Exact E mbedding Functors for M odule C ategories and Submodule Lattice Q uasivarieties*

George Hutchinson
metadata, citation and similar papers at core.ac.uk

Communicated by Kent R. Fuller

R eceived September 1, 1998

1. INTRODUCTION

Given rings with unit R and S, we will write $R \preceq S$ if there exists an exact embedding functor $F: R$-M od $\rightarrow S$-M od. M any equivalent or sufficient conditions for the existence of such F are known. Let $\mathscr{L}(R)$ denote the quasivariety of lattices generated by the family of all submodule lattices $\operatorname{Su}\left({ }_{R} M\right),{ }_{R} M$ a left R-module. A lattice L is in $\mathscr{L}(R)$ if and only if it is isomorphic to a sublattice of some $\operatorname{Su}_{\left.R_{R} M\right)}$. The inclusion $\mathscr{L}(R) \subseteq$ $\mathscr{L}(S)$ is known to be equivalent to $R \preceq S$. The theory of quasivarieties $\mathscr{L}(R)$ lies on the border of lattice theory and abelian category theory. The previous investigations in this field include [4-7, 11-22].

Let \mathscr{R} denote the class (and category) of all rings with unit. The ring homomorphisms of \mathscr{R} will preserve ring units. In the following discussion, rings will always be assumed to have 1 ; i.e., they will be objects in \mathscr{R}. The relation $R \geqq S$ is a reflexive and transitive relation on \mathscr{R}. So, we can define an induced equivalence: $R \sim S$ if and only if $R \preceq S$ and $S \preceq R$. E very ring is equivalent to some denumerable ring. There are continuously many different equivalence classes of rings, even if we restrict consideration to all rings with a fixed characteristic p^{k}, p prime and $k \geq 2$.
Let \mathscr{W} denote the set of all quasivarieties of lattices, which is a complete lattice under inclusion. If \mathscr{R}^{\prime} is any nonempty class of rings, let $\mathscr{W}\left(\mathscr{R}^{\prime}\right)$ denote the subset of \mathscr{W} consisting of all quasivarieties equal to $\mathscr{L}(R)$ for some R in $\mathscr{R}^{\prime} . \mathscr{W}(\mathscr{R})$ is a join subsemilattice of \mathscr{W}, with $\mathscr{L}(R \times S)$ equal

[^0]to the join of $\mathscr{L}(R)$ and $\mathscr{L}(S)$ in \mathscr{W} for all R and S in $\mathscr{R} . \mathscr{W}$ and $\mathscr{W}(\mathscr{R})$ have continuously many elements. Observe that $\mathscr{W}(R)$ encodes the relations $R \precsim S$ and $R \sim S$ for rings R and S in \mathscr{R} by the equivalents $\mathscr{L}(R) \subseteq \mathscr{L}(S)$ and $\mathscr{L}(R)=\mathscr{L}(S)$.

Let \mathscr{R}_{c} denote the class of all commutative rings and $\mathscr{R}_{c m}$ the class of commutative rings with characteristic m ($m=0$ or $m>0$). Let \mathscr{R}_{m} denote the class of all rings with characteristic m. Obviously $\mathscr{R}_{\mathscr{C}}, \mathscr{R}_{c m}$, and \mathscr{R}_{m} admit direct products, and so $\mathscr{W}\left(\mathscr{R}_{c}\right), \mathscr{W}\left(\mathscr{R}_{c m}\right)$, and $\mathscr{W}\left(\mathscr{R}_{m}\right)$ are join subsemilattices of \mathscr{W}.
A fter reviewing some known results in Section 2, we show in Section 3 that $\mathscr{W}\left(\mathscr{R}_{c}\right)$ is a complete lattice. Here, $\mathscr{L}(R \otimes S)$ is a glb for $\mathscr{L}(R)$ and $\mathscr{L}(S)$ in $\mathscr{W}\left(\mathscr{R}_{c}\right)$, and the glb of an infinite family $\left\{\mathscr{L}\left(R_{j}\right)\right\}_{j \in J}$ in $\mathscr{W}\left(\mathscr{R}_{c}\right)$ can be formed using a suitable direct limit of a sequence of finite tensor products of rings in $\left\{R_{j}\right\}_{j \in J}$.

In Section 4, we consider $\mathscr{L}(R)$ for rings R with characteristic zero. For each prime p, we construct a ring R_{p} which either has characteristic p^{k} for some $k \geq 0$ or is equal to the localization of the integers \mathbf{Z} at the prime ideal $p \mathbf{Z}$. If \mathbf{Q} is the field of rationals, $\mathscr{L}(\mathbf{Q}) \subseteq \mathscr{L}(R)$ if and only if R is in \mathscr{R}_{0}. It is proved that $\mathscr{L}(R)$ is the join in \mathscr{W} of $L(\mathbf{Q})$ and the $\mathscr{L}\left(R_{p}\right)$ for all primes p. In effect, $\mathscr{L}(R)$ is determined by aggregating its properties with respect to each prime p.

2. TERMINOLOGY AND KNOWN RESULTS

Based mainly on [14, 17, 22] and also on standard books [1, 2, 9, 10, 23, 24], now we review the notions and statements that will be used to achieve the main results.

Let char (R) denote the characteristic of a ring R.
2.1. (a) If R and S are rings with unit, then $\mathscr{L}(R) \subseteq \mathscr{L}(S)$ if and only if there exists an exact embedding functor $F: R-\mathrm{M} \mathrm{od} \rightarrow S$-M od [14, 17].
(b) If there is a ring homomorphism $f: R \rightarrow S$, then $\mathscr{L}(S) \subseteq \mathscr{L}(R)$ [14, Proposition 2].
(c) If ${ }_{S} M_{R}$ is an (S, R)-bimodule such that M_{R} is a faithfully flat right R-module, then $\mathscr{L}(R) \subseteq \mathscr{L}(S)$. (The tensor functor ${ }_{s} M_{R} \otimes_{R}-: R$ $\mathrm{Mod} \rightarrow S$-M od is then an exact embedding functor or cf. [14, Proposition 3].)
(d) If \mathscr{L}_{1} is in \mathscr{W} and \mathscr{L}_{0} is a class of lattices such that, for each lattice Horn formula $\Lambda, \mathscr{L}_{1} \vDash \Lambda$ implies $\mathscr{L}_{0} \vDash \Lambda$, then $\mathscr{L}_{0} \subseteq \mathscr{L}_{1}$.
(e) Suppose R is a ring and Λ is a universal Horn formula for lattices such that $\mathscr{L}(R) \vDash \Lambda$. Then there exists an (existentially quantified)
system of equations Γ for rings with unit such that $R \vDash \Gamma$, and if $S \vDash \Gamma$, then $\mathscr{L}(S) \vDash \Lambda$ [22].
(f) Suppose rings R and S have characteristic d and e, respectively, and $\mathscr{L}(R) \subseteq \mathscr{L}(S)$. If $e \neq 0$, then d divides e. If $d \neq 0$, then $\mathscr{L}(R) \subseteq$ $\mathscr{L}(S / d S)$ [14, Theorem 3].
(g) If R has prime characteristic p, the $\mathscr{L}(R)=\mathscr{L}(\mathbf{Z} / p \mathbf{Z})$. (U se 2.1(b) and (c) or cf. [14].)
(h) If $\left\{\mathscr{L}_{j}\right\}_{j \in J}$ is an infinite subfamily of \mathscr{W} and $\mathscr{L}=\mathrm{V}_{j \in J} \mathscr{L}_{j}$ in \mathscr{W}, then, for each lattice Horn formula $\Lambda, \mathscr{L} \vDash \Lambda$ if and only if $\mathscr{L}_{j} \vDash \Lambda$ for all j in J.
(i) Suppose R is a ring, $S=\prod_{j \in J} S_{j}$ is a product of a nonempty family $\left\{S_{j}\right\}_{j \in J}$ of rings, and there is a family of exact functors

$$
\left\{F_{j}: R-\mathrm{M} \text { od } \rightarrow S_{j}-\mathrm{M} \circ \mathrm{od}\right\}_{j \in J}
$$

If $\left\{F_{j}(M)\right\}_{j \in J}$ contains some nonzero S_{j}-module whenever M is a nonzero R-module, then there exists an exact embedding functor $F: R$-M od $\rightarrow S$ Mod. (As an additive group, take $F(M)$ isomorphic to $\oplus_{j \in J} F_{j}(M)$. Use projections $\pi_{j}: S \rightarrow S_{j}$ to make each $F_{j}(M)$ an S-module, hence $F(M)$ an S-module. Suppose $f: M \rightarrow N$ in R-Mod. Define $F(f): F(M) \rightarrow F(N)$ from the S-homomorphisms $F_{j}(f): F_{j}(M) \rightarrow F_{j}(N)$ as usual. Then F is an exact embedding functor.)

Hereafter, we will let char (R) denote the characteristic of R in \mathscr{R}.
2.2. Definitions. Tensor products $A \otimes B$ are taken over the integers \mathbf{Z} unless otherwise indicated. Recall that $R \otimes S$ is a ring if R and S are rings.
(a) The tensor product $R \otimes S$ over \mathbf{Z} is a coproduct for commutative rings R and S relative to \mathscr{R}_{c}. That is, there are homomorphisms α_{R} : $R \rightarrow R \otimes S$ and $\alpha_{S}: S \rightarrow R \otimes S$ such that, given any homomorphisms f : $R \rightarrow T$ and $g: S \rightarrow T$ in \mathscr{R}_{c}, there exists a unique homomorphism h : $R \otimes S \rightarrow T$ such that $h \alpha_{R}=f$ and $h \alpha_{S}=g$. We have $\alpha_{R}(r)=r \otimes 1$ and $\alpha_{S}(s)=1 \otimes s$. We use the matrix notation $h=[f g]$.
(b) If R is commutative, then $\mathscr{L}(R)=\mathscr{L}(R \otimes R)$ by $2.1(\mathrm{~b})$ and the homomorphisms $\alpha_{R}: R \rightarrow R \otimes R$ and $\left[1_{R} 1_{R}\right]: R \otimes R \rightarrow R$ of 2.2(a).
(c) For R and S in $\mathscr{R}_{c}, R \otimes S$ and $S \otimes R$ are isomorphic, using isomorphisms obtained from the coproduct universal properties.
2.3. (a) If R and S are any rings, then $\mathscr{L}(R \times S)$ is the join of $\mathscr{L}(R)$ and $\mathscr{L}(S)$ in \mathscr{W} [7, Proposition 4.2].
(b) If R and S have characteristics d and e, respectively, then $R \times S$ has characteristic equal to the Icm of d and e (defined as 0 if d or e is 0).
2.4. The direct limit of a sequence of rings

$$
R_{1} \rightarrow R_{2} \rightarrow R_{3} \rightarrow \cdots
$$

is defined up to isomorphism by the colimit universal property for the above commutative diagram. Formally, a direct system $\left\{f_{i}^{j}: R_{i} \rightarrow R_{j}\right\}_{1 \leq i \leq j}$ of homomorphisms is defined such that $f_{j}^{k} f_{i}^{j}=f_{i}^{k}$ for all $1 \leq i \leq j \leq k$ and $f_{i}^{i}=1_{R_{i}}$ for $i \geq 1$. The direct limit R of this direct system has associated homomorphisms $f_{i}: R_{i} \rightarrow R$ for each $i \geq 1$, which satisfy $f_{i}=$ $f_{j} f_{i}^{j}$ for $1 \leq i \leq j$. The colimit property is defined as follows: if $g_{i}: R_{i} \rightarrow S$ for $i \geq 1$ such that $g_{i}=g_{j} f_{i}^{j}$ for $1 \leq i \leq j$, then there exists a unique homomorphism $h: R \rightarrow S$ such that $h f_{i}=g_{i}$ for all $i \geq 1$. We can directly construct R by taking $X=\mathrm{U}_{i \geq 1} R_{i}$ to be a pairwise disjoint union, forming the equivalence relation on θ on X generated by all pairs $\left\langle u, f_{i}^{j}(u)\right\rangle$ for $1 \leq i \leq j$ and u in R_{i}, and proving that there exists a unique ring structure for the quotient set $R=X / \theta$ such that each $f_{i}: R_{i} \rightarrow R$ given by $f_{i}(u)=\theta[u]$ for $i \geq 1$ and u in R_{i} is a homomorphism. We can verify:
(a) $f_{i}\left[R_{i}\right] \subseteq f_{j}\left[R_{j}\right]$ if $1 \leq i \leq j$, and $R=\bigcup_{i \geq 1} f_{i}\left[R_{i}\right]$.
(b) For u in R_{i} and v in $R_{j}, f_{i}(u)=f_{j}(v)$ in R if and only if there exists $n \geq \max \{i, j\}$ such that $f_{i}^{k}(u)=f_{j}^{k}(v)$ for all $k \geq n$.
2.5. Definition. Recall that \mathbf{Z} is initial in \mathscr{R}, and let $\iota_{R}: \mathbf{Z} \rightarrow R$ denote the unique homomorphism $\mathbf{Z} \rightarrow R$. Elements of $\iota_{R}[\mathbf{Z}]$ are called \mathbf{Z}-images in R, and are central elements of R. Define $n \cdot r$ for integers $n>0$ and r in R as the sum of n terms r. Also, let $0 \cdot r=0$ and $n \cdot r=-(|n| \cdot r)$ if $n<0$. So, $\iota_{R}(n)=n \cdot 1_{R}$ for all n in \mathbf{Z}.

Let P denote the set of prime numbers and P_{n} the set of the first n primes $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ for $n \geq 0$. For p prime and R in \mathscr{R}, let $\operatorname{dgr}_{R}(p)=k$ if $k \geq 0$ is the smallest integer such that $R \vDash(\exists x)\left(p^{k+1} \cdot x=p^{k} \cdot 1\right)$. (The formula is equivalent to requiring that $\iota_{R}\left(p^{k+1}\right)$ divides $\iota_{R}\left(p^{k}\right)$ in R.) If there is no such k, let $\operatorname{dgr}_{R}(p)=+\infty$.
(a) ι_{R} is one-to-one if and only if $\operatorname{char}(R)=0$. If $m>0$, then there is a homomorphism $\mathbf{Z} / m \mathbf{Z} \rightarrow R$ if and only if $\operatorname{char}(R)$ divides m. This homomorphism is one to one if and only if $m=\operatorname{char}(R)$.
(b) For any ring $R, \operatorname{dgr}_{R}(p)=0$ if and only if $\iota_{R}(p)$ is a unit of R.
(c) If $\operatorname{char}(R)=m>0$ and m has prime factorization $p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{t}^{k_{t}}$, then $\operatorname{dgr}_{R}\left(p_{i}\right)=k_{i}$ for $i \leq t$ and $\operatorname{dgr}_{R}\left(p_{i}\right)=0$ for $i>t$ [21, Proposition 1].
(d) If R and S are in \mathscr{R} and $\mathscr{L}(R) \subseteq \mathscr{L}(S)$, then $\operatorname{dgr}_{R}(p) \leq \operatorname{dgr}_{S}(p)$ for all p in P. (This follows from [21, Proposition 6].)
2.6. Definitions. For $X \subseteq P$, let $\mathbf{Q}(X)$ denote the subring of the rationals generated by $\{1\} \cup\{1 / p: p \in X\}$. Note that $X \rightarrow \mathbf{Q}(X)$ defines a one-to-one correspondence between subsets of P and subrings of \mathbf{Q} containing \mathbf{Z}. Let $\mathbf{Z}_{\langle p\rangle}=\mathbf{Q}(P-\{p\})$, which equals the localization of \mathbf{Z} at $p \mathbf{Z}$ for p prime.
(a) If $X \subseteq Y \subseteq P$, then $\mathbf{Q}(X)$ is a subring of $\mathbf{Q}(Y)$, and $\mathscr{L}(\mathbf{Q}(Y)) \subseteq$ $\mathscr{L}(\mathbf{Q}(X))$.
(b) For $X \subseteq P, p$ in $P-X$, and $k \geq 0, \mathbf{Q}(X) / p^{k} \mathbf{Q}(X)$ is isomorphic to $\mathbf{Z} / p^{k} \mathbf{Z}$.
(c) If $X \subseteq P$, then any torsion-free $\mathbf{Q}(X)$-module is flat, since $\mathbf{Q}(X)$ is a Prüfer ring [24, p. 129].
(d) If A is an abelian group with an element of infinite order, then $\mathbf{Q} \otimes A \neq 0$. (\mathbf{Q} is a flat \mathbf{Z}-module, so $\mathbf{Q} \otimes A$ has a submodule isomorphic to $\mathbf{Q} \otimes \mathbf{Z}$.)
(e) If A has an element of prime order p and $p \notin X \subset P$, then $\mathbf{Q}(X) \otimes A \neq 0$. (Since $\mathbf{Q}(X)$ is \mathbf{Z}-flat, $\mathbf{Q}(X) \otimes A$ has a subgroup isomorphic to $\mathbf{Q}(X) \otimes(\mathbf{Z} / p \mathbf{Z})$, hence to $\mathbf{Q}(X) / p \mathbf{Q}(X)$, hence to $\mathbf{Z} / p \mathbf{Z}$ by 2.6(b). So, $\mathbf{Q}(X) \otimes A \neq 0$.

3. LATTICE STRUCTURE FOR SUBMODULE LATTICE QUASIVARIETIES

We first obtain meets in $\mathscr{W}\left(\mathscr{R}_{c}\right)$.
3.1. Proposition. If R, S, and T are commutative rings and $\mathscr{L}(R) \subseteq$ $\mathscr{L}(S)$, then $\mathscr{L}(R \otimes T) \subseteq \mathscr{L}(S \otimes T)$.

Proof. Assuming the hypotheses, there are exact embedding functors $F: R \otimes T$-M od $\rightarrow R$-M od and $G: R$-M od $\rightarrow S$-M od, by $2.1(\mathrm{a})$ and (b) and 2.2(a). Note that $F(M)=M$ and $F(f)=f$ as sets and functions. Let M be an $R \otimes T$-module. So, $r v$ in $F(M)$ for r in R and v in M equals $\left(r \otimes 1_{T}\right) v$ in M. Now, $G F(M)$ is an S-module, and we define an $S \otimes T$ module $H(M)$ which equals $G F(M)$ as an additive group. For t in T, let $t_{M}: M \rightarrow M$ in $R \otimes T$-M od be given by $t_{M}(v)=\left(1_{R} \otimes t\right) v$. Then $t \mapsto t_{M}$ is a ring homomorphism from T into the ring of endomorphisms $M \rightarrow M$ in $R \otimes T$-M od. If $f: M \rightarrow N$ in $R \otimes T$-M od, then $f t_{M}=t_{N} f$ for each t in T.
The formula $(s \otimes t) w=s\left(G F\left(t_{M}\right)(w)\right)$ for s in S, t in T, and w in $H(M)$ uniquely determines a well-defined $S \otimes T$-module structure for $H(M)$. Some checking shows that $H: R \otimes T$-M od $\rightarrow S \otimes T$-M od defined
by $H(M)$ and $H(f)=G F(f)$ for $f: M \rightarrow N$ in $R \otimes T$-Mod is an exact embedding functor. But then $\mathscr{L}(R \otimes T) \subseteq \mathscr{L}(S \otimes T)$ by 2.1(a). Q.E.D
3.2. Proposition. If R and S are commutative rings, then $\mathscr{L}(R \otimes S)$ is a glb for $\mathscr{L}(R)$ and $\mathscr{L}(S)$ in $\mathscr{W}\left(\mathscr{R}_{c}\right)$.

Proof. By 2.1(b) and 2.2(a), $\mathscr{L}(R \otimes S)$ is contained in $\mathscr{L}(R)$ and $\mathscr{L}(S)$. Suppose $\mathscr{L}(T) \subseteq \mathscr{L}(R)$ and $\mathscr{L}(T) \subseteq \mathscr{L}(S)$ for rings R, S, and T in \mathscr{R}_{c}. U sing 2.1(b), 2.2(b) and (c), and 3.1, we have

$$
\mathscr{L}(T)=\mathscr{L}(T \otimes T) \subseteq \mathscr{L}(S \otimes T)=\mathscr{L}(T \otimes S) \subseteq \mathscr{L}(R \otimes S)
$$

So, $\mathscr{L}(R \otimes S)$ is a glb for $\mathscr{L}(R)$ and $\mathscr{L}(S)$ in $\mathscr{W}\left(\mathscr{R}_{c}\right)$.
Q.E.D.

Suppose $\left\{R_{j}\right\}_{j \geq 1}$ is an ascending chain of subrings of R with union R. By $2.1(\mathrm{~b})$, (d), and (e), we can see that $\left\{\mathscr{L}\left(R_{j}\right)\right\}_{j \geq 1}$ is a descending chain in $\mathscr{W}(\mathscr{R})$ such that $\mathscr{L}(R)=\bigcap_{j \geq 1} \mathscr{L}\left(R_{j}\right)$. We extend this to direct limits of sequences.
3.3. Proposition. Suppose $\left\{R_{i}\right\}_{i \geq 1}$ and $\left\{f_{i}^{j}: R_{i} \rightarrow R_{j}\right\}_{1 \leq i \leq j}$ are a direct system formed from a sequence of rings, and R is the direct limit of the sequence with associated homomorphisms $\left\{f_{i}: R_{i} \rightarrow R\right\}_{i \geq 1}$. Then $\left\{\mathscr{L}\left(R_{i}\right)\right\}_{i \geq 1}$ is a descending sequence of lattice quasivarieties, and $\mathscr{L}(R)=\bigcap_{i \geq 1} \mathscr{L}\left(R_{i}\right)$.

Proof. A ssuming the hypotheses, $\left\{\mathscr{L}\left(R_{i}\right)\right\}_{i \geq 1}$ is a descending chain, and each $\mathscr{L}\left(R_{i}\right) \supseteq \mathscr{L}(R)$ by $2.1(\mathrm{~b})$. Let $\mathscr{L}_{0}=\bigcap_{i \geq 1} \mathscr{L}\left(R_{i}\right)$, so $\mathscr{L}(R) \subseteq \mathscr{L}_{0}$. Suppose Λ is a Horn formula such that $\mathscr{L}(R) \vDash \Lambda$. By 2.1(e), there is an existential system of ring equations

$$
\left(\exists x_{1}, x_{2}, \ldots, x_{n}\right) \Gamma\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

such that $R \vDash \Gamma$, and $\mathscr{L}(S) \vDash \Lambda$ whenever $S \vDash \Gamma$. Choose $r_{1}, r_{2}, \ldots, r_{n}$ in R so that $\Gamma\left(r_{1}, \ldots, r_{n}\right)$ is true. By 2.4(a), there exists $s \geq 1$ such that $r_{i} \in f_{s}\left[R_{s}\right]$ for all $i \leq n$. Choose w_{i} such that $f_{s}\left(w_{i}\right)=r_{i}$ for $i \leq n$. Suppose $g\left(x_{1}, x_{2}, \ldots, x_{n}\right)=h\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is an equation of Γ. Since $g\left(r_{1}, \ldots, r_{n}\right)$ $=h\left(r_{1}, \ldots, r_{n}\right)$, there exists a $t \geq s$ such that

$$
f_{s}^{t}\left(g\left(w_{1}, \ldots, w_{n}\right)\right)=f_{s}^{t}\left(h\left(w_{1}, \ldots, w_{n}\right)\right)
$$

by 2.4(b). Since Γ contains finitely many equations, we can choose u sufficiently large so that $R_{u} \vDash \Gamma$ using $x_{i}=f_{s}^{u}\left(w_{i}\right)$ for $i \leq n$. But then $\mathscr{L}\left(R_{u}\right) \vDash \Lambda$, so $\mathscr{L}_{0} \vDash \Lambda$. This proves $\mathscr{L}_{0} \subseteq \mathscr{L}(R)$ by $2.1(\mathrm{~d})$, hence $\mathscr{L}(R)=$ \mathscr{L}_{0}.
Q.E.D.
3.4. Theorem. $\mathscr{W}\left(\mathscr{R}_{c}\right)$ is a complete lattice. For R and S in \mathscr{R}_{c}, $\mathscr{L}(R \times S)$ and $\mathscr{L}(R \otimes S)$ are the lub and glb, respectively, of $\mathscr{L}(R)$ and $\mathscr{L}(S)$ in $\mathscr{W}\left(\mathscr{R}_{c}\right)$. If $\left\{R_{k}\right\}_{k \in K}$ is an infinite family of rings in \mathscr{R}_{c}, then there
exists a glb $\mathscr{L}(S)$ for $\left\{\mathscr{L}\left(R_{k}\right)\right\}_{k \in K}$ in $\mathscr{W}\left(\mathscr{R}_{c}\right)$, and $\mathscr{L}(S)=\bigcap_{i \geq 1} \mathscr{L}\left(S_{i}\right)$ for a descending sequence $\left\{\mathscr{L}\left(S_{i}\right)\right\}_{i \geq 1}$ such that each S_{i} is a tensor product of finitely many rings in $\left\{R_{k}\right\}_{k \in K}$.

Proof. By 2.3(a), we know that $\mathscr{W}\left(\mathscr{R}_{c}\right)$ is a join subsemilattice of \mathscr{W} such that $\mathscr{L}(R \times S)=\mathscr{L}(R) \vee \mathscr{L}(S)$. Also, $\mathscr{L}(R \otimes S)$ is a glb for $\mathscr{L}(R)$ and $\mathscr{L}(S)$ in $\mathscr{W}\left(\mathscr{R}_{c}\right)$ by 3.2 . Since $\mathscr{L}(\mathbf{Z})$ is the largest element of $\mathscr{W}\left(\mathscr{R}_{c}\right)$ by 2.1(b), $\mathscr{W}\left(\mathscr{R}_{c}\right)$ is complete if it admits infinite meets.

Suppose $\left\{R_{k}\right\}_{k \in K}$ is an infinite subfamily of \mathscr{R}_{c}. Let $H=\left\{\Lambda_{i}\right\}_{i \geq 1}$, where H consists exactly of H orn formulas Λ_{i} satisfied in some $\mathscr{L}\left(T_{i}\right)$, where T_{i} is a finite tensor product of elements of $\left\{R_{k}\right\}_{k \in K}$. Define $\left\{S_{i}\right\}_{i \geq 1}$ by $S_{i}=T_{1} \otimes T_{2} \otimes \cdots \otimes T_{i}$. For $i<j, S_{j}=S_{i} \otimes T_{i j}$ for $T_{i j}=T_{i+1} \otimes T_{i+2}$ $\otimes \cdots \otimes T_{j}$, and so there is a ring homomorphism $\varphi_{i}^{j}: S_{i} \rightarrow S_{j}$ by 2.2(a). Clearly the S_{i} and φ_{i}^{j} form a direct system (with $\varphi_{i}^{i}=1_{S_{i}}$), and so there is a direct limit S and homomorphisms $\varphi_{i}: S_{i} \rightarrow S$ for each $i \geq 1$. All S_{i} and S are in \mathscr{R}_{c} by 2.2(a) and 2.4(a). By 3.3, $\mathscr{L}(S)=\bigcap_{i \geq 1} \mathscr{L}\left(S_{i}\right)$. By 2.1(d) and 3.2, $\mathscr{L}(T) \subseteq \mathscr{L}\left(R_{k}\right)$ for all k in K if and only if $\mathscr{L}(T) \subseteq \mathscr{L}\left(S_{i}\right)$ for all $i \geq 1$. So, $\mathscr{L}(S)$ is a glb for $\left\{\mathscr{L}\left(R_{k}\right)\right\}_{k \in K}$.
Q.E.D.
3.5. Corollary. If \mathscr{R}^{\prime} is a class of commutative rings such that $\mathscr{W}\left(\mathscr{R}^{\prime}\right)$ has a largest element and \mathscr{R}^{\prime} admits direct products, tensor products, and direct limits of sequences, then $\mathscr{W}\left(\mathscr{R}^{\prime}\right)$ is a sublattice of $\mathscr{W}\left(\mathscr{R}_{c}\right), \mathscr{W}\left(\mathscr{R}^{\prime}\right)$ is complete, and the inclusion $\mathscr{W}\left(\mathscr{R}^{\prime}\right) \rightarrow \mathscr{W}\left(\mathscr{R}_{c}\right)$ preserves infinite meets.
3.6. Proposition. For R in $\mathscr{R}, \mathscr{L}(\mathbf{Q}) \subseteq \mathscr{L}(R)$ if and only if $\operatorname{char}(R)=0$.

Proof. The forward implication is by 2.1(f). A ssume $\operatorname{char}(R)=0$, so ${ }_{R} V_{\mathbf{Q}}={ }_{R} R \otimes \mathbf{Q}_{\mathbf{Q}} \neq 0$ by $2.6(\mathrm{~d})$. Since $V_{\mathbf{Q}}$ is free, $\mathscr{L}(\mathbf{Q}) \subseteq \mathscr{L}(R)$ by 2.1(c).
Q.E.D.
3.7. Corollary. For all $m \geq 0, \mathscr{W}\left(\mathscr{R}_{c m}\right)$ is a complete sublattice of $\mathscr{W}\left(\mathscr{R}_{c}\right)$, and the inclusion $\mathscr{W}\left(\mathscr{R}_{c m}\right) \rightarrow \mathscr{W}\left(\mathscr{R}_{c}\right)$ preserves both infinite joins and meets.

Proof. By 2.3(b), $\mathscr{W}\left(\mathscr{R}_{c m}\right)$ is a join subsemilattice of $\mathscr{W}\left(\mathscr{R}_{c}\right)$. Now $\mathscr{R}_{c m}$ admits tensor products. This is by 3.6 and 3.2 if $m=0$. If $m>0$, then for $\mathbf{Z}(m)=\mathbf{Z} / m \mathbf{Z}$ we have additive group decompositions $R \approx \mathbf{Z}(m) \oplus M$ and $S \approx \mathbf{Z}(m) \otimes M^{\prime}$ if R and S are in \mathscr{R}_{m}. So, $\mathscr{W}\left(\mathscr{R}_{c m}\right)$ is a sublattice of $\mathscr{W}\left(\mathscr{R}_{c}\right)$, and $\mathscr{L}(\mathbf{Z} / m \mathbf{Z})$ is a largest element for $\mathscr{W}\left(\mathscr{R}_{c m}\right)$. By 2.4(b), a direct limit of a sequence of rings in $\mathscr{R}_{c m}$ has characteristic m, and so $\mathscr{W}\left(\mathscr{R}_{c m}\right)$ is complete and the inclusion $\mathscr{W}\left(\mathscr{R}_{c m}\right) \rightarrow \mathscr{W}\left(\mathscr{R}_{c}\right)$ preserves infinite meets.

Suppose $\left\{R_{k}\right\}_{k \in K}$ is an infinite subfamily of $\mathscr{R}_{c m}$. Let $\left\{\mathscr{L}\left(S_{j}\right)\right\}_{j \in J}$ be the subset of $\mathscr{W}\left(\mathscr{R}_{c}\right)$ such that, for each $j, \mathscr{L}\left(S_{j}\right) \supseteq \mathscr{L}\left(R_{k}\right)$ for all k in K. Let $J_{0}=\left\{j \in J: S_{j} \in \mathscr{R}_{c m}\right\}$. Let $\mathscr{L}(S)$ be the glb in $\mathscr{W}\left(\mathscr{R}_{c m}\right)$ of $\left\{\mathscr{L}\left(S_{j}\right): j \in J_{0}\right\}$. If $m=0$, then $J=J_{0}$ by $2.1(\mathrm{f})$, and $\mathscr{L}(S)$ is the lub of $\left\{\mathscr{L}\left(R_{k}\right)\right\}_{k \in K}$ in $\mathscr{W}\left(\mathscr{R}_{c}\right)$. If $m \neq 0$, then $\mathscr{L}\left(R_{k}\right) \subseteq \mathscr{L}\left(S_{j} / m S_{j}\right) \subseteq \mathscr{L}\left(S_{j}\right)$ for $k \in K$ and $j \in J$,
and $\mathscr{L}\left(S_{j} / m S_{j}\right)=\mathscr{L}\left(S_{q}\right)$ for some q in J_{0}. So, $\mathscr{L}(S)$ is also the glb for $\left\{\mathscr{L}\left(S_{j}\right)\right\}_{j \in J}$ in $\mathscr{W}\left(\mathscr{R}_{c}\right)$, and it equals the lub for $\left\{\mathscr{L}\left(R_{k}\right)\right\}_{k \in K}$ in $\mathscr{W}\left(\mathscr{R}_{c}\right)$. Therefore, the inclusion $\mathscr{W}\left(\mathscr{R}_{c m}\right) \rightarrow \mathscr{W}\left(\mathscr{R}_{c}\right)$ preserves infinite joins also. Q.E.D.

It is not known whether $\mathscr{L}(R \otimes S)$ is a glb for $\mathscr{L}(R)$ and $\mathscr{L}(S)$ in $\mathscr{W}(\mathscr{R})$. In particular, $\mathscr{L}(R) \subseteq \mathscr{L}(R \otimes R)$ might not hold for noncommutative R.

Let $R \cdot S$ denote the (noncommutative) coproduct of rings R and S in \mathscr{R}. E ssentially, $R \cdot S$ can be formed from a ring with unit, freely generated by a disjoint union $R \cup S$ and then divided by the two-sided ideal generated by relations true in R, relations true in S, and $1=1_{R}=1_{S}$. As in 2.2(a)-(c), $\mathscr{L}(R \cdot S)$ is a lower bound for $\mathscr{L}(R)$ and $\mathscr{L}(S)$ in $\mathscr{W}(\mathscr{R})$, $\mathscr{L}(R \cdot R)=\mathscr{L}(R)$, and $\mathscr{L}(R \cdot S)=\mathscr{L}(S \cdot R)$.

It is not clear whether $\mathscr{L}(R) \subseteq \mathscr{L}(S)$ implies $\mathscr{L}(R \cdot T) \subseteq \mathscr{L}(S \cdot T)$ in general. If this is true, then we can prove $\mathscr{L}(R \cdot S)$ is a glb for $\mathscr{L}(R)$ and $\mathscr{L}(S)$ in $\mathscr{W}(R)$ as in 3.2. In that case, adapting the proof of 3.4 shows that $\mathscr{W}(\mathscr{R})$ is a complete lattice, and similarly for 3.7 and $\mathscr{W}\left(\mathscr{R}_{m}\right)$.

4. SUBMODULE LATTICE QUASIVARIETIES FOR RINGS WITH CHARACTERISTIC ZERO

In the following, we show that $\mathscr{L}(R)$ for rings with characteristic zero can be determined from char $(R), \operatorname{dgr}_{R}(p)$ for primes p, and $\mathscr{L}\left(R_{p}\right)$ for certain associated rings R_{p} which have prime power characteristic.
4.1. Proposition. Suppose $\operatorname{dgr}_{R}(p)=k<+\infty$ for R in \mathscr{R}, so $p^{k+1} \cdot r$ $=p^{k} \cdot 1_{R}$ for some r in R. Choosing such an r, we have:
(a) If $n \geq k$ and $m \geq j>0$, then $\left(p^{j} \cdot 1_{R}\right)\left(p^{n} \cdot r^{m}\right)=p^{n} \cdot r^{m-j}$. Therefore, $p^{n} \cdot r^{n}=p^{k} \cdot r^{k}$ if $n>k$, and so $p^{k} \cdot r^{k}$ is an idempotent $\left(p^{2 k}\right.$. $r^{2 k}=p^{k} \cdot r^{k}$). Also, $e=1-p^{k} \cdot r^{k}$ is an idempotent, and $p^{k} \cdot e=0$. Note that $R / p^{k} R$ has characteristic p^{k} in this case.
(b) If $e=1-p^{k} \cdot r^{k}$ as above, then $h\left(x+p^{k} R\right)=$ exe determines a ring isomorphism h: $R / p^{k} R \rightarrow e R e$.
4.2. Definitions. Suppose R is in \mathscr{R} and p is a prime. Let R_{p} denote $\mathbf{Q}(P-\{p\})$ if $\operatorname{dgr}_{R}(p)=+\infty$, and $R / p^{k} R$ if $\operatorname{dgr}_{R}(p)=k, 0 \leq k<+\infty$.

Define $\operatorname{Reduct}(R)$ for R in \mathscr{R} to equal $\mathbf{Q} \times \prod_{p \in P} R_{p}$ if $\operatorname{char}(R)=0$, and to equal $\prod_{p \in P} R_{p}$ if $\operatorname{char}(R)>0$.
(a) If R is a ring and $\operatorname{char}(R)=m>0$, then $R \approx \operatorname{Reduct}(R)$. (If m has prime factorization $q_{1}^{k_{1}} q_{2}^{k_{2}} \cdots q_{n}^{k_{n}}$ for some primes q_{i} and $k_{i} \geq 1$, $i=1,2, \ldots, n$, then $R_{q_{i}}=R / q_{i}^{k_{i}} R$ for $i \leq n$ and R_{p} is trivial for other
primes p by 2.5 (b) and (c). Since Reduct $(R) \approx \prod_{i \leq n} R / q_{i}^{k_{i}} R$, we can apply the Chinese remainder theorem [1, Exercise 7.13, p. 103]. If $m=1$, then R and all R_{p} are trivial.)
(b) For each R in \mathscr{R}, $\operatorname{char}(R)=\operatorname{char}(R \operatorname{educt}(R))$ and R_{p} is isomorphic to $\operatorname{Reduct}(R)_{p}$ for each prime p. So, $\operatorname{Reduct}(\operatorname{Reduct}(R)) \approx \operatorname{Re}$ $\operatorname{duct}(R)$.
(c) If $\operatorname{dgr}_{R}(p)=k<+\infty$, then $\operatorname{char}\left(R / p^{i} R\right)=p^{j}$ for $i \geq 0$ and $j=\min \{i, k\}$. If $\operatorname{dgr}_{R}(p)=+\infty$, then $\operatorname{char}\left(R / p^{i} R\right)=p^{i}$ for $i \geq 0$.
4.3. Proposition. If R is in \mathscr{R} and p is prime, then $\mathscr{L}\left(R_{p}\right) \subseteq \mathscr{L}(R)$.

Proof. Suppose $\operatorname{dgr}_{R}(p)=+\infty$. So, $R_{p}=\mathbf{Z}_{\langle p\rangle}=\mathbf{Q}(P-\{p\})$ and $\operatorname{char}(R)=0$ by 2.5(c). Let $S=R_{p}$ and $T_{0}={ }_{R} R \otimes S_{S}$, an (R, S)-bimodule. By localization properties, T_{0} can be regarded as consisting of fractions r / u with r in R and u in $\mathbf{Z}-p \mathbf{Z}$, where $r / u=r^{\prime} / u^{\prime}$ if and only if $v\left(r u^{\prime}-r^{\prime} u\right)=0$ for some v in $\mathbf{Z}-p \mathbf{Z}$. Let $\operatorname{Ker} m \cdot \mathbf{1}_{T_{0}}=\left\{v \in T_{0}: m \cdot v\right.$ $=0\}$, and let ${ }_{R} T_{S}=T_{0} / T_{p}$ for $T_{p}=\bigcup_{i \geq 0} \mathrm{Ker} p^{i} \cdot 1_{T_{0}}$. If T_{S} is not torsion-free, then $v q=0$ for some prime q and $v \neq 0$ in T_{S}. If $q \neq p$, then $1 / q$ is in S, and we get the contradiction $v=v q(1 / q)=0$. Suppose $q=p$, and $v=w+T_{p}$ in $T_{S}=T_{0} / T_{p}$. Since $w p \in T_{p},(w p) p^{k}=0$ for some $k \geq 0$. But then $w \in T_{p}$ and again $v=0$. This proves that T_{S} is torsion-free, and so is flat by 2.6 (c). Since S is local with maximal ideal $p S$, T_{S} is faithfully flat if $T \otimes_{S}(S / p S) \neq 0$. By $2.6(\mathrm{~b})$, we can prove this is equivalent to $T / p T \neq 0$. For more details, cf. [14, Proposition 11]. A ssume the contrary, so that $p T=T$. Then $\left(r / u+T_{p}\right) p=1_{R} / 1+T_{p}$ for some r in R and u in $\mathbf{Z}-p \mathbf{Z}$. Let $\overline{1}$ denote $1_{R} / 1$, so $(r / u) p-\overline{1}=y$ in T_{0}, for y satisfying $y p^{k}=0$ for some $k \geq 0$. Choose integers a and b such that $a u+b p=1$, so that

$$
\begin{aligned}
(r a / 1+\overline{1} b) p^{k+1} & =(r / u) a u p^{k+1}+\overline{1}(1-a u) p^{k} \\
& =(r p / u-\overline{1}) a u p^{k}+\overline{1} p^{k} \\
& =\text { yaup }^{k}+\overline{1} p^{k}=\overline{1} p^{k} .
\end{aligned}
$$

So, $x z=0$ for $x=r a p^{k+1}+1_{R} b p^{k+1}-1_{R} p^{k}$ in R and some z in $\mathbf{Z}-p \mathbf{Z}$. Choosing integers c and d with $c z+d p=1$, we see that $x(1-d p)=0$ in R, which leads to the contradiction $\operatorname{dgr}_{R}(p) \leq k<+\infty$. So $p T \neq T$, and $\mathscr{L}\left(R_{p}\right) \subseteq \mathscr{L}(R)$ follows by using 2.1(c) with ${ }_{R} T_{S}$.

If $\operatorname{dgr}_{R}(p)=k<+\infty$, then $R_{p}=R / p^{k} R$ and $\mathscr{L}\left(R_{p}\right) \subseteq \mathscr{L}(R)$ by 2.1(b). Q.E.D.

In general, we do not assert that 2.3(a) can be extended to infinite products of rings. However, this extension is possible for products of the form $\operatorname{Reduct}(R)$.
4.4. Proposition. For all R in $\mathscr{R}_{0}, \mathscr{L}(\operatorname{Reduct}(R))$ is the join in \mathscr{W} of $\mathscr{L}(\mathbf{Q})$ and $\mathscr{L}\left(R_{p}\right)$ for all p in P.

Proof. Suppose R is in \mathscr{R} and $\operatorname{char}(R)=0$. Let $\mathscr{L}_{1}=\mathscr{L}(\mathbf{Q}) \vee$ $\vee_{p \in P} \mathscr{L}\left(R_{p}\right)$ in \mathscr{W}. Then $\mathscr{L}_{1} \subseteq \mathscr{L}(\operatorname{Reduct}(R))$ by 3.6, 4.2(b), and 4.3. Suppose $\mathscr{L}_{1} \vDash \Lambda$ for some lattice Horn formula Λ. Since $\mathscr{L}(\mathbf{Q}) \vDash \Lambda$, there is a system of ring equations $(\exists \mathbf{x}) \Gamma_{0}(\mathbf{x})$ for $\mathbf{x}=\left\langle x_{1}, x_{2}, \ldots, x_{s}\right\rangle$ such that $\mathbf{Q} \vDash(\exists \mathbf{x}) \Gamma_{0}(\mathbf{x})$, and $\mathscr{L}(S) \vDash \Lambda$ if $S \vDash(\exists \mathbf{x}) \Gamma_{0}(\mathbf{x})$ by $2.1(\mathrm{e})$. Suppose $\mathbf{Q} \vDash$ $\Gamma_{0}\left(m_{1} / n_{1}, m_{2} / n_{2}, \ldots, m_{s} / n_{s}\right)$. Choose n large enough so that m_{i} / n_{i} is in $\mathbf{Q}\left(P_{n}\right)$ for $i=1,2, \ldots, s$. By construction, $\mathscr{L}\left(\mathbf{Q}\left(P_{n}\right)\right) \vDash \Lambda$. Since $\mathscr{L}_{1} \vDash \Lambda$, $\mathscr{L}\left(R_{p}\right) \vDash \Lambda$ for p prime. In particular, $\mathscr{L}\left(\mathbf{Q}\left(P_{n}\right) \times R_{p_{1}} \times R_{p_{2}} \times \cdots \times R_{p_{n}}\right)$ $\vDash \Lambda$ by 2.1(h) and 2.3(a). A gain using 2.1(e) and adjusting s, there is a system of ring equations $(\exists \mathbf{x})\left(\Gamma_{1}(\mathbf{x})\right)$ such that

$$
\mathbf{Q}\left(P_{n}\right) \times R_{p_{1}} \times R_{p_{2}} \times \cdots \times R_{p_{n}} \vDash(\exists \mathbf{x})\left(\Gamma_{1}(\mathbf{x})\right),
$$

and $\mathscr{L}(S) \vDash \Lambda$ if $S \vDash(\exists \mathbf{x})\left(\Gamma_{1}(\mathbf{x})\right)$. We assert that Reduct $(R) \vDash(\exists \mathbf{x})\left(\Gamma_{1}(\mathbf{x})\right)$. Since $\mathbf{Q} \supseteq \mathbf{Q}\left(P_{n}\right) \vDash(\exists \mathbf{x})\left(\Gamma_{1}(\mathbf{x})\right)$, it suffices to prove that $R_{p} \vDash(\exists \mathbf{x})\left(\Gamma_{1}(\mathbf{x})\right)$ for all primes p. If $p=p_{i}$ for $i \leq n$, this follows from the definition of Γ_{1}. If $p=p_{i}$ for $i>n$ and $\operatorname{dgr}_{R}(p)=+\infty$, then it follows because $\mathbf{Q}\left(P_{n}\right) \subseteq$ $\mathbf{Q}(P-\{p\})=R_{p}$ by 2.6(a). If $p=p_{i}$ for $i>n$ and $\operatorname{dgr}_{R}(p)=k<+\infty$, then $R_{p}=R / p^{k} R$ and there are ring homomorphisms

$$
\mathbf{Q}\left(P_{n}\right) \rightarrow \mathbf{Q}\left(P_{n}\right) / p^{k} \mathbf{Q}\left(P_{n}\right) \rightarrow \mathbf{Z} / p^{k} \mathbf{Z} \rightarrow R / p^{k} R
$$

by 2.6(b) and 4.1(a). But then $R_{p} \vDash(\exists \mathbf{x})\left(\Gamma_{1}(\mathbf{x})\right)$ for all primes p, and so Reduct $(R) \vDash(\exists \mathbf{x})\left(\Gamma_{1}(\mathbf{x})\right)$, and $\mathscr{L}(\operatorname{Reduct}(R)) \vDash \Lambda$. It follows by 2.1(d) that $\mathscr{L}(\operatorname{Reduct}(R)) \subseteq \mathscr{L}_{1}$, and so $\mathscr{L}(\operatorname{Reduct}(R))=\mathscr{L}_{1}$.
Q.E.D.

4.5. Theorem. If R is a ring, then $\mathscr{L}(R)=\mathscr{L}(R \operatorname{educt}(R))$.

Proof. If $\operatorname{char}(R)=m \geq 1$, then $\mathscr{L}(R)=\mathscr{L}(R \operatorname{educt}(R))$ by 4.2(a). So, assume $\operatorname{char}(R)=0$. By 3.6, 4.3, and 4.4, $\mathscr{L}(\operatorname{Reduct}(R)) \subseteq \mathscr{L}(R)$. To prove $\mathscr{L}(R) \subseteq \mathscr{L}$ (R educt (R)), we construct exact functors $F_{p}: R-\mathrm{M}$ od $\rightarrow R_{p}-\mathrm{M}$ od for each prime p and $F_{0}: R$-M od $\rightarrow \mathbf{Q}-\mathrm{M}$ od such that 2.1(i) applies. For F_{0}, we compose the functor $H: R$-Mod $\rightarrow \mathbf{Z}-\mathrm{Mod}$ from 2.1(b) with the functor $\mathbf{Q}_{\mathbf{Z}} \otimes$ - from \mathbf{Z}-M od into $\mathbf{Q}-\mathrm{M}$ od. This is an exact functor by 2.6(c).

Suppose p is prime and $\operatorname{dgr}_{R}(p)=+\infty$. Let $T=R_{p}=\mathbf{Q}(P-\{p\})$. Here, T is torsion-free as a Z-module, and so we can compose H with ${ }_{T} T_{\mathrm{Z}} \otimes$ - to obtain an exact functor $F_{p}: R-\mathrm{M}$ od $\rightarrow R_{p}-\mathrm{M}$ od.
Suppose p is prime and $\operatorname{dgr}_{R}(p)=k<+\infty$. There is an idempotent $e=1-p^{k} \cdot r^{k}$ in R such that $p^{k} e=0$ by 4.1(a), and $G(M)=e M$ determines an exact functor $G: R$-Mod $\rightarrow e R e-M$ od, using $G(f): e M \rightarrow e N$
induced by $f: M \rightarrow N$ in R-M od. Since $R_{p}=R / p^{k} R$ is isomorphic to eRe by 4.1(b), we see that G can be regarded as an exact functor $F_{p}: R$-M od \rightarrow $R_{p}-\mathrm{Mod}$.

Suppose $M \neq 0$ in R-M od. If M contains an element of infinite order, then $\mathbf{Q} \otimes H(M) \neq 0$ by $2.6(\mathrm{~d})$, and so $F_{0}(M) \neq 0$. If there is no element of infinite order, then we can find $v \neq 0$ in M and a prime p such that $p \cdot v=0$. If $\operatorname{dgr}_{R}(p)=+\infty$, then there is a \mathbf{Z}-submodule of $H(M)$ isomorphic to $\mathbf{Z} / p \mathbf{Z}$, hence $F_{p}(M) \neq 0$ by 2.6(e). Suppose $\operatorname{dgr}_{R}(p)=k<+\infty$. Then $k>0$, since otherwise $p \cdot 1_{R}$ is invertible by 2.5(b). So $v=e v$ for $e=1-p^{k} \cdot r^{k}$, where $p^{k+1} \cdot r=p^{k} \cdot 1_{R}$. A gain, $F_{p}(M) \neq 0$.

Therefore, $\left\{F_{0}(M)\right\} \cup\left\{F_{p}(M)\right\}_{p \in P}$ always contains a nonzero module if M is a nonzero R-module. By 2.1(i), there exists an exact embedding functor R-M od \rightarrow Reduct (R)-M od. So, $\mathscr{L}(R)=\mathscr{L}($ Reduct $(R))$ by 2.1(a). Q.E.D.

By 4.5, we can conclude that $\mathscr{L}(R)$ is determined by $\operatorname{char}(R)$ and $\mathscr{L}\left(R_{p}\right)$ for p in P. A lternatively, $\mathscr{L}(R)$ is determined by $\operatorname{char}(R), \operatorname{dgr}_{R}(p)$ for p in P, and $\mathscr{L}\left(R_{p}\right)$ for p such that $2 \leq \operatorname{dgr}_{R}(p)<+\infty$.
4.6. Theorem. For rings R and S, the following are equivalent:
(a) $\mathscr{L}(R) \subseteq \mathscr{L}(S)$.
(b) $\mathscr{L}(\operatorname{Reduct}(R)) \subseteq \mathscr{L}(\operatorname{Reduct}(S))$.
(c) $\mathscr{L}\left(R_{p}\right) \subseteq \mathscr{L}\left(S_{p}\right)$ for all p in P, and char (R) divides char (S) or $\operatorname{char}(S)=0$.
(d) $\operatorname{char}(S)=0$ if $\operatorname{char}(R)=0$, and $\operatorname{dgr}_{R}(p) \leq \operatorname{dgr}_{S}(p)$ for all p in P, and $\mathscr{L}\left(R / p^{k} R\right) \subseteq \mathscr{L}\left(S / p^{k} S\right)$ whenever $2 \leq k=\operatorname{dgr}_{R}(p) \leq \operatorname{dgr}_{S}(p)<$ $+\infty$.

Proof. Suppose $2 \leq k=\operatorname{dgr}_{R}(p) \leq \operatorname{dgr}_{S}(p)<+\infty$ and $\mathscr{L}(R) \subseteq \mathscr{L}(S)$. Then there is an exact embedding functor $R / p^{k} R-\mathrm{Mod} \rightarrow S$-Mod by 2.1(b), which clearly induces an exact embedding functor $R / p^{k} R-\mathrm{M} \mathrm{od} \rightarrow$ $S / p^{k} S$-M od. So, $\mathscr{L}\left(R / p^{k} R\right) \subseteq \mathscr{L}\left(S / p^{k} S\right)$. But then 4.6(a) implies 4.6(d), using $2.1(\mathrm{f})$ and $2.5(\mathrm{~d})$.

A ssume 4.6(d), so char(R) divides char(S) or $\operatorname{char}(S)=0$ by 2.5(c). Suppose p is a prime, $a=\operatorname{dgr}_{R}(p)$, and $b=\operatorname{dgr}_{s}(p)$, so $a \leq b$. If $a=b$ $=+\infty$, then $R_{p}=S_{p}=\mathbf{Z}_{\langle p\rangle}$. If $a<b=+\infty$, then there is a homomorphism $S_{p} \rightarrow R_{p}$ by 2.6(b) and 2.5(a), so $\mathscr{L}\left(R_{p}\right) \subseteq \mathscr{L}\left(S_{p}\right)$ by 2.1(b). Suppose $a \leq b<+\infty$. If $a \geq 2$, then $\mathscr{L}\left(R_{p}\right) \subseteq \mathscr{L}\left(S_{p}\right)$ by the assumption 4.6(b) and 2.1(b). If $a \leq 1$, then $\mathscr{L}\left(R_{p}\right)=\mathscr{L}\left(S_{p} / p^{a} S_{p}\right) \subseteq \mathscr{L}\left(S_{p}\right)$, because R_{p} and $S_{p} / p^{a} S_{p}$ are trivial if $a=0$, and $\mathscr{L}\left(R_{p}\right)=\mathscr{L}\left(S_{p} / p^{a} S_{p}\right)=\mathscr{L}(\mathbf{Z} / p \mathbf{Z})$ if $a=1$ by $2.1(\mathrm{~g})$. So, $\mathscr{L}\left(R_{p}\right) \subseteq \mathscr{L}\left(S_{p}\right)$ in all cases, proving that 4.6(d) implies 4.6(c).

U sing 2.3(a), 4.2(a), and 4.4, we see that 4.6(c) implies 4.6(b). Finally, 4.6(b) implies 4.6(a), by 4.5 .
Q.E.D.

By 4.2(c), each relation $\mathscr{L}\left(R / p^{k} R\right) \subseteq \mathscr{L}\left(S / p^{k} S\right)$ of 4.6(d) compares rings with the same power characteristic p^{k}.

REFERENCES

1. F. W. A nderson and K. R. Fuller, "R ings and Categories of M odules," G raduate Texts in M athematics, V ol. 13, 2nd ed., Springer-V erlag, Berlin/N ew Y ork, 1992.
2. G. Birkhoff, "Lattice Theory," 3rd ed., A mer. M ath. Soc. Colloquium Publications, V ol. 25, A mer. M ath. Soc., Providence, 1967.
3. P. Crawley and R. P. Dilworth, "A Igebraic Theory of Lattices," Prentice-H all, Englewood Cliffs, NJ, 1973.
4. G. Czédli, On properties of rings that can be characterized by infinite lattice identities, Studia Sci. Math. Hungar. 16 (1981), 45-60.
5. G. Czédli, Some lattice Horn sentences for submodules of prime power characteristic, Acta Math. Hungar. 65 (1994), 195-201.
6. G. Czédli and G. Hutchinson, An irregular Horn sentence in submodule lattices, Acta Sci. Math. (Szeged) 51 (1987), 35-38.
7. G. Czédli and G. Hutchinson, Submodule lattice quasivarieties and exact embedding functors for rings with prime power characteristic, Algebra Universalis 35 (1996), 425-445.
8. D. Eisenbud, "Commutative A Igebra with a V iew Toward A Igebraic Geometry," G raduate Texts in M athematics, Vol. 150, Springer-V erlag, Berlin/N ew Y ork, 1994.
9. P. J. Freyd, "A belian Categories, A n Introduction to the Theory of Functors," H arper \& R ow, New Y ork, 1964.
10. L. Fuchs, "Infinite A belian Groups," V ol. 1, A cademic Press, San Diego, 1970.
11. K. R. Fuller and G. Hutchinson, Exact embedding functors and left coherent rings, Proc. Amer. Math. Soc. 104 (1988), 385-391.
12. G. Hutchinson, M odular lattices and abelian categories, J. Algebra 19 (1971), 156-184.
13. G. Hutchinson, Recursively unsolvable word problems of modular lattices and diagramchasing, J. Algebra 26 (1973), 385-399.
14. G. Hutchinson, On classes of lattices representable by modules, in "Proceedings of the U niversity of H ouston Lattice Theory Conference, H ouston, 1973," pp. 69-94.
15. G. Hutchinson, On the representation of lattices by modules, Trans. Amer. Math. Soc. 209 (1975), 311-351.
16. G. Hutchinson, A duality principle for lattices and categories of modules, J. Pure Appl. Algebra 10 (1977), 115-119.
17. G. Hutchinson, Exact embedding functors between categories of modules, J. Pure Appl. Algebra 25 (1982), 107-111.
18. G. Hutchinson, Representations of additive relations by modules, J. Pure Appl. Algebra 42 (1986), 63-83.
19. G. H utchinson, A ddendum to "E xact embedding functors between categories of modules," J. Pure Appl. Algebra 45 (1987), 99-100.
20. G. Hutchinson, Free word problems for additive relation algebras of modules, J. Pure Appl. Algebra 50 (1988), 139-153.
21. G. Hutchinson and G. Czédli, A test for identities satisfied in lattices of submodules, Algebra Universalis 8 (1978), 269-309.
22. M. M akkai and G. M cNulty, U niversal H orn axiom systems for lattices of submodules, Algebra Universalis 7 (1977), 25-31.
23. B. M itchell, "Theory of Categories," A cademic Press, San Diego, 1965.
24. J. J. R otman, "Notes on Homological Algebra," Van Nostrand-R einhold, New Y ork, 1970.

[^0]: *George Hutchinson passed away on September 17, 1997, when this paper was nearly completed. I am grateful to Professor Christian Herrmann for forwarding it to me and to Professor Gábor Czédli for reviewing the manuscript and putting it in final form. K ent Fuller

