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Intermolecular interactions are indispensible for biological

function. Here we discuss how novel NMR techniques can

provide unique insights into the assembly, dynamics and

regulation of biomolecular complexes. We focus on

applications that exploit the methyl TROSY effect and show

that methodological advances and biological insights go

hand in hand. We envision that future methyl TROSY

applications will continue to provide unique information

regarding intermolecular interactions, even for very large

eukaryotic protein complexes that are often highly

asymmetric.
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Introduction
Protein interactions form the basis of biological function

and elucidating the underlying atomic details is thus an

important field of research in structural biology. The

exquisite sensitivity of chemical shifts makes NMR

spectroscopy an ideal tool to study intermolecular inter-

actions [1]. However, this technique has long been limit-

ed to low-molecular weight systems. Recently developed

methodology, such as methyl group labeling [2,3] and

relaxation-optimized techniques (methyl TROSY [4]),

have overcome these restrictions and enabled studies

of numerous large, supra-molecular complexes. Here,

we review selected methyl NMR studies that have pro-

vided import insights into the function and intermole-

cular interactions of high-molecular weight systems
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(Figure 1) and discuss the future potential of NMR for

studying biomolecular interactions.

Methyl TROSY
Methyl NMR utilizes the advantageous spectroscopic

properties of CH3-groups [5] that arise from their

three-fold symmetry and fast rotation around the con-

necting C–C bond. This results in highly favorable relax-

ation properties that are exploited in methyl TROSY

HMQC experiments [4,6,7] that yield well-resolved

and sensitive NMR spectra even for high-molecular

weight systems. Introduction of NMR-active methyl

groups can be achieved with metabolic precursors to label

the Ile-d1 or Leu-d and Val-g positions in proteins

expressed in Escherichia coli [8–13]. However, labeled

methyl groups can also be introduced in Thr [14,15],

Ile-g2 [16,17], Ala [18,19] and Met residues [20–24], and

in Leu and Val in a residue-specific and stereospecific

manner [25–28]. A labeling strategy that bypasses protein

expression in NMR-active media and thus is applicable,

for example, to proteins purified from insect cell lysates is

the chemical modification of Cys [29] or Lys side chains

[30–34] with NMR-active methyl groups. Of note, many

of these labeling options can be combined [35�] to pro-

duce proteins exclusively labeled at the sites of interest.

Here, we focus on the use of fully protonated methyl

groups (as opposed to CHD2 and CH2D isotopomers) as

these provide optimal sensitivity for large complexes [36].

Resonance assignment
The assignment of the NMR methyl resonances to specific

residues in the protein is a prerequisite for extracting site-

specific information regarding intermolecular interactions.

Methyl group assignment can, however, be challenging

and time-consuming. For intermediate size proteins

(<�50 kDa), methyl resonances can be assigned through

correlation with aliphatic and carbonyl resonances of the

same residue [37–39]. For larger proteins, where traditional

backbone assignment is not feasible, a number of comple-

mentary strategies have been proposed: A divide-and-

conquer approach where a large protein complex is split

into smaller parts that are then assigned traditionally

[40,41] (Figure 2a); single-amino acid substitutions and

subsequent comparison of WT and mutant HMQC spectra

[41–43] (Figure 2b); comparison of methyl–methyl dis-

tances derived from NOE spectra with known crystal

structures and, finally, site-specific introduction of para-

magnetic tags leading to pseudocontact shifts (PCSs) [44]

or paramagnetic relaxation enhancement (PRE) in spatial-

ly close residues [45]. In practice, combining several of
www.sciencedirect.com
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Figure 1
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Summary of a number of biological assemblies that have been studied using methyl TROSY spectroscopy and that are mentioned in this review.

Systems with increasing molecular weight (x-axis) and systems that contain multiple unique biological units (y-axis) are now accessible to

detailed NMR studies. Novel methods (e.g. methionine scanning, LEGO NMR) will allow the study of complexes that are both large and highly

asymmetric.
these strategies will increase the completeness of methyl

group assignments [46].

Identification of binding sites using CSPs:
methyl fingerprinting
Most protein interaction surfaces are enriched in methyl

groups [47]. Together with their favorable NMR proper-

ties, methyl groups are thus excellent probes for studying

biomolecular interactions in high-molecular weight com-

plexes [12,43]. In brief, methyl groups involved in bio-

molecular interactions will experience a change in their

chemical environment and as a consequence undergo

chemical shift perturbations (CSP) upon ligand binding

(Figure 2c). Of note, CSPs can provide not only detailed

qualitative, but also quantitative insights into interac-

tions. As an example, recently it was shown that the

mRNA decapping enzyme DcpS interacts with two sub-

strates in a sequential manner, where the affinity for the

first and second binding event differ by three orders of

magnitude [48�].

The chaperone Hsp90 forms a 180 kDa dimer that can

open and close to assist protein folding in an ATP-

dependent manner. Each Hsp90 monomer contains an

N-terminal, a middle and a C-terminal domain, a feature

that has been exploited for resonance assignment of the
www.sciencedirect.com 
Ile-d1 methyl groups by a divide-and-conquer approach

[49]. Addition of ATP resulted in methyl CSPs that were

restricted to the N-terminal domain, whereas the Hsp90

activator p23 interacts with both the N-terminal and the

middle domain. These results suggested that two p23

monomers bind co-operatively to one Hsp90 dimer to

enforce a closed conformation [49]. An important function

of Hsp90 is to counteract the aggregation of the protein

Tau, a cause of neurodegeneration. Methyl CSP studies

have revealed the molecular basis for the interaction

between the Hsp90 chaperone and the Tau substrate

that consists of a >100 Å long substrate-binding interface

that allows for multiple low-affinity interactions [50��]. In

sum, methyl TROSY studies have provided important

insights into the mechanism of Hsp90 function. In addi-

tion, the Hsp70 chaperone that interacts with Hsp90, has

been subject to detailed methyl TROSY studies [51].

The archaeal 20S proteasome is a 670 kDa-complex and

one of the largest complexes, for which extensive Ile-d1,

Leu-d and Val-g methyl assignments have been obtained

[40]. The proteasome degrades unfolded proteins and

consists of four homo-heptameric rings that form a barrel-

shaped structure. The two outer a-rings can each interact

with a 150 kDa 11S regulatory particle (RP), resulting in

a >1 MDa-complex. NMR titration experiments with a
Current Opinion in Structural Biology 2015, 35:60–67
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Figure 2
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Methyl resonance assignment strategies for binding site mapping. In the divide-and-conquer approach (a), assignments of smaller subunits are

obtained individually by traditional H,N-based NMR methods and then transferred to the full complex. (b) If specific subunits cannot be expressed

individually, they can be assigned in a mutational approach. The obtained assignments can then be used to map observed CSPs onto a structural

model (c). Of note, the 45 kDa Smurf2 HECT domain is not amenable for H–N based experiments due to limited solubility of the protein, but can

be studied using methyl TROSY techniques [41,80].
proteasome containing NMR-active a-rings revealed

CSPs for a large number of methyl groups upon addition

of 11S that could be used to map the 11S binding-surface

and to extract an affinity constant [40]. Recently, methyl-

NMR studies of proteasome-substrate interactions have

revealed that unfolded proteins strongly associate with

the inner walls of the antechamber proteasome ensuring

that substrates remain unfolded before degradation [52].

Two methods that can complement CSP information are

the analysis of differential relaxation of methyl groups in

the presence of protonated versus deuterated binding

partners [53] and cross saturation transfer (CST) measure-

ments [54–57]. Both methods are unique in that they can

discriminate between direct and indirect (i.e. allosteric)

CSPs.
Current Opinion in Structural Biology 2015, 35:60–67 
Beyond binding site mapping: NMR structures
of large complexes
Methyl TROSY spectroscopy has opened the way for

determining 3D structures of large protein complexes,

such as the 50 kDa trigger factor-alkaline phosphatase

complex [58] and the 204 kDa, homo-dimeric SecA [59].

SecA is an ATP-driven translocase that interacts with

signal sequences of proteins destined for secretion [59].

Ile, Val, Leu, and Met methyl assignment of SecA was

obtained by a divide-and-conquer approach. Combined

with distance information gained from site-specific spin

labeling (PREs), transfer-NOESY spectra and differential

line-broadening experiments, this showed for the first

time that signal peptides bind to a flexible and elongated

groove in SecA inducing an a-helical conformation in the

signal peptide. Furthermore, SecA was shown to undergo
www.sciencedirect.com
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a large conformational change in solution that might

potentially be coupled to the protein translocation mech-

anism [59].

Kato et al. gained structural insights into the interaction

between the nucleosome and the high mobility group

nucleosomal (HMGN) protein [60] that regulates various

chromatin functions, including transcription. The nucleo-

some is a 200 kDa complex containing two copies of each of

the four histone proteins (H2A, H2B, H3 and H4) that are

encircled by a long stretch of double-stranded DNA.

Almost complete methyl group assignments were obtained

for Ile, Leu and Val residues using NOESY spectra and

point mutations. The assignments formed the basis for

CSP and PRE experiments that provided distance infor-

mation for structure determination of the nucleo-

some:HMGN complex. Importantly, the determined

NMR structure agrees very well with mutational data

and explains how the HMGN interferes with linker histone

H1 interactions to regulate chromatin structure [60].

In another example, CSP and PRE data were combined to

produce an atomic-resolution model of the 650 kDa ClpB–
DnaK chaperone system that reactivates stress-damaged

proteins trapped in an aggregated state in bacteria [61�].
The determined structural model has been validated with

functional assays, and structure-based mutations interfer-

ing with the formation of the chaperone complex showed

reduced disaggregation efficiency. This work provides

unique insights into the disaggregation cycle, in which

the ClpB–DnaK complex plays a crucial role in ClpB-

mediated ATP turnover rate and substrate release.

Beyond NMR spectroscopy: hybrid methods
In many cases, NMR-data alone are insufficient to deter-

mine 3D structures of high-molecular weight systems and

require additional information from complementary

methods. Therefore, modeling approaches that integrate

(sparse) NMR data with structures of isolated protein

(domains), SAXS and SANS, electron microscopy and

native mass spectrometry have been developed [62,63].

The 390 kDa box C/D enzyme is one of the most chal-

lenging systems whose structures have been determined

using hybrid methods that include NMR [64��]. This

enzyme methylates ribosomal RNA at the 20-O-ribose, a

step essential for both pre-rRNA processing and ribosome

assembly. The complex consists of the L7Ae, Nop5 and

fibrillarin proteins and a 72-base guide sRNA. Using

known structures of individual building blocks, the struc-

ture of the box C/D ribonucleoprotein was solved based

on CSPs, intermolecular PRE data, SAXS and contrast

matching SANS data. The authors showed that this is a

valid approach by using methyl CSPs and PRE experi-

ments that recapitulated the stepwise formation of the

complex. Interestingly, addition of substrate RNA

resulted in large structural changes in the enzyme that
www.sciencedirect.com 
were accompanied by numerous methyl resonances split-

ting into two signals with a 1:1 ratio. This demonstrated

that only two of the four fibrillarin proteins in the complex

interact with the substrate RNA, providing a structural

basis for the sequential methylation mechanism [64��].

Beyond structures: interactions that modulate
protein dynamics
Ligand interactions often involve biologically relevant

conformational changes remote from the interaction in-

terface [65]. These allosteric conformational changes can

be subtle and thus difficult to identify in crystal struc-

tures. Methyl NMR studies have revealed allosteric

effects in a number of high-molecular weight systems.

For example, NMR binding studies have shown that

interaction of the 11S RP with the proteasome a-rings

not only induces an opening of the pore [66], but also

concomitant CSPs at the active sites that are 50 Å remote

from the entrance pore [67]. This long-range effect results

from an allosteric pathway involving a subtle, rapid ex-

change of the proteasome between two conformations.

RP binding to the entrance pore stabilizes one of these

conformations and thereby enhances protein degradation.

The drug chloroquin [68] interferes with a central part of

this allosteric pathway and thereby inhibits proteasome

activity. In another barrel-shaped protease, the 230 kDa

HslV [69��], interaction with the activating HslU RP has

been shown to dynamically couple to Thr methyl groups

in the active site, revealing an allosteric pathway similar to

the one observed in proteasome.

G-protein coupled receptors (GPCRs) are an important

class of transmembrane proteins that are activated by

light-sensitive compounds, odors, pheromones, hormones

and neurotransmitters. Interestingly, GPCRs undergo

conformational changes that correlate with activity. Nu-

merous compounds that stabilize the active conformation

(agonists) or inactive conformation (inverse agonists) have

been identified. However, structural studies of GPCRs

are hindered by the fact that they cannot be expressed in

E. coli. In an elegant NMR study, the b2 adrenergic

GPCR was produced in insect cells [70] and subsequently

labeled with 13CH3-methyl groups by chemical modifica-

tion of lysine side chains. Interestingly, although both,

agonists or inverse agonists, bind to the same site in the

trans-membrane region, they cause distinct structural

rearrangements at the remote extracellular surface pro-

viding a basis for their effects on GPCR activity.

Additional insights regarding the correlation between

motions in the GPCR and small compounds were

obtained through NMR analysis of methionine methyl

groups [71]. To that end, Sf9 cells were grown in methi-

onine-deficient media to which 13C methyl-labeled me-

thionine was added. To further improve spectral quality,

Shimada and colleagues developed a deuteration method

for insect cells [72�], which led to an impressive five-fold
Current Opinion in Structural Biology 2015, 35:60–67
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Figure 3
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Schematic representation of methionine scanning and LEGO NMR. (a)

In methionine scanning a methionine reporter (red) can be identified to

be inside or outside a binding interface or as being a hot-spot. (b) In

LEGO NMR specific subunits of large asymmetric complexes can be

made NMR active (colored) in an otherwise NMR inactive background

(grey). (c) A combination of methionine scanning and LEGO NMR can

visualize a specific region of interest in a large, asymmetric complex.
increase in sensitivity of GPCR NMR spectra. Together,

these data on the highly challenging GPCR systems have

revealed a complex picture regarding the relation be-

tween conformational changes and ligand binding that

modulates GPCR-mediated signal transduction.

Structural information invisible in crystal
structures
High-resolution crystal structures are indispensible for

the analysis of large protein complexes by NMR spec-

troscopy. One of the major future applications of methyl

TROSY spectroscopy will be to complement these static

structures with information regarding protein motions

and interactions. Methyl TROSY studies of complexes

of known structure have proven that unique and unex-

pected insights into protein assembly and dynamics can

be gained in solution.

Binding events can take place through conformational

selection with one of the binding partners sampling the

structure of the bound state in the absence of a ligand.

Recently, the archaea exosome core complex that func-

tions in mRNA degradation has been shown to sample

two states in solution, although only one conformation

was visible in the high-resolution crystal structure [73�].
Interestingly, one of these conformations is important for

the interaction with activator proteins, which indicates

that binding events can be more complex than presumed

based on static structures.

Furthermore, Driscoll and colleagues have shown in two

independent studies that methyl TROSY spectroscopy, in

combination with native mass spectrometery, can provide

unique insights into the assembly of large complexes

[74�,75,76]. In one example they studied the complex

formation between that the death domains (DD) of

CD95 and FADD [75]. A crystal structure of the complex

containing four chains of each of the two proteins was

solved at a acidic pH and revealed a symmetric complex.

However, based on methyl TROSY experiments the two

proteins form an asymmetric complex at neutral pH in

solution with a 5:5 or 5:4 ratio of the two proteins.

Recent advances in methyl NMR methodology
Relaxation rates in complexes larger than �2 MDa are so

fast that methyl TROSY spectra signals can be broadened

beyond detection. In some cases, structural information on

complex formation can nevertheless be obtained using

dark-state exchange saturation transfer (DEST) methods

[77,78��]. DEST and lifetime line-broadening experi-

ments exploit that the relaxation properties of small pro-

teins can be influenced by transient complex formation

with very large, NMR-invisible (‘dark’) assemblies, such as

aggregates. This effect was shown for Alzheimer’s disease

related amyloid b (Ab) monomers that exchange with

large (2–80 MDa) protofibrillar Ab aggregates. Using

methyl groups as NMR probes, insight into the interaction
Current Opinion in Structural Biology 2015, 35:60–67 
between hydrophobic side chains of the Ab monomers and

the protofibril surface were obtained [78��].

A bottleneck of methyl TROSY spectroscopy is that it is

blind to protein regions devoid of methyl groups. This

limitation can be overcome with the recently introduced

methionine scanning method [79��], where single reporter

methionine residues are introduced at specific sites of

interest (Figure 3a). This results in the appearance of a

novel NMR resonance that can be assigned instantaneous-

ly. In a second step, a ligand is added to the protein

containing the introduced Met reporter. If CSPs are ob-

served for the Met reporter, this residue must be inside the

ligand-binding surface. If the Met reporter experiences no

CSP, it resides either outside the binding interface, or the

mutation interferes with the interaction. Importantly, na-

tive Met and Ile residues can distinguish between the

latter two scenarios. Methionine scanning can thus deter-

mine on a per-residue basis whether an amino acid is

located inside or outside a binding pocket, or whether it

is crucial for interaction [79��]. Using methionine scanning,

important insights into the binding mode and regulation of

HECT-type ubiquitin ligases has been gained [80].

The vast majority of methyl NMR studies of large com-

plexes exploited the favorable properties of highly sym-

metric assemblies. These include advantages for sample
www.sciencedirect.com
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preparation as well as simplification of NMR spectra with

a concomitant higher signal-to-noise ratio. Most eukary-

otic complexes are, however, asymmetric and thus diffi-

cult to assess using NMR spectroscopy. To make such

complexes amenable to NMR spectroscopy, a LEGO

NMR approach [81��] was recently introduced

(Figure 3b). In this method, a sequential co-expression

protocol is exploited that allows for the preparation of

highly asymmetric complexes that are NMR active in

only a subset of the subunits. This significantly reduces

spectral overlap and simplifies sample preparation. Using

LEGO NMR, hetero-heptameric LSm complexes could

be prepared that only contained single NMR active

subunit, which allowed for the identification of residues

that are involved in RNA binding [81��].

Conclusions
Methyl TROSY NMR spectroscopy allows for the study

of biomolecular interactions in large molecular assem-

blies. Here, we reviewed unique biological insights that

could only be gained from methyl NMR experiments.

Given the recent success of this methodology, we antici-

pate that the number of applications will increase rapidly.

In this regard, it is worth mentioning that LEGO NMR

and methionine scanning are fully compatible strategies

and their combination holds great promise for tackling

fully asymmetric, high-molecular weight systems by

methyl NMR (Figure 3c).
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