalent to matrix eigenvalue problem

(P2 + Q2)U = λW2U, (2.55)

where U = [u0, u1, . . . , um, ũ1, . . . , ũn−1]
T .

Proof. Note that BC is with the form (2.38) and the transmission condition is with the form (2.26), then the proof is similar
with Theorem 2.3. �

Theorem 2.6. Consider the BC (1.9)with k12 ≠ 0 and assume that g12 = 0. Define an (m+ n+ 1)× (m+ n+ 1) matrix which
is tridiagonal except for the (1,m + n + 1) and (m + n + 1, 1) entries

P3 =



p1 −
k11
k12

− p1 1
k12

− p1 p1 + p2 − p2
· · · · · · · · ·

− pm−1 pm−1 + pm − pm
− g22pm

g22pm
+g11 p̃1+g21 − p̃1

− g11p̃1 p̃1 + p̃2 − p̃2
− p̃2 p̃2 + p̃3 − p̃3

· · · · · · · · ·

− p̃n−1 p̃n−1 + p̃n − p̃n
1

k12
− p̃n p̃n −

k22
k12


, (2.56)

and diagonal matrices

Q3 = diag(q0, q1, . . . , qm−1, g22qm + g11q̃0, q̃1, . . . , q̃n),
W3 = diag(w0, w1, . . . , wm−1, g22qm + g11w̃0, w̃1, . . . , w̃n).

(2.57)

Then SLP with transmission condition (1.2), (1.4), (1.9) is equivalent to matrix eigenvalue problem

(P3 + Q3)U = λW3U, (2.58)

where U = [u0, u1, . . . , um, ũ1, . . . , ũn]
T .
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Proof. Note that BC is with the form (2.52) and the transmission condition is with the form (2.22), then the proof is also
similar with Theorem 2.3. �

Remark 2.1. When comparing Theorems 2.3–2.6 we note that the dimensions of the matrix systems are different. The
reason for this is that when k12 = 0, the condition ũn = k11u0 is used to express ũn in terms of u0 thus eliminating the
need for ũn in (2.51), and/or when g12 = 0, the condition ũ0 = g11um is used to express ũ0 in terms of um thus eliminating
the need for ũ0 in (2.51). Thus there are exactlym+n+1 eigenvalues, countingmultiplicity, in Theorem2.3, exactlym+n+2
eigenvalues in Theorem 2.4, exactly m + n eigenvalues in Theorem 2.5, and exactly m + n + 1 eigenvalues in Theorem 2.6
respectively.

The next result highlights the fact that every SLP with transmission condition of Atkinson type is equivalent to a SLP with
the same BC and transmission condition with piecewise constant coefficients.

Theorem 2.7. Assume Eq. (1.2) is of Atkinson type, and let pk, k = 1, 2, . . . ,m, p̃i, i = 1, 2, . . . , n, and qk, wk, k =

0, 1, 2, . . . ,m, q̃i, w̃i, i = 0, 1, . . . , n be given by (2.4). Define piecewise constant functions p̄, q̄ and w̄ on J by

p̄(x) =


pk(a2k − a2k−1), x ∈ [a2k−1, a2k], k = 1, 2, . . . ,m,
∞, x ∈ [a2k, a2k+1), k = 0, 1, . . . ,m,
p̃i(a2i − a2i−1), x ∈ [b2i−1, b2i], i = 1, 2, . . . , n,
∞, x ∈ (b2i, b2i+1], i = 0, 1, . . . , n,

q̄(x) =



qk
(a2k+1 − a2k)

, x ∈ [a2k, a2k+1), k = 0, 1, . . . ,m,

0, x ∈ [a2k−1, a2k], k = 1, 2, . . . ,m,
q̃i

(b2i+1 − b2i)
, x ∈ (b2i, b2i+1], i = 0, 1, . . . , n,

0, x ∈ [b2i−1, b2i], i = 1, 2, . . . , n,

(2.59)

w̄(x) =



wk

(a2k+1 − a2k)
, x ∈ [a2k, a2k+1), k = 0, 1, . . . ,m,

0, x ∈ [a2k−1, a2k], k = 1, 2, . . . ,m,
w̃i

(b2i+1 − b2i)
, x ∈ (b2i, b2i+1], i = 0, 1, . . . , n,

0, x ∈ [b2i−1, b2i], i = 1, 2, . . . , n.

Suppose the self-adjoint BC (1.3) is either separated or real coupled. Then SLP with transmission condition (1.2)–(1.4) has exactly
the same eigenvalues as the SLP consisting of the equation with piecewise constant coefficients

− (p̄y′)′ + q̄y = λw̄y, on J = (a, c) ∪ (c, b), (2.60)

and the same BC (1.3) and transmission condition (1.4).

Proof. Weobserve that both SLPswith transmission condition (1.2)–(1.4) and (2.60), (1.3), (1.4) determine the same pk, k =

1, 2, . . . ,m, p̃i, i = 1, 2, . . . , n and qk, wk, k = 0, 1, . . . ,m, q̃i, w̃i, i = 0, 1, . . . , n. Thus by one of Theorems 2.1–2.6,
depending which BC (1.3) and transmission condition (1.4) are involved, they are equivalent to the same matrix eigenvalue
problem, and hence they have the same eigenvalues. �

By Theorem 2.7 we see that for a fixed BC (1.3) and transmission condition (1.4) on a given interval J , there is a family
of SLPs with transmission conditions of Atkinson type which have exactly the same eigenvalues as SLP with transmission
condition (2.60), (1.3), (1.4). Such a family is called the equivalent family of SLP with transmission condition (2.60), (1.3),
(1.4).

3. Sturm–Liouville representations of matrix eigenvalue problems

In this section we show that matrix eigenvalue problems of the form

FX = λHX, (3.1)

where F = (fij) is an l × l real tridiagonal or ‘‘almost tridiagonal’’ matrix with fi,i+1 ≠ 0, i = 1, . . . , l − 1, which is ‘‘almost
symmetric’’ (here ‘‘almost symmetric’’ means that the matrix is symmetric except for one or two elements in the middle
of the matrix are different) and H = diag(h11, . . . , hll) with hkk ≠ 0, k = 1, 2, . . . , l, have representations as SLPs with
transmission conditions of Atkinson type. By Theorem 2.7, such representations are also not unique. Here we characterize
all Sturm–Liouville representations of thematrix problem (3.1) using SLPwith transmission condition (2.60), (1.3), (1.4) and
their equivalent families.
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Firstwe consider the case of separated BCs (1.8) and find a kind of converse to Theorems 2.1 and 2.2 (in fact, Corollaries 2.1
and 2.2).

Theorem 3.1. Let l > 3, C,D be any matrices associated with the transmission condition (1.4) which satisfying det(C) = ρ >
0, det(D) = θ > 0, let G = (gij) = −D−1C, suppose g12 ≠ 0, and let F be an l × l ‘‘almost symmetric’’ tridiagonal matrix

F =



f11 f12
f12 f22 f23

· · · · · · · · ·

fk,k−1 fk,k fk,k+1

fk+1,k fk+1,k+1 fk+1,k+2

fk+1,k+2 · · · · · ·

· · · · · · · · ·

fl−1,l−2 fl−1,l−1 fl−1,l

fl−1,l fll


, (3.2)

where 2 ≤ k ≤ l − 2, fij ∈ R, 1 ≤ i, j ≤ l, fj,j+1 ≠ 0, j = 1, . . . , l − 1, fk+1,k =
ρ

θ
fk,k+1 and let

H = diag(h11, . . . , hll), 0 ≠ hjj ∈ R, 1 ≤ j ≤ l. (3.3)

Then, given any separated self-adjoint BC (1.8), thematrix eigenvalue problem (3.1) has representations as SLPs with transmission
conditions of Atkinson type in the form of SLP (1.2), (1.4), (1.8). Moreover, given a fixed partition (2.1) of J , it has a unique
representation in the form of SLP with transmission condition (2.60), (1.4), (1.8) provided, with the notation in (2.4), one of the
following holds:

(i) α, β ∈ (0, π);

(ii) α = 0 and β ∈ (0, π), and p1, q0, and w0 are fixed;
(iii) α ∈ (0, π) and β = π , and p̃n, q̃n, and w̃n are fixed;
(iv) α = 0 and β = π , and p1, q0, w0 and p̃n, q̃n, w̃n are fixed.

In each of these cases, all Sturm–Liouville representations of problem (3.1) are given by the corresponding equivalent families
of SLP with transmission condition (2.60), (1.4), (1.8) with all possible choices of the parameters; for example, with all possible
choices of p1, q0, w0 in case α = 0 and β ∈ (0, π).

Proof. First consider the case when α, β ∈ (0, π). Note that we can normalize thematrices F andH such that fk,k+1 = −
1

g12
by multiplying Eq. (3.1) by −

1
g12fk,k+1

. This operation does not change the eigenvalues of problem (3.1). Let m = k − 1, n =

l− k− 1, J = (a, c) ∪ (c, b), −∞ < a < b < ∞. Define a partition of J by (2.1). We construct piecewise constant functions
p̄, q̄, w̄ on [a, c)∪ (c, b] satisfying (1.5), (2.2) and (2.3). We need to define the values of such functions on those subintervals
of [a, c) ∪ (c, b] where they are not defined as zero in (2.2), (2.3). To do this, we let

pi = −fi,i+1, i = 1, 2, . . . ,m, p̃j = −fj+m+1,j+m+2, j = 1, 2, . . . , n;
wi = hi+1,i+1, i = 0, 1, . . . ,m, w̃j = hj+m+2,j+m+2, j = 0, 1, . . . , n;

and

q0 = h11 − p1 − cotα, qi = hi+1,i+1 − pi − pi+1, i = 1, 2, . . . ,m − 1,

qm = hm+1,m+1 − pm −
g11
g12

, q̃0 = hm+2,m+2 − p̃1 −
g22
g12

,

q̃j = hj+m+2,j+m+2 − p̃j − p̃j+1, j = 1, 2, . . . , n − 1, q̃n = hm+n+2,m+n+2 − p̃n + cotβ.

Then define p̄(x), q̄(x), and w̄(x) by (2.59). Such p̄, q̄, w̄ are piecewise constant functions on J satisfying (1.3), (2.2), and (2.3).
Eq. (2.60) is of Atkinson type, and (2.4) is satisfied. It is easy to see that problem (3.1) is of the same form as problem (2.31).
Therefore, by Corollary 2.1, problem (3.1) is equivalent to SLP with transmission condition (1.2), (1.4), (1.8). The last part
follows from Theorem 2.7.

The cases α = 0 and/or β = π are treated similarly. �

Theorem 3.2. Let l > 4, C,D be any matrices associated with the transmission condition (1.4) which satisfying det(C) = ρ >
0, det(D) = θ > 0, let G = (gij) = −D−1C, suppose g12 = 0, and let F be an l × l ‘‘almost symmetric’’ tridiagonal matrix
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F =



f11 f12
f12 f22 f23

· · · · · · · · ·

fk,k−1 fk,k fk,k+1

fk+1,k fk+1,k+1 fk+1,k+2

fk+2,k+1 · · · · · ·

· · · · · · · · ·

fl−1,l−2 fl−1,l−1 fl−1,l

fl−1,l fll


, (3.4)

where 2 ≤ k ≤ l − 3, fij ∈ R, 1 ≤ i, j ≤ l, fj,j+1 ≠ 0, j = 1, . . . , l − 1, fk+1,k = g22fk,k+1, fk+2,k+1 = g11fk+1,k+2, and let

H = diag(h11, . . . , hll), 0 ≠ hjj ∈ R, 1 ≤ j ≤ l. (3.5)

Then, given any separated self-adjoint BC (1.8), thematrix eigenvalue problem (3.1) has representations as SLPs with transmission
conditions of Atkinson type in the form of SLP (1.2), (1.4), (1.8). Moreover, given a fixed partition (2.1) of J , it has a unique
representation in the form of SLP with transmission condition (2.60), (1.4), (1.8) provided, with the notation in (2.4), one of the
following holds:

(i) α, β ∈ (0, π), and qm, and wm are fixed;
(ii) α = 0 and β ∈ (0, π), and qm, wm and p1, q0, w0 are fixed;
(iii) α ∈ (0, π) and β = π , and qm, wm and p̃n, q̃n, w̃n are fixed;
(iv) α = 0 and β = π , and qm, wm and p1, q0, w0 and p̃n, q̃n, w̃n are fixed.

In each of these cases, all Sturm–Liouville representations of problem (3.1) are given by the corresponding equivalent families
of SLP with transmission condition (2.60), (1.4), (1.8) with all possible choices of the parameters; for example, with all possible
choices of qm, wm in case α, β ∈ (0, π).

Proof. Still consider the case when α, β ∈ (0, π). Letm = k, n = l − k − 1, J = (a, c) ∪ (c, b), −∞ < a < b < ∞. Define
a partition of J by (2.1). Let

pi = −fi,i+1, i = 1, 2, . . . ,m, p̃j = −fj+m,j+m+1, j = 1, 2, . . . , n;
wi = hi+1,i+1, i = 0, 1, . . . ,m − 1, w̃j = hj+m+1,j+m+1, j = 1, 2, . . . , n,

w̃0 =
1
g11

(hm+1,m+1 + g22wm), where wm is fixed;

and

q0 = h11 − p1 − cotα, qi = hi+1,i+1 − pi − pi+1, i = 1, 2, . . . ,m − 1,

q̃0 =
1
g11

(hm+1,m+1 + g22qm − g22pm − g11p̃1 − g21), where qm is fixed,

q̃j = hj+m+2,j+m+2 − p̃j − p̃j+1, j = 1, 2, . . . , n − 1, q̃n = hm+n+1,m+n+1 − p̃n + cotβ.

Then define p̄(x), q̄(x), and w̄(x) by (2.59). Similar to the proof of Theorem 3.1 we see that problem (3.1) is of the same form
as problem (2.34). Therefore, by Corollary 2.2, problem (3.1) is equivalent to SLP with transmission condition (1.2), (1.4),
(1.8). The last part also follows from Theorem 2.7.

The cases α = 0 and/or β = π are treated similarly. �

Next we consider the case of coupled BCs (1.9) and find a form of converse of Theorems 2.3–2.6.

Theorem 3.3. Let l > 3, C,D be any matrices associated with the transmission condition (1.4) which satisfying det(C) = ρ >
0, det(D) = θ > 0, let G = (gij) = −D−1C, suppose g12 ≠ 0, and let F be an l× l ‘‘almost symmetric’’ matrix which is tridiagonal
except for nonzero entries f1l = fl1

F =



f11 f12 f1l
f12 f22 f23

· · · · · · · · ·

fk,k−1 fk,k fk,k+1

fk+1,k fk+1,k+1 fk+1,k+2

fk+1,k+2 · · · · · ·

· · · · · · · · ·

fl−1,l−2 fl−1,l−1 fl−1,l

f1l fl−1,l fll


, (3.6)
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where 2 ≤ k ≤ l − 2, fij ∈ R, 1 ≤ i, j ≤ l, fj,j+1 ≠ 0, j = 1, . . . , l − 1, fk+1,k =
ρ

θ
fk,k+1, f1l = −

g12
k12

fk,k+1, and let

H = diag(h11, . . . , hll), 0 ≠ hjj ∈ R, 1 ≤ j ≤ l. (3.7)

Then, given any real coupled self-adjoint BC (1.9) satisfying k12 ≠ 0, the matrix eigenvalue problem (3.1) has representations as
SLPs with transmission conditions of Atkinson type in the form of SLP (1.2), (1.4), (1.9). Moreover, given a fixed partition (2.1) of
J , it has a unique representation in the form of SLP with transmission condition (2.60), (1.4), (1.9) provided, with the notation
in (2.4). And all Sturm–Liouville representations of problem (3.1) are given by the corresponding equivalent families of SLP with
transmission condition (2.60), (1.4), (1.9) with all possible choices of the parameters.

Proof. Note that we can normalize the matrices F and H such that fk,k+1 = −
1

g12
and f1l =

1
k12

by multiplying Eq. (3.1)
by (k12f1l)−1. This operation does not change the eigenvalues of problem (3.1). Choose m = k − 1, n = l − k − 1, J =

(a, c) ∪ (c, b), −∞ < a < b < ∞. Define a partition of J by (2.1). Let

pi = −fi,i+1, i = 1, 2, . . . ,m, p̃j = −fj+m+1,j+m+2, j = 1, 2, . . . , n;
wi = hi+1,i+1, i = 0, 1, . . . ,m, w̃j = hj+m+2,j+m+2, j = 0, 1, . . . , n;

and

q0 = h11 − p1 +
k11
k12

, qi = hi+1,i+1 − pi − pi+1, i = 1, 2, . . . ,m − 1,

qm = hm+1,m+1 − pm −
g11
g12

, q̃0 = hm+2,m+2 − p̃1 −
g22
g12

,

q̃j = hj+m+2,j+m+2 − p̃j − p̃j+1, j = 1, 2, . . . , n − 1, q̃n = hm+n+2,m+n+2 − p̃n +
k11
k12

.

Then define p̄(x), q̄(x), and w̄(x) by (2.59). Similar to the proof of Theorem 3.1 we see that problem (3.1) is the same
as problem (2.51). Therefore, by Theorem 2.4, problem (3.1) is equivalent to SLP with transmission condition (1.2), (1.4),
(1.9). �

Theorem 3.4. Let l > 3, C,D be any matrices associated with the transmission condition (1.4) which satisfying det(C) = ρ >
0, det(D) = θ > 0, let G = (gij) = −D−1C, suppose g12 ≠ 0, and let F be an l× l ‘‘almost symmetric’’ matrix which is tridiagonal
except for nonzero entries f1l = fl1

F =



f11 f12 f1l
f12 f22 f23

· · · · · · · · ·

fk,k−1 fk,k fk,k+1

fk+1,k fk+1,k+1 fk+1,k+2

fk+1,k+2 · · · · · ·

· · · · · · · · ·

fl−1,l−2 fl−1,l−1 fl−1,l

f1l fl−1,l fll


, (3.8)

where 2 ≤ k ≤ l − 2, fij ∈ R, 1 ≤ i, j ≤ l, fj,j+1 ≠ 0, j = 1, . . . , l − 1, fk+1,k =
ρ

θ
fk,k+1, and let

H = diag(h11, . . . , hll), 0 ≠ hjj ∈ R, 1 ≤ j ≤ l. (3.9)

Then, given any real coupled self-adjoint BC (1.9) satisfying k12 = 0, the matrix eigenvalue problem (3.1) has representations as
SLPs with transmission conditions of Atkinson type in the form of SLP (1.2), (1.4), (1.9). Moreover, given a fixed partition (2.1) of
J , it has a unique representation in the form of SLP with transmission condition (2.60), (1.4), (1.9) provided, with the notation
in (2.4). And all Sturm–Liouville representations of problem (3.1) are given by the corresponding equivalent families of SLP with
transmission condition (2.60), (1.4), (1.9) with all possible choices of the parameters.

Proof. We choosem = k − 1, n = l − k and fix q0 and w0, then proceed similarly as Theorem 3.3. �

Theorem 3.5. Let l > 4, C,D be any matrices associated with the transmission condition (1.4) which satisfying det(C) = ρ >
0, det(D) = θ > 0, let G = (gij) = −D−1C, suppose g12 = 0, and let F be an l× l ‘‘almost symmetric’’ matrix which is tridiagonal
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except for nonzero entries f1l = fl1

F =



f11 f12 f1l
f12 f22 f23

· · · · · · · · ·

fk,k−1 fk,k fk,k+1

fk+1,k fk+1,k+1 fk+1,k+2

fk+2,k+1 · · · · · ·

· · · · · · · · ·

fl−1,l−2 fl−1,l−1 fl−1,l

f1l fl−1,l fll


, (3.10)

where 2 ≤ k ≤ l − 3, fij ∈ R, 1 ≤ i, j ≤ l, fj,j+1 ≠ 0, j = 1, . . . , l − 1, fk+1,k = g22fk,k+1, fk+2,k+1 = g11fk+1,k+2, and let

H = diag(h11, . . . , hll), 0 ≠ hjj ∈ R, 1 ≤ j ≤ l. (3.11)

Then, given any real coupled self-adjoint BC (1.9) satisfying k12 ≠ 0, the matrix eigenvalue problem (3.1) has representations as
SLPs with transmission conditions of Atkinson type in the form of SLP (1.2), (1.4), (1.9). Moreover, given a fixed partition (2.1) of
J , it has a unique representation in the form of SLP with transmission condition (2.60), (1.4), (1.9) provided, with the notation
in (2.4). And all Sturm–Liouville representations of problem (3.1) are given by the corresponding equivalent families of SLP with
transmission condition (2.60), (1.4), (1.9) with all possible choices of the parameters.

Proof. We choosem = k, n = l − k − 1 and fix qm and wm, then proceed similarly as Theorem 3.3. �

Theorem 3.6. Let l > 4, C,D be any matrices associated with the transmission condition (1.4) which satisfying det(C) = ρ >
0, det(D) = θ > 0, let G = (gij) = −D−1C, suppose g12 = 0, and let F be an l× l ‘‘almost symmetric’’ matrix which is tridiagonal
except for nonzero entries f1l = fl1

F =



f11 f12 f1l
f12 f22 f23

· · · · · · · · ·

fk,k−1 fk,k fk,k+1

fk+1,k fk+1,k+1 fk+1,k+2

fk+2,k+1 · · · · · ·

· · · · · · · · ·

fl−1,l−2 fl−1,l−1 fl−1,l

f1l fl−1,l fll


, (3.12)

where 2 ≤ k ≤ l − 3, fij ∈ R, 1 ≤ i, j ≤ l, fj,j+1 ≠ 0, j = 1, . . . , l − 1, fk+1,k = g22fk,k+1, fk+2,k+1 = g11fk+1,k+2 and let

H = diag(h11, . . . , hll), 0 ≠ hjj ∈ R, 1 ≤ j ≤ l. (3.13)

Then, given any real coupled self-adjoint BC (1.9) satisfying k12 = 0, the matrix eigenvalue problem (3.1) has representations as
SLPs with transmission conditions of Atkinson type in the form of SLP (1.2), (1.4), (1.9). Moreover, given a fixed partition (2.1) of
J , it has a unique representation in the form of SLP with transmission condition (2.60), (1.4), (1.9) provided, with the notation
in (2.4). And all Sturm–Liouville representations of problem (3.1) are given by the corresponding equivalent families of SLP with
transmission condition (2.60), (1.4), (1.9) with all possible choices of the parameters.

Proof. We choosem = k, n = l − k and fix q0, w0 and qm, wm, then proceed similarly as Theorem 3.3. �
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