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The existence of value functions for general two-player, zero-sum stochastic
differential games has been obtained by Fleming and Souganidis. In this paper we
present a new approach to this problem. We prove optimality inequalities of
dynamic programming for viscosity sub- and supersolutions of the associated
Bellman]Isaacs equations. These inequalities are well known for deterministic
differential games but are new for stochastic differential games. It then easily
follows that value functions are the unique viscosity solutions of the Bellman]Isaacs
equations and satisfy the principle of dynamic programming. The results presented
here are not the same as those of Fleming and Souganidis because we work with
different reference spaces and the independence of value functions of the choice of
reference spaces is not clear to us. Q 1996 Academic Press, Inc.

1. INTRODUCTION AND PRELIMINARIES

Ž .Let V, FF, FF , P be a probability space with a right-continuous filtrationt
of complete s-fields and let W be an n -dimensional FF -Brownian motion.1 t
We consider a stochastic initial value problem

dX s b X , Y , Z ds q s X , Y , Z dW for s g 0, `Ž . Ž . .s s x s s s s s 1.1Ž .n½ X s x for x g R ,0

n n n Ž .where b : R = YY = ZZ ª R , s : R = YY = ZZ ª SS n = n , the set of n1
Ž .= n matrices and YY , ZZ are complete, separable metric spaces. With 1.11

we associate the pay-off functional

`
yl sJ x ; Y , Z s E e h X , Y , Z ds , 1.2Ž . Ž . Ž .H s s s½ 5
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EXISTENCE OF VALUE FUNCTIONS OF SDG 885

where h : R n = YY = ZZ ª R, l ) 0, and E denotes the expected value. In
Ž . Ž .what follows we will refer to 1.1 and 1.2 as infinite horizon stochastic

Ž . ndifferential game SDG with state variable in R .
The existence of value functions of a general two-player, zero-sum

stochastic differential game has been proved by W. H. Fleming and P. E.
w x w x ŽSouganidis in 7 and we refer the reader to this paper and 8 see also

w x. w x19 for the description of earlier results and to 1, 4, 5, 9]11 for more
w xinformation about differential games. The process employed in 7 was

Žbased upon working directly with the value functions see the definitions
.below to prove that they satisfy the dynamic programming principle and

then showing that they solve the associated Bellman]Isaacs equations.
This turned out to create serious measurability problems and the result
was obtained with the help of a discretization procedure. The same

w xmethod was used by M. E. Katsoulakis in 15 to prove representation
formulas for solutions of second order parabolic equations. In this paper
we would like to present a different approach to the existence of value

w xfunctions which in a sense is opposite to that of 7 . We start with solutions
of the upper and lower Bellman]Isaacs equations which exist by the
general theory and prove that they must satisfy certain optimality inequali-

Ž w x w xties see 18 for the deterministic case and also 6, 16, 17 for the case of
.stochastic control which in turn yield that solutions are equal to the value

functions. These so-called sub- and superoptimality inequalities of dynamic
programming are interesting for their own. The proofs presented here use

w xsome ideas from 21 and the proof of dynamic programming principle for
w xstochastic control given in 6 . We employ general PDE and stochastic

methods, in particular approximations of solutions of Bellman]Isaacs
equations by inf- and sup-convolutions and stochastic processes by ‘‘non-
degenerate’’ ones.

w xThe results presented here are not exactly the same as those in 7 . They
w xare somehow complementary. Fleming and Souganidis in 7 worked with

the canonical sample space for the Brownian motion. At the end of the
paper they hinted at another approach based on a full discretization in
time and space but the independence of value functions of the choice of a
sample space is not clear to us. This issue should be resolved. Our results
may depend in some sense on the sample space. More precisely, given an
initial sample space we embed it into a bigger one for which we have the
optimality principles, existence of value functions, and all results are
independent of the new reference spaces. The drawback of the approach
presented here seems to be the rather slim possibility of extending it to the

w xinfinite dimensional setting while the method of 7 works in certain cases
Ž w x.see 22 . Finally we mention that some of the assumptions on the data
could be relaxed but we do not attempt to do so.
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< < nWe will write ? for the norm in R, R , the space of matrices, and the
Lebesgue measure in R n, the choice being obvious from the context, and
5 5 n n? for the L norm in R . We say that a nondecreasing functionn

w . w .r : 0, ` ª 0, ` is a modulus if r is continuous, subadditive, nondecreas-
Ž . w . w . w .ing, and r 0 s 0. A continuous function r : 0, ` = 0, ` ª 0, ` is a

local modulus if it is nondecreasing in both arguments, subadditive in the
Ž . Ž .first argument, and for every s G 0, r 0, s s 0. We write B x for the ballr

Ž .of radius r centered at x. For a metric space H we denote by BUC H the
Ž .space of bounded and uniformly continuous functions on H and by BB H

the Borel s-algebra in H.
We assume that b, s , h are uniformly continuous functions such that

there is a constant L such that

b x , y , z y b x , y , z ,Ž . Ž .1 2

< <s x , y , z y s x , y , z F L x y x 1.3Ž . Ž . Ž .1 2 1 2

< <h x , y , z y h x , y , z F r x y xŽ . Ž . Ž .1 2 1 2

Ž . nfor every x , x , y, z g R = R = YY = ZZ, and1 2

b x , y , z , s x , y , z , h x , y , z F LŽ . Ž . Ž .
for every x , y , z g R n = YY = ZZ , 1.4Ž . Ž .

where r is a modulus.
We need to introduce the sample space we will be working with. We

˜take an n-dimensional Wiener process W independent of FF and considert
˜Ž .a new n q n-dimensional Wiener process W s W, W defined on a1

product space. W is progressively measurable with respect to a new FF intot
which FF embeds naturally, and therefore W is also an FF -Browniant t

w xmotion. We refer the reader to 16, 6 for more on the construction. We
will be using P to denote probability on a new space. For g G 0 we define

g Ž . Ž .s x, y, z to be an n = n q n -matrix whose first n columns form the1 1
Ž .matrix s x, y, z and columns n q 1, . . . , n q n form a matrix g I. Matri-1 1

ces s g give rise to the stochastic differential equations associated with
Ž .1.1

g g g gdX s b X , Y , Z ds q s X , Y , Z dW for s g 0, `.Ž . Ž .s 2 s s s s s s
g½ X s x .0 0

1.5Ž .
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Ž .Solutions of 1.5 are ‘‘nondegenerate’’ processes since as it is easy to see
g g Ž g .Ufor a s s s we have

² g : 2 < < 2a j , j G g j .

Ž .We also point out that from the uniqueness of solutions of 1.5 it follows
Ž . Ž .that if X solves 1.1 then it also solves 1.5 with g s 0.

Ž .Admissible controls and strategies, and value functions of our SGD are
defined in the following way.

Ž .DEFINITION 1.1. An admissible control Y respectively Z for player I
Ž .respectively II is an FF -progressively measurable process taking its valuest

Ž .in YY respectively ZZ . The set of all admissible controls for player I
Ž . Ž .respectively II is denoted by M respectively N .

1 2 w x Ž 1 2We say that controls Y , Y g M are equal on 0, t if P Y s Y fors s
w x.a.e. s g 0, t s 1. Controls in N are identified the same.

Ž .DEFINITION 1.2. An admissible strategy a respectively b for player I
Ž . Ž .respectively II is a mapping a : N ª M respectively b : M ª N such

˜ ˜ ˜Ž . w x w x w x Žthat if Z s Z respectively Y s Y on 0, s then a Z s a Z respec-
˜w x w x. w x w .tively b Y s b Y on 0, s for every s g 0, ` . The set of all admissible

Ž . Ž .strategies for player I respectively II is denoted by G respectively D .

Ž .DEFINITION 1.3. The lower value of the SDG is given by

w xV x s inf sup J x ; Y , b Y . 1.6Ž . Ž .Ž .
bgD YgM

Ž .The upper value of the SDG is given by

w xU x s sup inf J x ; a Z , Z . 1.7Ž . Ž .Ž .
ZgNagG

We are going to prove that the lower and upper value functions are
Ž .viscosity solutions of the associated Bellman]Isaacs BI equations. More

Ž .precisely, we define the lower value BI equation as

lu q Hy x , Du , D2 u s 0 for x g R n , 1.8Ž . Ž .

Ž .and the upper value BI equation as

lu q Hq x , Du , D2 u s 0 for x g R n , 1.9Ž . Ž .
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where for a symmetric n = n matrix A and p, x g R n, Hy and Hq are
defined by

1
yH x , p , A s inf sup y tr a x , y , z AŽ . Ž .Ž .½ 2ygYY zgZZ

² :y b x , y , z , p y h x , y , z , 1.10Ž . Ž . Ž .5
and

1
qH x , p , A s sup inf y tr a x , y , z AŽ . Ž .Ž .½ 2ygYYzgZZ

² :y b x , y , z , p y h x , y , z , 1.11Ž . Ž . Ž .5
U w xwhere a s ss . We refer the reader to 3 for the definition and proper-

ties of viscosity solutions.

2. SUB- AND SUPEROPTIMALITY PRINCIPLES AND THE
EXISTENCE OF VALUE FUNCTIONS

In the theorem below we prove the optimality inequalities of dynamic
programming for the upper and lower value functions.

Ž . Ž . nTHEOREM 2.1. Let 1.3 and 1.4 be satisfied and let l G 0. Let x g R ,0
Ž n.T G 0. Let u g BUC R . Then:

Ž . Ž .i If u is a ¨iscosity subsolution of 1.9 then

T yl s ylTw xu x F sup inf E s h X , a Z , Z ds q e u X , 2.1Ž . Ž . Ž .Ž .H s0 s s T½ 5ZgN 0agG

Ž . w xwhere X is the solution of 1.1 with X s x and Y s a Z for Z g N.0 0

Ž . Ž .ii If u is a ¨iscosity supersolution of 1.9 then

T yl s ylTw xu x G sup inf E s h X , a Z , Z ds q e u X , 2.2Ž . Ž . Ž .Ž .H s0 s s T½ 5ZgN 0agG

Ž . w xwhere X is the solution of 1.1 with X s x and Y s a Z for Z g N.0 0

Ž . Ž .iii If u is a ¨iscosity subsolution of 1.8 then

T yl s ylTw xu x F inf sup E e h X , Y , b Y ds q e u X , 2.3Ž . Ž . Ž .Ž .H s0 s s T½ 5
bgD 0YgM

Ž . w xwhere X is the solution of 1.1 with X s x and Z s b Y for Y g M.0 0
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Ž . Ž .iv If u is a ¨iscosity supersolution of 1.8 then

T yl s ylTw xu x G inf sup E e h X , Y , b Y ds q e u X , 2.4Ž . Ž . Ž .Ž .H s0 s s T½ 5
bgD 0YgM

Ž . w xwhere X is the solution of 1.1 with X s x and Z s b Y for Y g M.0 0

As an immediate consequence of the above theorem we obtain that
solutions of Bellman]Isaacs equations satisfy the dynamic programming
principle and therefore we have the existence of value functions for the
Ž .SDG .

Ž . Ž .COROLLARY 2.2. Let 1.3 and 1.4 be satisfied and let l G 0. Let
n Ž n. Ž .x g R , T G 0. Let u g BUC R be a ¨iscosity solution of 1.9 and0

Ž n. Ž .¨ g BUC R be a ¨iscosity solution of 1.8 . Then the dynamic programing
principle holds, i.e.,

T yl s ylTw xu x s sup inf E e h X , a Z , Z ds q e u X , 2.5Ž . Ž . Ž .Ž .H s0 s s T½ 5ZgN 0agG

Ž . w xwhere X is the solution of 1.1 with X s x and Y s a Z for Z g N and0 0

T yl s ylTw x¨ x s inf sup E e h X , Y , b Y ds q e ¨ X , 2.6Ž . Ž . Ž .Ž .H s0 s s T½ 5
bgD 0YgM

Ž . w xwhere X is the solution of 1.1 with X s x and Z s b Y for Y g M. In0 0
Ž .particular, if l ) 0, U is the unique bounded ¨iscosity solution of 1.9 , V is

Ž .the unique bounded ¨iscosity solution of 1.8 , and if the Isaacs condition
q y Ž .H s H holds then the SDG has a ¨alue.

We begin the proof of Theorem 2.1 with a lemma. It holds under much
more general assumptions but since we only need it in this form we make
it as simple as possible for the clarity of argument.

2Ž n. 2LEMMA 2.3. Theorem 2.1 holds for u g C R such that u, Du, D u are
bounded and Lipschitz continuous.

Remark 2.4. As it will be obvious from the proof, Lemma 2.3 is
independent of the choice of a sample space so we may as well work with
the original one.

Ž . Ž . Ž . Ž .Proof of Lemma 2.3. We only prove iii and iv since i and ii are
proved the same. Let x g R n, T G 0. Let K be both the Lipschitz0
constant and infinity norms of u, Du, D2 u. For a positive integer m denote
t s Trm.
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Ž .Proof of iii . Fix Z g N. Choose y g YY such that1

1
2 ² :sup y tr a x , y , z D u x y f x , y , z , Du xŽ . Ž . Ž . Ž .Ž .0 1 0 0 1 0½ 2zgZZ

1
qlu x y h x , y , z F . 2.7Ž . Ž . Ž .0 0 1 5 m

Denote

1
s 2L u x s y tr a x , y , Z D u xŽ . Ž . Ž .Ž .1 s2

² :y f x , y , Z , Du x q lu xŽ . Ž . Ž .1 s

Ž . w x mfor 0 F s F t. If X is the solution of 1.1 on 0, t with X s x , Y ' y ,0 0 1
and Z by Ito’s formula we have

t yl s s yl tu x s E e L u X ds q e u X . 2.8Ž . Ž . Ž . Ž .H0 s t½ 5
0

Ž .A standard martingale inequality gives us that for any solution X of 1.1

< < 1r4P sup X y x G t F K t 2.9Ž .s 1ž /
0FsFt

for some constant K independent of Y g M and Z g N. Combining1
Ž . Ž . Ž .2.8 , 2.9 , using the assumptions on u, and then 2.7 we obtain

t yl s s yl t 5r4u x F E e L u x ds q e u X q K tŽ . Ž . Ž .H0 0 t 2½ 5
0

1t yl s m yl t 1r4F E e h x , Y , Z ds q e u X q K t q tŽ .Ž .H 0 s s t 2½ 5 ž /m0

1t yl s m yl tF E e h X , Y , Z ds q e u X q K t q r t ,Ž . Ž .Ž .H s s s t 3 1½ 5 ž /m0

2.10Ž .

where K is a constant which depends only on L, K, K , and r is a3 1 1
modulus depending on r. The first step has been accomplished and now
we need to extend Y m. To do this we proceed with a kind of construction

w xemployed in 5, 7 . Define

1
2L x , y s sup y tr a x , y , z D u xŽ . Ž . Ž .Ž .½ 2zgZZ

² :y f x , y , z , Du x q lu x y h x , y , z .Ž . Ž . Ž . Ž . 5
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We notice that L is uniformly continuous on R n = YY. Since YY is separa-
� 4̀ble we can therefore find a countable sequence y in YY and a familyi is1

� Ž .4̀ nof balls B x covering R such thatr i is1i

1
L x , y F if x g B x .Ž . Ž .i r iim

Define a map c : R n ª YY by

ky1

c x s y if x g B x _ B x .Ž . Ž . Ž .Dk r k r ik i
is1

Ž Ž n. Ž ..This is a BB R , BB YY measurable map. Moreover

1
nL x , c x F for every x g R . 2.11Ž . Ž .Ž .

m
m w .Define a new control Y on 0, 2 t by

y if s g 0, t .1mY s . 2.12Ž .s ½ c X if s g t , 2 tŽ . .t

m ˜ Ž .Then Y is FF -progressively measurable and if X is the solution of 1.1t
m ˜w xon t, 2 t with Z, Y , and X s X , arguing as before we havet t

2 tyl t yl s m y2 l t˜ ˜ ˜Ee u X F E e h X , Y , Z ds q e u XŽ . Ž . Ž .Ht s s s t½ 5
t

1
q K t q r t . 2.13Ž . Ž .3 1ž /m

Ž . Ž . Ž .Using the uniqueness of solutions of 1.1 and combining 2.10 and 2.13
we obtain

12 t ys m y2 tu x F E e h X , Y , Z ds q e u X q 2 K t q r t ,Ž . Ž . Ž .Ž .H0 s s s t 3 1½ 5 ž /m0

Ž . w x mwhere X is the solution of 1.1 on 0, 2 t with Z, Y , and X s x .0 0
Repeating the process m times yields us a piecewise linear random process

m Ž . mY g M such that if X is the solution of 1.1 with Z, Y , and X s x0 0
then

T yl s m ylTu x F E e h X , Y , Z ds q e u XŽ . Ž .Ž .H0 s s s T½ 5
0

1 T
q K T q r . 2.14Ž .3 1 ž /ž /m m
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m mw x mDefine a strategy a g G by a Z s Y . We notice that from the
m mw xconstruction of a it follows that a Z depends only on Z .< w i t, Ž iqi. t . < w0, i t .

Therefore by a rather routine construction, for every b g D we can find
˜ ˜Y g M and Z g N such that

m ˜ ˜ ˜ ˜w x w xa Z s Y , and Z s b Y . 2.15Ž .

˜To find such controls we proceed inductively. Y s y and then let< w0, t . 1
˜ ˜ ˜ ˜w x Ž w x w . .Z s b Y the value of b Y on 0, t only depends on Y .< w0, t . < w0, t . < w0, t .

˜ ˜ ˜w . Ž Ž ..Having defined Z and Y on 0, it we known what Y is see 2.12< w0, Ž iq1. t .
˜ ˜w xand then we set Z s b Y . One easily checks that such< w0, Ž iq1. t . < w0, Ž iq1. t .

˜ ˜ Ž . Ž .constructed Y and Z satisfy 2.15 . Using this fact in 2.14 and then letting
m ª ` we therefore obtain that for every b g D

T yl s ylTw xu x F sup E e h X , Y , b Y ds q e u X 2.16Ž . Ž . Ž .Ž .H0 s T½ 5
0YgM

Ž .and 2.3 follows.
Ž . Ž .Proof of iv . The proof is similar to the proof of iii . Fix Y g M and

denote

1
2 ² :L x , y , z s y tr a x , y , z D u x y f x , y , z , Du xŽ . Ž . Ž . Ž . Ž .Ž .

2

q lu x y h x , y , z .Ž . Ž .

Again L is uniformly continuous on R n = YY = ZZ and since

inf sup L x , y , z G 0Ž .
ygYY zgZZ

n � 4̀for every x g R we can therefore find a countable sequence z in ZZi is1
� Ž . Ž .4̀ nand a family B x = B y covering R = YY such thatr i r i is1˜i i

1
L x , y , z G y if x , y g B x = B y .Ž . Ž . Ž . Ž .i r i r i˜i im

Define a map c : R n = YY ª ZZ by

ky1

c x , y s z if x , y g B x = B y _ B x = B y .Ž . Ž . Ž . Ž . Ž . Ž .Dk r k r k r i r i˜ ˜k k i i
is1



EXISTENCE OF VALUE FUNCTIONS OF SDG 893

Ž Ž n . Ž ..This is a BB R = YY , BB ZZ measurable map and

1
nL x , y , c x , y G y for every x , y g R = YY .Ž . Ž .Ž .

m

m w .Define a control Z on 0, t by

Z m s c x , Y . 2.17Ž . Ž .s 0 s

Z m is obviously FF -progressively measurable. We argue as arounds
Ž . Ž . Ž .2.8 ] 2.10 in the proof of iii to obtain

t yl s m yl tu x G E e h X , Y , Z ds q e u X y tr t 2.18Ž . Ž . Ž . Ž .Ž .H0 s s s t 1½ 5
0

Ž . w xfor some independent modulus r , where X is the solution of 1.1 on 0, t1
m m w .with X s x , Y, and Z . This allows us to extend Z on 0, 2 t by setting0 0

mZ s c X , Y if s g t , 2 tŽ . .s t s

and we continue the process. Therefore we can construct a control
Z m g N such that

T yl s m ylTu x G E e h X , Y , Z ds q e u X y r tŽ . Ž . Ž .Ž .H0 s s s T 2½ 5
0

Ž . w xfor some modulus r , where X is the solution of 1.1 on 0, T with2
m Ž . mw x mX s x , Y, and Z . Inequality 2.4 follows by setting b Y s Z and0 0

letting m ª `. It is obvious from the construction that b m g D.

Remark 2.5. We point out the fundamental difference between strate-
m Ž . mgies a constructed in the proof of iii and b constructed in the proof

Ž . mw x mw xof iv . The a Z were piecewise constant processes and a Z < w0, Ž iq1. t .

depended only on Z for i s 1, . . . , m y 1, while b m could be any< w0, i t .
element of D.

Ž . Ž . Ž .Proof of Theorem 2.1. We only prove i , the arguments for ii , iii ,
Ž .and iv being similar. For e ) 0 let u be the sup-convolution of u, i.e.,e

< < 2j y x
u x s sup u j y .Ž . Ž .e ½ 5n 2ejgR

Ž w x. nIt is now rather standard to notice see 3, 13 that u ª u uniformly in Re

as e ª 0, u are bounded, Lipschitz continuous, semiconvex, and satisfye
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n Ž w x w x.a.e. on R see 12 for the precise argument, see also 13

lu x q Hq x , Du x , D2 u x F r e , 2.19Ž . Ž . Ž . Ž . Ž .Ž .e e e 0

for some modulus r . Given d ) 0 let ud denote the standard mollifica-0 e

tion of u . Functions ud are smooth, ud, Dud, D2 ud are bounded ande e e e e
d n d Ž . Ž .Lipschitz continuous, u ª u uniformly in R , and Du x ª Du x ,e e e e

2 d Ž . 2 Ž . n Ž w x w x. dD u x ª D u x for a.e. x g R see 14 , also 2 . Moreover the ue e e

Žhave the same Lipschitz and semiconvexity constants as u the semicon-e

. nvexity constant is 1r2e and for any g ) 0 satisfy on R

g 2
d 2 d q d 2 dlu x y tr D u x q H x , Du x , D u xŽ . Ž . Ž . Ž .Ž .e e e e2

g 2 n
F r e q g x q , 2.20Ž . Ž . Ž .0 d e

Žwhere the g are uniformly continuous with moduli of continuity possiblyd

. Ž . ndepending on d , bounded, uniformly in d , and g x ª 0 for a.e. x g R .d

The uniform boundedness of g is a consequence of the uniform semicon-d
d Ž .vexity and uniform Lipschitz continuity of u . Denote h x, y, z se d

Ž . Ž . Ž . 2 d Ž .h x, y, z q r e q g x q g nre. Applying Lemma 2.3 to u and 2.200 d e

we have

T
d yl s g ylT d gw xu x F sup inf E e h X , a Z , Z ds q e u X ,Ž . Ž .Ž .H se 0 d s s e T½ 5ZgN 0agG

2.21Ž .
g Ž . g w xwhere X is the solution of 1.5 with X s x and Y s a Z for Z g N,0 0

i.e.,

s s
g g g gw x w xX s x q b X , a Z , Z dt q s X , a Z , Z dW . 2.22Ž .Ž . Ž .H Ht ts 0 t t t t t

0 0

We will now pass to limits. Standard martingale inequalities give us that
Žfor every u ) 0 we can choose a constant R independent of controls andu

.strategies such that

< g <P sup X G R F u . 2.23Ž .s už /
0FsFT

< <We then take a set V such that V F u and g ª 0 uniformly onu u d

Ž . w x Ž w x.B 0 _V . From 16, Theorem 2.3.4 see also 20Ru u

T
g 5 5E X ds F NŽ .H X V nX V s uu

0
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Ž .for some independent constant N s N n, g , L . Therefore, from the above
Ž .and 2.23 ,

T
gE g X ds F r d , g ,Ž .Ž .H d s 1

0

for some local modulus r which does not depend on the controls and1
Ž .strategies. Using this and 2.21 we thus obtain

T yl s g ylT gw xu x F sup inf E e h X , a Z , Z ds q e u XŽ . Ž .Ž .H se 0 s s e T½ 5ZgN 0agG

g 2 n
q r d , g q T r e q 2.24Ž . Ž . Ž .2 0ž /e

Ž w x.for some local modulus r . Moment estimates see 16, Theorem 2.5.92
yield

T2 2g 2 g 2< < < <E max X y X F C g E X dt F C g , 2.25Ž .Hs s 1 t 2ž /
0FsFT 0

Ž . Žwhere X is the solution of 1.1 . We remind that we do not indicate the
. Ž .dependence of constants on T and x since they are fixed. Hence 2.240

Ž .and 2.25 finally yield

T yl s ylTw xu x F sup inf E e h X , a Z , Z ds q e u XŽ . Ž .Ž .H se 0 s s e T½ 5ZgN 0agG

g 2 n
q r d , g q T r e q 2.26Ž . Ž . Ž .3 0ž /e

Ž .for some new local modulus r . We obtain 2.1 upon passing to limits in3
Ž .2.26 as d , g , and then e ª 0.

We point out that we have actually proved stronger statements of
Ž .Theorem 2.1. Careful examination of the proof of Lemma 2.3 iii shows

Ž .that 2.16 can be rephrased as follows. For every e ) 0 and b g D there
exists Y g M such that

T yl s ylTw xu x F E e h X , Y , b Y ds q e u X q r eŽ . Ž . Ž .Ž .H0 s T½ 5
0

for some modulus r which does not depend on b. Moreover, the control Y
and r are also good for all times 0 F t F T , i.e.,

t
yl s yltw xu x F inf E e h X , Y , b Y ds q e u X q r e .Ž . Ž . Ž .Ž .H0 s t½ 50FtFT 0
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Therefore for every T G 0 we obtain

t
yl s yltw xu x F inf sup inf E e h X , Y , b Y ds q e u X ,Ž . Ž .Ž .H s0 s s t½ 5

bgD 0FrFT 0YgM

and choosing t s 0 yields the equality above. Similar observation can be
Ž .made about the proof of Lemma 2.3 iv . Since the approximation proce-

dure in the proof of Theorem 2.1 is independent of the control and
strategies for bounded T we obtain the following corollary.

Ž . Ž .COROLLARY 2.6. Let 1.3 and 1.4 be satisfied and let l ) 0. Let
n Ž n.x g R , and u g BUC R . Then:0

Ž . Ž .i If u is a ¨iscosity subsolution of 1.9 then

T yl s ylTw xu x s sup inf inf E s h X , a Z , Z ds q e u X ,Ž . Ž .Ž .H s0 s s T½ 5ZgN 0FT-` 0agG

Ž . w xwhere X is the solution of 1.1 with X s x and Y s a Z for Z g N.0 0

Ž . Ž .ii If u is a ¨iscosity supersolution of 1.9 then

T yl s ylTw xu x s sup inf sup E s h X , a Z , Z ds q e u X ,Ž . Ž .Ž .H s0 s s T½ 5ZgN 0agG 0FT-`

Ž . w xwhere X is the solution of 1.1 with X s x and Y s a Z for Z g N.0 0

Ž . Ž .iii If u is a ¨iscosity subsolution of 1.8 then

T yl s ylTw xu x s inf sup inf E e h X , Y , b Y ds q e u X ,Ž . Ž .Ž .H s0 s s T½ 5
bgD 0FT-` 0YgM

Ž . w xwhere X is the solution of 1.1 with X s x and Z s b Y for Y g M.0 0

Ž . Ž .iv If u is a ¨iscosity supersolution of 1.8 then

T yl s ylTw xu x s inf sup sup E e h X , Y , b Y ds q e u X ,Ž . Ž .Ž .H s0 s s T½ 5
bgD 0YgM 0FT-`

Ž . w xwhere X is the solution of 1.1 with X s x and Z s b Y for Y g M.0 0
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