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We define a notion of (C,P) system of Pfaff type of analytic submanifolds of IR”. Then, we 

study the existence of Hardy fields in several variables, which are closed by exponentiation and 

logarithm. 

1. (C,P) systems 

We denote by C any collection of analytic submanifolds of IR” such that IR” E C, 

n E cu. Moreover, let P be an operator defined over C such that, if XE C, P(X) is 

a subring of the ring Z(X) of all real analytic functions over X, containing the ring 

of polynomials. 

Definition 1.1. A system of real analytic manifolds is, for us, a pair (C, P), where 

C and P are defined as above. 

Definition 1.2. A map ~7 : Xi +X2, Xi, X2eC is a (C,P) map if foy,eP(Xl) for 

every f l P(X,). 

Definition 1.3. If X1,X2 EC, X, c X2, Xi is said to be a (C, P) submanifold of X2 

if i:X, +X2 is a (C,P) map. 

Definition 1.4. A system (C, P) is said to be of Pfaff type if, denoting by X any 

element of C, we have: 

(1) The set {xeX: f (x) > 0} is a (C, P) submanifold of X, for every f E P(X). 

(2) If X;EC, i=l,..., 12, then nyz r X;E C and the canonical projections 

nj : nyz r Xi + X; are (C, P) maps. 
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(3) If feP(X) and f(x) #O for every XEX, then l/feP(X). 

(4) If X is a domain of fR”, then P(X) is a differential ring. 

f e P(X,), g E P(X,) and Graf(f) c X,, 

then g(x, f (x)) E P(X,), XE X1. So by (2) the system is closed under general super- 

position. 

(6) If XC_ Rn+k and Fi(x,y, ,..., Y~)EP(X), i= 1, . . . . k, and if (y,(x) ,..., yk(x)) 

iS a solution of the non-degenerate set of equations F,(x, yi(x), . . . , yI((x)) = 0, 

i= 1, . . . ,k, over D, DEC, then y,eP(D), i= l,..., k. 

(7) If f(x1, ... ,x,> is an analytic function, solution over X of the equation 

df = Cl=, Fj(x,, . . . ,x,,f)dxi where the F,‘sEP(A), A GXXR, then feP(X). 

(8) If f eP(X), then f-](c), CE R, has finitely many connected components. 

All Pfaff manifolds (see [2-4,7,9] and ‘Liouville manifolds’ (see [S]) provide 

examples of (C,P) systems of Pfaff type. 

2. (C,P) Hardy fields in several variables 

We recall the definition of a g-Hardy field in several variables [.5], where ‘iZ? 

denotes any smoothness category of real valued functions of real variables. We - 
denote by R” the one-point compactification of the euclidean space IR” to a point - 
a $ R”. Moreover, if S? is any filter basis converging to p E I?, formed by open 

connected subsets of R”, ‘S?(B) denotes the ring of germs in p following E%’ of 

+S-functions. 

Definition 2.1. A subring K of E’(S) is said to be an n-variable @?-Hardy field in 

p for 55J if 

(a) K is a subfield of g(B); 

(b) feK * af/ax,d, i= l,..., n. 

From now on we denote by (C,P) any system of Pfaff type. 

Let %‘i be a filter basis formed by open intervals (O,a), QE R, converging to 0 in 

the usual topology of R. By property (1) .%‘, c C and we denote by K, the ring of 

germs in 0 following .?Z?, of l-variable functions f E P(I) with IE EZ3i. We use the 

same symbol f for the germ [f] and the function f E [f]. 
K, is a Hardy field by properties (8), (3), (4); it is real closed by property (6) (see 

also 151) and it is exponentially and logarithmically closed by property (7). So we 

can state the following theorem known for the special case of l-variable Pfaff func- 

tions: 

Theorem 2.2. K, is a real closed analytic Hardy field exponentially and logarithm- 
ically closed. 0 
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Definition 2.3. For any 1~ .93r and any f E P(I) such that f(x)> 0 Vx~l and 

lim,,,f(x) =O, we define the sets C,(JZ) = {(x, y): XEZ, O<y<f(x)}. 

Proposition 2.4. For f and I as above, we have: 

(4 CU 0 E C. 
(b) If JE S?13, and JCZ, then C,(f lJ, J) is a (C,P) submanifold of C,(f;Z). 
(c) Given C,(f; I) and C,(g, I) there exists JE B1, JC I, such that either C,(f lJ, I) 

is a (C, P) submanifold of C,(g jJ, J) or viceversa. 

Proof. Claims (a) and (b) follow from properties (1) and (2); to prove (c) we need 

also property (8). 0 

Proposition 2.5. The collection of sets S?‘z = { C,(f; I): IE 33,) f E P(Z)) is an open 
connected filter basis in E2 converging to 0 in the usual topology. 

Proof. The proof follows from Proposition 2.4. 

Definition 2.6. Any 2-variable Hardy field of germs over BB2 of functions f E P(A), 
A E .?BQ2 is said to be a (C, P) Hardy field. 

Proposition 2.7. If K is a (C, P) Hardy field, then its real closure i? is also a (C, P) 
Hardy field. 

Proof. K is an analytic Hardy field [5] and the proof follows by property (6). 0 

Theorem 2.8. Let K be a (C, P) Hardy field and Z? its real closure. If y : A + R with 
A ~35’~ is an analytic function such that ~y/6’x,=F,(xl,x,, y), Fi(x,,x2, Y)EK[Y], 
i = 1,2, then R(y) is a (C, P) Hardy field. 

Proof. We prove that if p( Y) ER[ Y], then p(y) has constant sign (>O, ~0, =0) over 

some set of B2. In fact, 

p(Y)=a fi (Y-Y,) fi Ky+m2+8r21 
I= 1 f-=1 

with a, yl, /3,,6,~R and a,.#0 in R, I= 1, . . . . q, r= 1, . . . . s. Obviously we can sup- 

pose a # 0 in I?. So there exists WE B2 where y is defined and a, yl, /$., 6, are defined 

and have constant sign. Hence, 

Z(P(XI,X2,Y(X1,XZ)))n y=z I!? (Y(X1,X2)-?yI(X1,X2)) 
( I=1 > 

where Z(f) denotes the zeroset off. We consider the analytic functions ti(xl,x2) = 
Y(x~,x~)- y,(x,,xz), then: 8t,/axl=Gj(xI,xZ, tl) with Gj(xr,x2, Y)ER[Y], i= 1,2, 
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I=1 , . . . , q. By property (7), tl EP( V). Therefore, by property (8), Z(t,(x,,x,))r) Y 

has a finite number of connected components. 

If the origin is not a cluster point of Z(tkxI,x2))r) V, then t, has constant sign 

over some set of ?~3’~. Otherwise, writing 

we can consider the following three cases: 

(1) g,efO in K; 

(2) glo # 0 and glo = 0 in R; 
. - 

(3) glo = gzo = 0 in K 
taking care to choose W such that also the gio’S, i= 1,2, are defined and have 

constant sign. 

Case 1. Let 2 be a connected component of Z(t,(x,,~~)) tl Y with the origin as a 

cluster point. 2 is the graph of an analytic function p defined on the interval 

Z=Z7,(E) where Z7, is the canonical projection. For every aEZ, t,(a,x2) is analytic, 

so, by the assumption over g,,, it has at most a finite number of zeros 6t < 

b,< ... <6,. On the other hand, t,(a, bj) = t,(a, bj+ 1) =0 contradicts the fact that 

sign(&/ax2)(a, bj) = sign(atl/ax2)(a, bj+ I). So n = 1. The function 9 turns out to be 

analytic by the implicit function theorem. t/(x,, (p(x,)) = 0, hence, by property (6), 

0 E P(Z). so C,(p, I) E 32. 

Case 2. In this case the origin is not a cluster point of a connected component 

of Z(tkxl,x2))fl X In fact the equation of the tangent line to the curve t/(x1,x2) =0 
in any point (a, b) such that (a, 6) E Z(t,(x,,xZ))fl V is x1 = a. So, by the properties 

of analytic functions and the assumption over glo, Z(t,(x,, x2))fl V’ is formed by a 

finite number of points or by a vertical segment. 

Case 3. If (a, b) E Z(tkx,, x2)) n “Y, using the Taylor series with center (a, b) for the 

analytic function t/(x1,x2), we obtain that tl(xl,x2) =0 in a neighbourhood of (a, 6). 
So, by the analytic continuation principle, t/(x1,x2) = 0 over X 

So R(y) turns out to be an ordered field over 9&. Moreover, E(y) is closed 

under the operator a/13x;, i= 1,2, that is, R(y) is a 2-variable Hardy field. By pro- 

perties (7), (4) and (3), R(v) is a (C,P) Hardy field. 0 

Corollary 2.9. Let K be any (C, P) Hardy field over 6B2. There exist (C, P) Hardy 
fields L over BQ2 such that kc L and if y : A -+ R, A E 312 is an analytic solution of 

the system ay/a~;=F’~(x,,x~, y), Fi(xI,x2, Y)EL[Y], i= 1,2, then YEL. 

Proof. The proof follows by Zorn’s lemma for the inductive class of (C, P) Hardy 

fields containing K, using Theorem 2.8. 0 

Remark 2.10. L is exponentially and logarithmically closed. 
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3. The field of functions H2 over EBB2 

Let K, be any (C, P) Hardy field. Following Hardy’s work [l] and using Theorem 

2.8 we construct the extension H(&) of K,. H&J is the class of the analytic func- 

tions f : A -+ IF?, A E FZ2 such that there exist (C, P) Hardy fields K,, . . . , K, with 

K,+i =Ki(ai+i) where a;+i =log lz;I or aitl =exp(zi), Zi~K;, O<isn- 1, for which 

feK,. 

Proposition 3.1. H(&) is a (C, P) Hardy field. 

Proof. The proof follows directly from the construction. We note that H(&) is the 

smallest (C, P) Hardy field exponentially and logarithmically closed extending K,. 

Definition 3.2. The field of functions Hz over ?& is the extension H(lR,) of the 

(C,P) Hardy field R, of 2-variable rational functions. 

Denoting by 5!! the special (C,P) system, defined by Van Den Dries, and using 

his decomposition theorem for the zeroset of 2-variable functions [9, Section IX], 

we can state that the ring of germs of all 2-variable functions following the filter 

basis ?A32 is a 2-variable real closed &Z-Hardy field. This field is exponentially and 

logarithmically closed. Then, working as in Section 2, see also [6], we define the 

filter basis BJ and following the same pattern we can prove Theorem 2.8 for 

3-variable g-Hardy fields over .5GQ3. 

We observe that the constructions and results of Section 2, obtained working in 

the point p = 0, above the graph of the ‘reference’ function y = 0, can be generalized 

if p is any point of R2, the ‘reference’ function y = f (x) is any function of Ki , ‘con- 

verging’ to p, taking B2 above or below the graph of y = f (x). 
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