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This paper discusses paradoxes related to the possibility of infinite 
information capacity of certain types of channels. First, a paradox of 
this type is derived which shows that such paradoxes are not neces- 
sarily dependent on the assumption of Gaussian statistics. 

Next, in the case where signal and noise are assumed to be Gaussian, 
a different example of this type of paradox is derived; also, a neces- 
sary and sufficient condition for the avoidance of this form of the 
paradox is derived. This condition is shown to be satisfied in a class 
of plausible physical situations. 

In several recent papers Good and Doog (1958, 1959, 1960) have dis- 
cussed a paradox which arises in connection with the information ca- 
pacity of certain types of channels.  Roughly speaking, the paradox is 
tha t  an arbitrarily large amount  of information can be transmitted in 
an arbitrarily small time. 

Our purpose here is, first, to derive a paradox similar to the Doog- 
Good paradox, utilizing the Karhunen expansion of random processes 
(Grenander, 1950); this approach shows that  the assumption of Gaus- 
sian statistics is not essential for the occurrence of this type of paradox. 
Next,  a necessary and sufficient condition that  the paradox be avoided 
in the Gaussian case is derived; this condition is closely analogous to  well 
known conditions for nonsingutarity in the detection and estimation of 
nonstochastic signals in noise (Grenander,  1950; Kelly et al., 1960; 
Swerling, 1959). Finally, this condition is shown to be satisfied in a class 
of plausible physical situations. This provides an alternative approach 
to the one proposed by  Good (1960) for avoiding the paradox in the 
Gaussian case. 

Suppose we have the following t ype  of communication channel: 
The input to the channel is a function of time, the "signal," which we 

* The views expressed in this paper are not necessarily those of the Corporation. 
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shall denote by  S(t) ,  0 <= t <= T. The  channel adds noise N(t)  to the 
signal, so that  the output  is 

R(t)  = S(t) -t- N( t ) ,  0 <= t <= T (1) 

N(t)  is assumed to be a random process having zero ensemble mean for 
each t, covariance function ~b~(t, t '), which is continuous in the mean over 
0 -- t -< T. The process N(t)  is not assumed to be necessarily Gaussian. 

The capacity of such a channel will be shown to be infinite. More 
precisely, it will be shown that  an arbitrarily large number of bits can 
be transmitted with arbitrarily small probability of error, using signal 
wave forms having arbitrarily small power, and with arbitrarily small T. 

The Karhunen expansion of the noise process N(t)  states tha t  we may 
represent N(t)  as 

N(t)  = ~_, N~ ~ / ~  4~(t) (2) 

where the N~ are uncorrelated random variables with mean zero and 
unit variance, given by  

1 fo r N,  - ~¢/~ N(t)O~(t) dt (3) 

and where ~ ( t )  and ~ are the orthonormal eigenfunctions and eigen- 
values associated with the kernel ~ : 

f0 T  N(t, = (4) t' ) ~ (  t' ) dr' 

Now, suppose we have a message to be transmitted, which for the 
sake of definiteness we will assume to be an infinite sequence x l ,  x2, 
• • • , where each x~ may be either zero or one. 

The transmitted signal S(t) is constructed as follows: first a sequence 
Xl*, x2*, . . .  , is constructed, with 

X~* ~ X l ,  Y ~ 1~ • " "  , n 
(5) 

= x 2 ,  v = n ~ -  1 , . . . , 2 n  

and so forth. 
The transmitted signal is then defined to be 

s ( t )  = (6)  

where a is any positive number. 
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Thus, 

R(t) = S(t) 4- N(t)  = ~ [axe* q- N~]x/~C~(t) = ~ R;v/~'~C.(t) (7) 
~--I  v ~ l  

The quantities R~ = axe* q- N~ can be recovered from R(t) by 

 fo" = = R(t)cb~(t) dt (8) 

The sequence {R.} consists of n-fold repetitions of the symbols x~ in the 
original message, multiplied by a and perturbed by the noise variates 
N~. Since the noise variates are uncorrelated, with zero mean and unit 
variance, it is easily shown that  for any value of a, it is possible to choose 
n sufficiently large so that  the original sequence x~, x2, • • • can be re- 
covered from the sequence {R,} with arbitrarily small probability of 
e r r o r .  

This will be illustrated for the symbol x~ : 
Let 

k - 
2, = __1 R. = x, q---1 ~ N .  (9) 

nog ~=1 no~ v = l  

 1=o if 
(10) 

= 1 if ] .~1--  1[ < lanai 

then. 

expected value of 2~ = xl (11) 

1 
variance of :~1 = - -  (12) 

a~n 

By Tchebycheff's inequality, for any ~ > 0, 

Prob[[~ x, l >  1/~1 < a (13) 

for sufficiently large n. But  

Prob[& # x~] < Prob[ [ ~, - x~ I > ~] .  (14) 

This completes the proof. 
We will now derive another example of this type of paradox, assuming 

now that  both signal and noise are Gaussian random processes with zero 
mean, continuous in the mean, and having covarianee functions ¢s(t, t') 
and ~n(t, t'). 
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Define 

l f /  N ,  . N ( t ) + , ( t )  dt 

(15) 
1 r r  

S~ - ~ X v  Jo s(t)4~(t) dt 

where X~ and q~,(t) are the eigenvalues and eigenfunctions associated 
with the noise• covariance function ~k~. 

Also define, for ~ , v =  1 , .  • • , m, t h e  mat r ices  

N (m) = Nj,N, = I (~) 
(16) 

S (m) = S~S,  

where the bar denotes expected value, and I (m~ is the m by m identi ty 
matrix. 

Denote by E (~ the expected information in Rx, • • • , R~ relative to 
S i ,  . . .  , S~ .  Then, 

E(~) = ~ l°gl  I(~) + S(~) I (17) 

If the covariance functions of signal and noise are proportional: 

then 

~(ra) m 
= ~- log (1 q- a ) :  (18) 

This approaehes infinity as m approaches infinity. In this form, the 
paradox will not arise, as m goes to infinity, provided E (m> remains 
bounded. I t  is also not hard to show that  the boundedness of the se- 
quence E (~> is sufficient to insure that  the Doog-Good paradox will not 
arise for the ease where R(t)  is sampled at m discrete times, and then m 
is made to go to infinity (as in Good and Doog, 1958). 

Now, from (17), 

E ('~) = 1/~ ~ log[1 -]- X~)], (19) 

where x~ m), v = 1, • • • , m, are the eigenvalues of the matrix S (m>. 
I t  is a simple mat ter  to prove that  a necessary and sufficient condition 
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for the boundedness of E (~) is the boundedness of  the sequence trace 
S (m) ~--~m (m) = /_~=~x~ . B u t  

trace S(m) = ~ .  x(,~) = ~ ~ (20) 

Thus, a necessary and sufficient condition for the boundedness of E (m), 
and hence for the avoidance of the Doog-Good paradox in the Gaussian 
c a s e ,  i s  

~ < ~.  (21) 

If we define 
~T 

J. s~ = % / ~ S ~  = S ( t ) @ / t )  dt (22) 

then condition (21) becomes 

where 

.=~ -~ s~ 2 < ~ (23) 

- -  ! I 

s~ 2 = ~ ( t ,  t )@~(t)@,(t ) d t  dt' (24) 

In the form (23), this condition is seen to be the direct analog of well 
known conditions for  nonsingularity in the detection and estimation of 
nonstochastic Signals in Gaussian noise~ (Grenander, 1950; Kelly et al., 

1960; Swerling, 1959), . ~: . 
A few additional facts are worth noting: E (~) is a monotone increasing 

sequence; consequently, if (21)holds,  E(m ) approaches a finite limit E:  

E = l i m E  (m) < ~ (25) 

I t  is reasonable to define E to be the expected information in the ran- 
dom process R ( t )  relative t o  S(t).: In fact, l e t  R~*, ~, = 1, • • • , m ,  be 
any finite collection of random variables obtained by linear operations 
on the random process R ( t ) ,  such as, for example, the values of R ( t )  

at m time points; and let S~* be the variables obtained by  the same linear 
operations on the process S ( t ) .  Then t he  expected information in Rv*, 

= 1, • • • , m relative to S~*, v = 1, . .  • , m is not larger than E. 
The fulfillment of condition (23) would no doubt  preclude the type of 
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signal used in the first part of this paper in our original derivation of the 
paradox. 

It remains to exhibit a physically plausible class of cases in which (21) 
Can be shown to hold. w e  will give two slightly different examples. 

First, we assume that S( t )  and N ( t )  are stationary processes, ob- 
tained in the following way: We suppose there is an "original" signal 
process h(t) ,  having spectral density H(~) ,  where H(~)  has finite in- 
tegral. Suppose S( t )  is obtained by passing h(t)  through ~ linear filter 
with impulse response function w(t): 

s ( t )  = w ( ~ ) h ( t  - .;) d.~ (26) 

Let the spectral densities of S( t )  and N ( t )  be denoted by Fs(~) and 
F~(~). Then 

Fs(~) = ]W(~)I~H(~) (27) 

where 

f0 a° W ( ~ )  = w(t)e  -~ t  dt (28) 

It will also be assumed that 

F~(o~) = 1W(~)[  2 (29) 

This is equivalent to assuming that N ( t )  is obtained by passing white 
noise through the same linear filter through which h(t)  was passed. 

As before, it is assumed that the received signal R(t )  is observed over 
a finite interval, 0 _-< t =< T. 

TnEOn~M. A su~cient condition that (23) hold is that w( t) vanish out- 
side a finite interval. 

PROOF: Suppose w(t)  = 0 for t > to and, of course, for t < 0. Then, 

S( t )  = w ( r ) h ( t  , r) dr (30) 

Define 

h*(t) = h(t) ,  - t o  <= t <= T 

= 0, otherwise 
(31) 
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Then, within the observation interval 0 < t < T, 

ff S ( t )  = w ( r ) h * ( t  - ~') dr, 0 < t < T 

Let 
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(32) 

f j° S*( t )  = w ( r ) h * ( t  - r )  dr, all t (33) 

then 

~*(t) = s( t ) ,  o _< t _< T 

= 0 ,  ] t l  > to-~- T 

Also, S*( t )  c~n be written 

I: s * ( t )  = w ( r ) h * ( t  - r )  e~- 

Therefore, if 

U(w)  -- - ~  S * ( t ) e  -i~t dt 
aa 

f 1 h*( t )e  -i~t dt 

Then, 

(34) 

(35) 

(36) 

(37) 

U(o~) = V(o~)W(o~) (38) 

Also, from (22) and (35), 

s~ = S*( t )4~( t )  dt (39) 

Consequently, as h~s been proved by Kelly et al. (1960), Appendix I, 

= F N ( ~ )  

f f  l w( . , )  121 v(~)12 
= ~ W] (o~)12 d~  ( 4 0 )  

f = iv(, . , )  r d~ 
oo 
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The proof of (40) by Kelly et a!. (!960) use s the complex waveform 
notation, so that  in order to apply their proof it is first necessary to set 
their ~o equal to zero; also, their function R(s) is, for ~0 = 0, twice the 
covariance function of the real noise process, so that  their h~ are twice 
our ~ .  That  is why the integral in our Eq. (40) is extended from - 
to ~ ,  while in their Eqs. (1-18) it is extended from 0 to ~ .  (In addi- 
tion, of course, there are a number  of other differences in notation. ) 

By Parseval's theorem, 

l F I g(o~) 12 d~ = i h , ( t )  [2 dt 
(41) 

= [ h*(t) 12 dt 
to 

Thus, from (40) and (41), 

,=iX- V < = t; I h*(t) 1~ dt 
(42) 

f ; (T + to) H( o) 

I t  is highly probable that  the restriction that  w(t) vanish outside a 
finite interval is not necessary. On the other hand, some restriction on 
w(t) is necessary; for example, a restriction sufficient to insure that  
F~(~0) does not vanish outside a finite interval. 

The second example is as follows: suppose S(t) is obtained from h(t) 
by Eq. (26), but h(t) is assumed to be a random process having finite 
total energy between - ~ and T: 

f r  lh(t) 12dt < ~ (43) 

(thus, h(t) cannot be stationary). As before, assume N(t) is a stationary 
process with spectral density I W(c0) [2 

Y, 

Then, (23) holds without any restrictions on w(t) other than that  
w(t) = 0 f o r t  < 0. 

Since ~ Y~:=I ( 1 / ~ , ) ~  i s  actually an upper bound for 

E - l i m  E ("~, 
~ o o  

one half the quanti ty on the right-hand ~ide of (42) provides an upper 
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bound  for E in our first example. Similarly, one half the quan t i ty  on the 
left of (43) provides  an upper  bound  for E in the second example. 

RECEIVED: September  27, 1960. 
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