Journal of Pure and Applied Algebra 59 (1989) 279-283 North-Holland 279

EXPONENTIALLY AND LOGARITHMICALLY CLOSED HARDY FIELDS IN SEVERAL VARIABLES

Leonardo PASINI*

Dipartimento di Matematica, Università di Camerino, 62302 Camerino, Italy

Carla MARCHIÒ

Dipartimento di Matematica, Università di Siena, Via del Capitano 15, 53100 Siena, Italy

Communicated by M.F. Coste-Roy Received 19 April 1988

We define a notion of (C, P) system of Pfaff type of analytic submanifolds of \mathbb{R}^n . Then, we study the existence of Hardy fields in several variables, which are closed by exponentiation and logarithm.

1. (*C*, *P*) systems

We denote by C any collection of analytic submanifolds of \mathbb{R}^n such that $\mathbb{R}^n \in C$, $n \in \omega$. Moreover, let P be an operator defined over C such that, if $X \in C$, P(X) is a subring of the ring $\mathcal{H}(X)$ of all real analytic functions over X, containing the ring of polynomials.

Definition 1.1. A system of real analytic manifolds is, for us, a pair (C, P), where C and P are defined as above.

Definition 1.2. A map $\varphi: X_1 \to X_2, X_1, X_2 \in C$ is a (C, P) map if $f \circ \varphi \in P(X_1)$ for every $f \in P(X_2)$.

Definition 1.3. If $X_1, X_2 \in C$, $X_1 \subseteq X_2$, X_1 is said to be a (C, P) submanifold of X_2 if $i: X_1 \rightarrow X_2$ is a (C, P) map.

Definition 1.4. A system (C, P) is said to be of Pfaff type if, denoting by X any element of C, we have:

(1) The set $\{x \in X : f(x) > 0\}$ is a (C, P) submanifold of X, for every $f \in P(X)$.

(2) If $X_i \in C$, i = 1, ..., n, then $\prod_{i=1}^n X_i \in C$ and the canonical projections $\pi_i : \prod_{i=1}^n X_i \to X_i$ are (C, P) maps.

* Partially supported by C.N.R.

0022-4049/89/\$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)

(3) If $f \in P(X)$ and $f(x) \neq 0$ for every $x \in X$, then $1/f \in P(X)$.

(4) If X is a domain of \mathbb{R}^n , then P(X) is a differential ring.

(5) If $X_1, X_2 \in C$, $X_1 \subseteq \mathbb{R}^n$, $X_2 \subseteq \mathbb{R}^{n+1}$ and $f \in P(X_1)$, $g \in P(X_2)$ and $\operatorname{Graf}(f) \subseteq X_2$, then $g(x, f(x)) \in P(X_1)$, $x \in X_1$. So by (2) the system is closed under general superposition.

(6) If $X \subseteq \mathbb{R}^{n+k}$ and $F_i(x, y_1, \dots, y_k) \in P(X)$, $i = 1, \dots, k$, and if $(y_1(x), \dots, y_k(x))$ is a solution of the non-degenerate set of equations $F_i(x, y_1(x), \dots, y_k(x)) = 0$, $i = 1, \dots, k$, over $D, D \in C$, then $y_i \in P(D)$, $i = 1, \dots, k$.

(7) If $f(x_1, ..., x_n)$ is an analytic function, solution over X of the equation $df = \sum_{i=1}^{n} F_i(x_1, ..., x_n, f) dx_i$ where the F_i 's $\in P(A)$, $A \subseteq X \times \mathbb{R}$, then $f \in P(X)$.

(8) If $f \in P(X)$, then $f^{-1}(c)$, $c \in \mathbb{R}$, has finitely many connected components.

All Pfaff manifolds (see [2-4, 7, 9] and 'Liouville manifolds' (see [8]) provide examples of (C, P) systems of Pfaff type.

2. (C, P) Hardy fields in several variables

We recall the definition of a \mathscr{C} -Hardy field in several variables [5], where \mathscr{C} denotes any smoothness category of real valued functions of real variables. We denote by \mathbb{R}^n the one-point compactification of the euclidean space \mathbb{R}^n to a point $\alpha \notin \mathbb{R}^n$. Moreover, if \mathscr{B} is any filter basis converging to $p \in \mathbb{R}^n$, formed by open connected subsets of \mathbb{R}^n , $\mathscr{C}(\mathscr{B})$ denotes the ring of germs in p following \mathscr{B} of \mathscr{C} -functions.

Definition 2.1. A subring K of $\mathscr{C}(\mathscr{B})$ is said to be an *n*-variable \mathscr{C} -Hardy field in p for \mathscr{B} if

(a) K is a subfield of $\mathscr{C}(\mathscr{B})$;

(b) $f \in K \Rightarrow \partial f / \partial x_i \in K, i = 1, ..., n.$

From now on we denote by (C, P) any system of Pfaff type.

Let \mathscr{B}_1 be a filter basis formed by open intervals (0, a), $a \in \mathbb{R}$, converging to 0 in the usual topology of \mathbb{R} . By property (1) $\mathscr{B}_1 \subseteq C$ and we denote by K_1 the ring of germs in 0 following \mathscr{B}_1 of 1-variable functions $f \in P(I)$ with $I \in \mathscr{B}_1$. We use the same symbol f for the germ [f] and the function $f \in [f]$.

 K_1 is a Hardy field by properties (8), (3), (4); it is real closed by property (6) (see also [5]) and it is exponentially and logarithmically closed by property (7). So we can state the following theorem known for the special case of 1-variable Pfaff functions:

Theorem 2.2. K_1 is a real closed analytic Hardy field exponentially and logarithmically closed. \Box

280

Definition 2.3. For any $I \in \mathcal{B}_1$ and any $f \in P(I)$ such that $f(x) > 0 \quad \forall x \in I$ and $\lim_{x \to 0} f(x) = 0$, we define the sets $C_2(f, I) = \{(x, y): x \in I, 0 < y < f(x)\}$.

Proposition 2.4. For f and I as above, we have:

(a) $C_2(f, I) \in C$. (b) If $J \in \mathcal{B}_1$ and $J \subseteq I$, then $C_2(f|_J, J)$ is a (C, P) submanifold of $C_2(f, I)$. (c) Given $C_2(f, I)$ and $C_2(g, I)$ there exists $J \in \mathcal{B}_1$, $J \subseteq I$, such that either $C_2(f|_J, I)$ is a (C, P) submanifold of $C_2(g|_J, J)$ or viceversa.

Proof. Claims (a) and (b) follow from properties (1) and (2); to prove (c) we need also property (8). \Box

Proposition 2.5. The collection of sets $\mathscr{B}_2 = \{C_2(f, I) : I \in \mathscr{B}_1, f \in P(I)\}$ is an open connected filter basis in \mathbb{R}^2 converging to 0 in the usual topology.

Proof. The proof follows from Proposition 2.4.

Definition 2.6. Any 2-variable Hardy field of germs over \mathcal{B}_2 of functions $f \in P(A)$, $A \in \mathcal{B}_2$ is said to be a (C, P) Hardy field.

Proposition 2.7. If K is a (C, P) Hardy field, then its real closure \overline{K} is also a (C, P) Hardy field.

Proof. K is an analytic Hardy field [5] and the proof follows by property (6). \Box

Theorem 2.8. Let K be a (C, P) Hardy field and \overline{K} its real closure. If $y: A \to \mathbb{R}$ with $A \in \mathcal{B}_2$ is an analytic function such that $\partial y/\partial x_i = F_i(x_1, x_2, y)$, $F_i(x_1, x_2, Y) \in \overline{K}[Y]$, i = 1, 2, then $\overline{K}(y)$ is a (C, P) Hardy field.

Proof. We prove that if $p(Y) \in \overline{K}[Y]$, then p(y) has constant sign (>0, <0, =0) over some set of \mathcal{B}_2 . In fact,

$$p(Y) = \alpha \prod_{l=1}^{q} (Y - \gamma_l) \prod_{r=1}^{s} [(Y + \beta_r)^2 + \delta_r^2]$$

with α , γ_l , β_r , $\delta_r \in \overline{K}$ and $\delta_r \neq 0$ in \overline{K} , l = 1, ..., q, r = 1, ..., s. Obviously we can suppose $\alpha \neq 0$ in \overline{K} . So there exists $\mathcal{V} \in \mathcal{B}_2$ where y is defined and α , γ_l , β_r , δ_r are defined and have constant sign. Hence,

$$Z(p(x_1, x_2, y(x_1, x_2))) \cap \mathscr{V} = Z\left(\prod_{l=1}^q (y(x_1, x_2) - y_l(x_1, x_2))\right)$$

where Z(f) denotes the zeroset of f. We consider the analytic functions $t_i(x_1, x_2) = y(x_1, x_2) - y_i(x_1, x_2)$, then: $\partial t_i / \partial x_i = G_i(x_1, x_2, t_i)$ with $G_i(x_1, x_2, Y) \in \overline{K}[Y]$, i = 1, 2, 3

l = 1, ..., q. By property (7), $t_l \in P(\mathcal{V})$. Therefore, by property (8), $Z(t_l(x_1, x_2)) \cap \mathcal{V}$ has a finite number of connected components.

If the origin is not a cluster point of $Z(t_l(x_1, x_2)) \cap \mathcal{V}$, then t_l has constant sign over some set of \mathcal{B}_2 . Otherwise, writing

$$G_i(x_1, x_2, t_l) = \sum_{j=0}^{m_i} g_{ij}(x_1, x_2) t_l^j, \quad i = 1, 2,$$

we can consider the following three cases:

- (1) $g_{20} \neq 0$ in \bar{K} ;
- (2) $g_{10} \neq 0$ and $g_{20} = 0$ in \bar{K} ;
- (3) $g_{10} = g_{20} = 0$ in \bar{K} ,

taking care to choose \mathcal{V} such that also the g_{i0} 's, i=1,2, are defined and have constant sign.

Case 1. Let Σ be a connected component of $Z(t_i(x_1, x_2)) \cap \mathcal{V}$ with the origin as a cluster point. Σ is the graph of an analytic function φ defined on the interval $I = \Pi_1(\Sigma)$ where Π_1 is the canonical projection. For every $a \in I$, $t_i(a, x_2)$ is analytic, so, by the assumption over g_{20} , it has at most a finite number of zeros $b_1 < b_2 < \cdots < b_n$. On the other hand, $t_i(a, b_j) = t_i(a, b_{j+1}) = 0$ contradicts the fact that $\operatorname{sign}(\partial t_i/\partial x_2)(a, b_j) = \operatorname{sign}(\partial t_i/\partial x_2)(a, b_{j+1})$. So n = 1. The function φ turns out to be analytic by the implicit function theorem. $t_i(x_1, \varphi(x_1)) = 0$, hence, by property (6), $\varphi \in P(I)$. So $C_2(\varphi, I) \in \mathcal{B}_2$.

Case 2. In this case the origin is not a cluster point of a connected component of $Z(t_i(x_1, x_2)) \cap \mathcal{V}$. In fact the equation of the tangent line to the curve $t_i(x_1, x_2) = 0$ in any point (a, b) such that $(a, b) \in Z(t_i(x_1, x_2)) \cap \mathcal{V}$ is $x_1 = a$. So, by the properties of analytic functions and the assumption over g_{10} , $Z(t_i(x_1, x_2)) \cap \mathcal{V}$ is formed by a finite number of points or by a vertical segment.

Case 3. If $(a, b) \in Z(t_l(x_1, x_2)) \cap \mathcal{V}$, using the Taylor series with center (a, b) for the analytic function $t_l(x_1, x_2)$, we obtain that $t_l(x_1, x_2) = 0$ in a neighbourhood of (a, b). So, by the analytic continuation principle, $t_l(x_1, x_2) = 0$ over \mathcal{V} .

So $\bar{K}(y)$ turns out to be an ordered field over \mathscr{B}_2 . Moreover, $\bar{K}(y)$ is closed under the operator $\partial/\partial x_i$, i = 1, 2, that is, $\bar{K}(y)$ is a 2-variable Hardy field. By properties (7), (4) and (3), $\bar{K}(y)$ is a (*C*, *P*) Hardy field. \Box

Corollary 2.9. Let K be any (C, P) Hardy field over \mathcal{B}_2 . There exist (C, P) Hardy fields L over \mathcal{B}_2 such that $k \subseteq L$ and if $y : A \to \mathbb{R}$, $A \in \mathcal{B}_2$ is an analytic solution of the system $\partial y/\partial x_i = F_i(x_1, x_2, y)$, $F_i(x_1, x_2, Y) \in L[Y]$, i = 1, 2, then $y \in L$.

Proof. The proof follows by Zorn's lemma for the inductive class of (C, P) Hardy fields containing K, using Theorem 2.8. \Box

Remark 2.10. L is exponentially and logarithmically closed.

3. The field of functions H_2 over \mathscr{B}_2

Let K_0 be any (C, P) Hardy field. Following Hardy's work [1] and using Theorem 2.8 we construct the extension $H(K_0)$ of K_0 . $H(K_0)$ is the class of the analytic functions $f: A \to \mathbb{R}$, $A \in \mathcal{B}_2$ such that there exist (C, P) Hardy fields K_1, \ldots, K_n with $K_{i+1} = K_i(a_{i+1})$ where $a_{i+1} = \log |z_i|$ or $a_{i+1} = \exp(z_i)$, $z_i \in K_i$, $0 \le i \le n-1$, for which $f \in K_n$.

Proposition 3.1. $H(K_0)$ is a (C, P) Hardy field.

Proof. The proof follows directly from the construction. We note that $H(K_0)$ is the smallest (C, P) Hardy field exponentially and logarithmically closed extending K_0 .

Definition 3.2. The field of functions H_2 over \mathscr{B}_2 is the extension $H(\mathbb{R}_2)$ of the (C, P) Hardy field \mathbb{R}_2 of 2-variable rational functions.

Denoting by \mathscr{L} the special (C, P) system, defined by Van Den Drics, and using his decomposition theorem for the zeroset of 2-variable functions [9, Section IX], we can state that the ring of germs of all 2-variable functions following the filter basis \mathscr{B}_2 is a 2-variable real closed \mathscr{L} -Hardy field. This field is exponentially and logarithmically closed. Then, working as in Section 2, see also [6], we define the filter basis \mathscr{B}_3 and following the same pattern we can prove Theorem 2.8 for 3-variable \mathscr{L} -Hardy fields over \mathscr{B}_3 .

We observe that the constructions and results of Section 2, obtained working in the point p = 0, above the graph of the 'reference' function y = 0, can be generalized if p is any point of \mathbb{R}^2 , the 'reference' function y = f(x) is any function of K_1 , 'converging' to p, taking \mathcal{B}_2 above or below the graph of y = f(x).

References

- [1] N. Bourbaki, Eléments de Mathematique 12, Livre IV, Paris (1951) 107-126.
- [2] A.G. Khovanskii, Fewnomials and Pfaff manifolds, Proc. Int. Congress of Mathematicians, Warsaw 1983.
- [3] A.G. Khovanskii, On a class of systems of transcendental equations, Soviet Math. Dokl. 22 (1980) 762-763.
- [4] A.G. Khovanskii, Real analytic varities with the finitess property and complex abelian integrals, Functorial Anal. Appl. 18 (1984) 119-127 (translated from Russian).
- [5] L. Pasini, Generalized Hardy fields in several variables, Notre Dame J. Formal Logic 29 (2) (1988) 193-197.
- [6] L. Pasini and C. Marchiò, Nash Hardy fields in several variables, Note di Matematica 8 (1988) 231-240.
- [7] J.J. Risler, Complexité et Géométrie Réelle, Séminaire Bourbaki 637, 1984.
- [8] J.C. Tougeron, Sur certaines algèbres de fonctions analytiques, Publ. de l'Université Paris VII, 1987, no. 24.
- [9] L. Van Den Dries, Tarski's problem and Pfaffian functions, in J.B. Paris et al., Logic Colloquium '84, Studies in Logic and the Foundations of Mathematics 120 (North-Holland, Amsterdam, 1986) 59-90.