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1. INTRODUCTION

Given rings with unit R and S, we will write R ) S if there exists an
exact embedding functor F: R-Mod ª S-Mod. Many equivalent or suffi-

Ž .cient conditions for the existence of such F are known. Let LL R denote
the quasivariety of lattices generated by the family of all submodule

Ž . Ž .lattices Su M , M a left R-module. A lattice L is in LL R if and only ifR R
Ž . Ž .it is isomorphic to a sublattice of some Su M . The inclusion LL R :R

Ž .LL S is known to be equivalent to R ) S. The theory of quasivarieties
Ž .LL R lies on the border of lattice theory and abelian category theory. The

w xprevious investigations in this field include 4]7, 11]22 .
Ž .Let RR denote the class and category of all rings with unit. The ring

homomorphisms of RR will preserve ring units. In the following discussion,
rings will always be assumed to have 1; i.e., they will be objects in RR. The
relation R ) S is a reflexive and transitive relation on RR. So, we can
define an induced equivalence: R ; S if and only if R ) S and S ) R.
Every ring is equivalent to some denumerable ring. There are continuously
many different equivalence classes of rings, even if we restrict considera-
tion to all rings with a fixed characteristic pk, p prime and k G 2.

Let WW denote the set of all quasivarieties of lattices, which is a complete
X Ž X.lattice under inclusion. If RR is any nonempty class of rings, let WW RR

Ž .denote the subset of WW consisting of all quasivarieties equal to LL R for
X Ž . Ž .some R in RR . WW RR is a join subsemilattice of WW , with LL R = S equal
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Ž . Ž . Ž .to the join of LL R and LL S in WW for all R and S in RR. WW and WW RR

Ž .have continuously many elements. Observe that WW R encodes the rela-
tions R ) S and R ; S for rings R and S in RR by the equivalents
Ž . Ž . Ž . Ž .LL R : LL S and LL R s LL S .
Let RR denote the class of all commutative rings and RR the class ofc cm

Ž .commutative rings with characteristic m m s 0 or m ) 0 . Let RRm
denote the class of all rings with characteristic m. Obviously RR , RR , andc cm

Ž . Ž . Ž .RR admit direct products, and so WW RR , WW RR , and WW RR are joinm c cm m
subsemilattices of WW .

After reviewing some known results in Section 2, we show in Section 3
Ž . Ž . Ž .that WW RR is a complete lattice. Here, LL R m S is a glb for LL R andc

Ž . Ž . � Ž .4 Ž .LL S in WW RR , and the glb of an infinite family LL R in WW RR canc j jg J c
be formed using a suitable direct limit of a sequence of finite tensor

� 4products of rings in R .j jg J
Ž .In Section 4, we consider LL R for rings R with characteristic zero. For

each prime p, we construct a ring R which either has characteristic pk
p

for some k G 0 or is equal to the localization of the integers Z at the
Ž . Ž .prime ideal pZ. If Q is the field of rationals, LL Q : LL R if and only if R

Ž . Ž . Ž .is in RR . It is proved that LL R is the join in WW of L Q and the LL R0 p
Ž .for all primes p. In effect, LL R is determined by aggregating its proper-

ties with respect to each prime p.

2. TERMINOLOGY AND KNOWN RESULTS

w x wBased mainly on 14, 17, 22 and also on standard books 1, 2, 9, 10, 23,
x24 , now we review the notions and statements that will be used to achieve

the main results.
Ž .Let char R denote the characteristic of a ring R.

Ž . Ž . Ž .2.1. a If R and S are rings with unit, then LL R : LL S if and only
w xif there exists an exact embedding functor F: R-Mod ª S-Mod 14, 17 .

Ž . Ž . Ž .b If there is a ring homomorphism f : R ª S, then LL S : LL R
w x14, Proposition 2 .

Ž . Ž .c If M is an S, R -bimodule such that M is a faithfully flatS R R
Ž . Ž . Žright R-module, then LL R : LL S . The tensor functor M m ]: R-S R R

wMod ª S-Mod is then an exact embedding functor or cf. 14, Proposition
x .3 .

Ž .d If LL is in WW and LL is a class of lattices such that, for each1 0
lattice Horn formula L, LL * L implies LL * L, then LL : LL .1 0 0 1

Ž .e Suppose R is a ring and L is a universal Horn formula for
Ž . Ž .lattices such that LL R * L. Then there exists an existentially quantified
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system of equations G for rings with unit such that R * G, and if S * G,
Ž . w xthen LL S * L 22 .

Ž .f Suppose rings R and S have characteristic d and e, respectively,
Ž . Ž . Ž .and LL R : LL S . If e / 0, then d divides e. If d / 0, then LL R :

Ž . w xLL SrdS 14, Theorem 3 .
Ž . Ž . Ž . Žg If R has prime characteristic p, the LL R s LL ZrpZ . Use

Ž . Ž . w x .2.1 b and c or cf. 14 .
Ž . � 4h If LL is an infinite subfamily of WW and LL s E LL in WW ,j jg J jg J j

then, for each lattice Horn formula L, LL * L if and only if LL * L for allj
j in J.

Ž .i Suppose R is a ring, S s Ł S is a product of a nonemptyjg J j

� 4family S of rings, and there is a family of exact functorsj jg J

F : R-Mod ª S -Mod .� 4j j jgJ

� Ž .4If F M contains some nonzero S -module whenever M is a nonzeroj jg J j
R-module, then there exists an exact embedding functor F: R-Mod ª S-

Ž Ž . Ž .Mod. As an additive group, take F M isomorphic to [ F M . Usejjg J
Ž . Ž .projections p : S ª S to make each F M an S-module, hence F M anj j j

Ž . Ž . Ž .S-module. Suppose f : M ª N in R-Mod. Define F f : F M ª F N
Ž . Ž . Ž .from the S-homomorphisms F f : F M ª F N as usual. Then F is anj j j

.exact embedding functor.

Ž .Hereafter, we will let char R denote the characteristic of R in RR.

2.2. DEFINITIONS. Tensor products A m B are taken over the integers
Z unless otherwise indicated. Recall that R m S is a ring if R and S are
rings.

Ž .a The tensor product R m S over Z is a coproduct for commutative
rings R and S relative to RR . That is, there are homomorphisms a :c R
R ª R m S and a : S ª R m S such that, given any homomorphisms f :S
R ª T and g : S ª T in RR , there exists a unique homomorphism h:c

Ž .R m S ª T such that ha s f and ha s g. We have a r s r m 1 andR S R
Ž . w xa s s 1 m s. We use the matrix notation h s f g .S

Ž . Ž . Ž . Ž .b If R is commutative, then LL R s LL R m R by 2.1 b and the
w x Ž .homomorphisms a : R ª R m R and 1 1 : R m R ª R of 2.2 a .R R R

Ž .c For R and S in RR , R m S and S m R are isomorphic, usingc
isomorphisms obtained from the coproduct universal properties.

Ž . Ž . Ž .2.3. a If R and S are any rings, then LL R = S is the join of LL R
Ž . w xand LL S in WW 7, Proposition 4.2 .
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Ž .b If R and S have characteristics d and e, respectively, then
ŽR = S has characteristic equal to the lcm of d and e defined as 0 if d or e

.is 0 .

2.4. The direct limit of a sequence of rings

R ª R ª R ª ???1 2 3

is defined up to isomorphism by the colimit universal property for the
� j 4above commutative diagram. Formally, a direct system f : R ª Ri i j 1F iF j

of homomorphisms is defined such that f k f j s f k for all 1 F i F j F kj i i
and f i s 1 for i G 1. The direct limit R of this direct system hasi R i

associated homomorphisms f : R ª R for each i G 1, which satisfy f si i i
f f j for 1 F i F j. The colimit property is defined as follows: if g : R ª Sj i i i
for i G 1 such that g s g f j for 1 F i F j, then there exists a uniquei j i
homomorphism h: R ª S such that hf s g for all i G 1. We can directlyi i
construct R by taking X s D R to be a pairwise disjoint union,iG1 i
forming the equivalence relation on u on X generated by all pairs
² jŽ .:u, f u for 1 F i F j and u in R , and proving that there exists a uniquei i
ring structure for the quotient set R s Xru such that each f : R ª Ri i

Ž . w xgiven by f u s u u for i G 1 and u in R is a homomorphism. We cani i
verify:

Ž . w x w x w xa f R : f R if 1 F i F j, and R s D f R .i i j j iG1 i i

Ž . Ž . Ž .b For u in R and ¨ in R , f u s f ¨ in R if and only if therei j i j
� 4 kŽ . kŽ .exists n G max i, j such that f u s f ¨ for all k G n.i j

2.5. DEFINITION. Recall that Z is initial in RR, and let i : Z ª R denoteR
w xthe unique homomorphism Z ª R. Elements of i Z are called Z-imagesR

in R, and are central elements of R. Define n ? r for integers n ) 0 and r
Ž < < .in R as the sum of n terms r. Also, let 0 ? r s 0 and n ? r s y n ? r if

Ž .n - 0. So, i n s n ? 1 for all n in Z.R R
Let P denote the set of prime numbers and P the set of the first nn

� 4 Ž .primes p , p , . . . , p for n G 0. For p prime and R in RR, let dgr p s k1 2 n R
Ž .Ž kq1 k . Žif k G 0 is the smallest integer such that R * ' x p ? x s p ? 1 . The

Ž kq1. Ž k . .formula is equivalent to requiring that i p divides i p in R. IfR R
Ž .there is no such k, let dgr p s q`.R

Ž . Ž .a i is one-to-one if and only if char R s 0. If m ) 0, then thereR
Ž .is a homomorphism ZrmZ ª R if and only if char R divides m. This
Ž .homomorphism is one to one if and only if m s char R .

Ž . Ž . Ž .b For any ring R, dgr p s 0 if and only if i p is a unit of R.R R

Ž . Ž . k1 k 2 k tc If char R s m ) 0 and m has prime factorization p p ??? p ,1 2 t
Ž . Ž . w xthen dgr p s k for i F t and dgr p s 0 for i ) t 21, Proposition 1 .R i i R i
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Ž . Ž . Ž . Ž . Ž .d If R and S are in RR and LL R : LL S , then dgr p F dgr pR S
Ž w x .for all p in P. This follows from 21, Proposition 6 .

Ž .2.6. DEFINITIONS. For X : P, let Q X denote the subring of the
� 4 � 4 Ž .rationals generated by 1 j 1rp : p g X . Note that X ¬ Q X defines

a one-to-one correspondence between subsets of P and subrings of Q
Ž � 4.containing Z. Let Z s Q P y p , which equals the localization of Z at² p:

pZ for p prime.

Ž . Ž . Ž . Ž Ž ..a If X : Y : P, then Q X is a subring of Q Y , and LL Q Y :
Ž Ž ..LL Q X .

Ž . Ž . k Ž .b For X : P, p in P y X, and k G 0, Q X rp Q X is isomor-
phic to ZrpkZ.

Ž . Ž . Ž .c If X : P, then any torsion-free Q X -module is flat, since Q X
w xis a Prufer ring 24, p. 129 .¨

Ž .d If A is an abelian group with an element of infinite order, then
ŽQ m A / 0. Q is a flat Z-module, so Q m A has a submodule isomorphic

.to Q m Z.
Ž .e If A has an element of prime order p and p f X ; P, then

Ž . Ž Ž . Ž .Q X m A / 0. Since Q X is Z-flat, Q X m A has a subgroup isomor-
Ž . Ž . Ž . Ž . Ž .phic to Q X m ZrpZ , hence to Q X rpQ X , hence to ZrpZ by 2.6 b .

Ž . .So, Q X m A / 0.

3. LATTICE STRUCTURE FOR SUBMODULE
LATTICE QUASIVARIETIES

Ž .We first obtain meets in WW RR .c

Ž .3.1. PROPOSITION. If R, S, and T are commutatï e rings and LL R :
Ž . Ž . Ž .LL S , then LL R m T : LL S m T .

Proof. Assuming the hypotheses, there are exact embedding functors
Ž . Ž .F: R m T-Mod ª R-Mod and G: R-Mod ª S-Mod, by 2.1 a and b and

Ž . Ž . Ž .2.2 a . Note that F M s M and F f s f as sets and functions. Let M
Ž .be an R m T-module. So, r¨ in F M for r in R and ¨ in M equals

Ž . Ž .r m 1 ¨ in M. Now, GF M is an S-module, and we define an S m T-T
Ž . Ž .module H M which equals GF M as an additive group. For t in T , let

Ž . Ž .t : M ª M in R m T-Mod be given by t ¨ s 1 m t ¨ . Then t ¬ t isM M R M
a ring homomorphism from T into the ring of endomorphisms M ª M in
R m T-Mod. If f : M ª N in R m T-Mod, then ft s t f for each t in T.M N

Ž . Ž Ž .Ž ..The formula s m t w s s GF t w for s in S, t in T , and w inM
Ž .H M uniquely determines a well-defined S m T-module structure for
Ž .H M . Some checking shows that H: R m T-Mod ª S m T-Mod defined
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Ž . Ž . Ž .by H M and H f s GF f for f : M ª N in R m T-Mod is an exact
Ž . Ž . Ž .embedding functor. But then LL R m T : LL S m T by 2.1 a . Q.E.D

Ž .3.2. PROPOSITION. If R and S are commutatï e rings, then LL R m S is a
Ž . Ž . Ž .glb for LL R and LL S in WW RR .c

Ž . Ž . Ž . Ž . Ž .Proof. By 2.1 b and 2.2 a , LL R m S is contained in LL R and LL S .
Ž . Ž . Ž . Ž .Suppose LL T : LL R and LL T : LL S for rings R, S, and T in RR .c

Ž . Ž . Ž .Using 2.1 b , 2.2 b and c , and 3.1, we have

LL T s LL T m T : LL S m T s LL T m S : LL R m S .Ž . Ž . Ž . Ž . Ž .

Ž . Ž . Ž . Ž .So, LL R m S is a glb for LL R and LL S in WW RR . Q.E.D.c

� 4Suppose R is an ascending chain of subrings of R with unionj jG1

Ž . Ž . Ž . � Ž .4R. By 2.1 b , d , and e , we can see that LL R is a descending chainj jG1
Ž . Ž . Ž .in WW RR such that LL R s F LL R . We extend this to direct limitsjG1 j

of sequences.

� 4 � j 43.3. PROPOSITION. Suppose R and f : R ª R are a directi iG1 i i j 1F iF j
system formed from a sequence of rings, and R is the direct limit of the

� 4 � Ž .4sequence with associated homomorphisms f : R ª R . Then LL Ri i iG1 i iG1
Ž . Ž .is a descending sequence of lattice quasï arieties, and LL R s F LL R .iG1 i

� Ž .4Proof. Assuming the hypotheses, LL R is a descending chain, andi iG1
Ž . Ž . Ž . Ž . Ž .each LL R = LL R by 2.1 b . Let LL s F LL R , so LL R : LL .i 0 iG1 i 0

Ž . Ž .Suppose L is a Horn formula such that LL R * L. By 2.1 e , there is an
existential system of ring equations

' x , x , . . . , x G x , x , . . . , xŽ . Ž .1 2 n 1 2 n

Ž .such that R * G, and LL S * L whenever S * G. Choose r , r , . . . , r in1 2 n
Ž . Ž .R so that G r , . . . , r is true. By 2.4 a , there exists s G 1 such that1 n

w x Ž .r g f R for all i F n. Choose w such that f w s r for i F n. Supposei s s i s i i
Ž . Ž . Ž .g x , x , . . . , x s h x , x , . . . , x is an equation of G. Since g r , . . . , r1 2 n 1 2 n 1 n

Ž .s h r , . . . , r , there exists a t G s such that1 n

f t g w , . . . , w s f t h w , . . . , wŽ . Ž .Ž . Ž .s 1 n s 1 n

Ž .by 2.4 b . Since G contains finitely many equations, we can choose u
uŽ .sufficiently large so that R * G using x s f w for i F n. But thenu i s i

Ž . Ž . Ž . Ž .LL R * L, so LL * L. This proves LL : LL R by 2.1 d , hence LL R su 0 0
LL . Q.E.D.0

Ž .3.4. THEOREM. WW RR is a complete lattice. For R and S in RR ,c c
Ž . Ž . Ž .LL R = S and LL R m S are the lub and glb, respectï ely, of LL R and
Ž . Ž . � 4LL S in WW RR . If R is an infinite family of rings in RR , then therec k k g K c



GEORGE HUTCHINSON772

Ž . � Ž .4 Ž . Ž . Ž .exists a glb LL S for LL R in WW RR , and LL S s F LL S fork k g K c iG1 i
� Ž .4a descending sequence LL S such that each S is a tensor product ofi iG1 i

� 4finitely many rings in R .k k g K

Ž . Ž .Proof. By 2.3 a , we know that WW RR is a join subsemilattice of WWc
Ž . Ž . Ž . Ž . Ž .such that LL R = S s LL R k LL S . Also, LL R m S is a glb for LL R

Ž . Ž . Ž . Ž .and LL S in WW RR by 3.2. Since LL Z is the largest element of WW RR byc c
Ž . Ž .2.1 b , WW RR is complete if it admits infinite meets.c

� 4 � 4Suppose R is an infinite subfamily of RR . Let H s L , wherek k g K c i iG1
Ž .H consists exactly of Horn formulas L satisfied in some LL T , where Ti i i

� 4 � 4is a finite tensor product of elements of R . Define S byk k g K i iG1
S s T m T m ??? m T . For i - j, S s S m T for T s T m Ti 1 2 i j i i j i j iq1 iq2

j Ž .m ??? m T , and so there is a ring homomorphism w : S ª S by 2.2 a .j i i j
j Ž i .Clearly the S and w form a direct system with w s 1 , and so there isi i i Si

a direct limit S and homomorphisms w : S ª S for each i G 1. All S andi i i
Ž . Ž . Ž . Ž . Ž .S are in RR by 2.2 a and 2.4 a . By 3.3, LL S s F LL S . By 2.1 dc iG1 i

Ž . Ž . Ž . Ž .and 3.2, LL T : LL R for all k in K if and only if LL T : LL S for allk i
Ž . � Ž .4i G 1. So, LL S is a glb for LL R . Q.E.D.k k g K

X Ž X.3.5. COROLLARY. If RR is a class of commutatï e rings such that WW RR

has a largest element and RR
X admits direct products, tensor products, and

Ž X. Ž . Ž X.direct limits of sequences, then WW RR is a sublattice of WW RR , WW RR isc
Ž X. Ž .complete, and the inclusion WW RR ª WW RR preser̈ es infinite meets.c

Ž . Ž . Ž .3.6. PROPOSITION. For R in RR, LL Q : LL R if and only if char R s 0.

Ž . Ž .Proof. The forward implication is by 2.1 f . Assume char R s 0, so
Ž . Ž . Ž . Ž .V s R m Q / 0 by 2.6 d . Since V is free, LL Q : LL R by 2.1 c .R Q R Q Q

Q.E.D.

Ž .3.7. COROLLARY. For all m G 0, WW RR is a complete sublattice ofcm
Ž . Ž . Ž .WW RR , and the inclusion WW RR ª WW RR preser̈ es both infinite joinsc cm c

and meets.

Ž . Ž . Ž .Proof. By 2.3 b , WW RR is a join subsemilattice of WW RR . Now RRcm c cm
admits tensor products. This is by 3.6 and 3.2 if m s 0. If m ) 0, then for
Ž . Ž .Z m s ZrmZ we have additive group decompositions R f Z m [ M

Ž . X Ž .and S f Z m m M if R and S are in RR . So, WW RR is a sublattice ofm cm
Ž . Ž . Ž . Ž .WW RR , and LL ZrmZ is a largest element for WW RR . By 2.4 b , a directc cm

Ž .limit of a sequence of rings in RR has characteristic m, and so WW RR iscm cm
Ž . Ž .complete and the inclusion WW RR ª WW RR preserves infinite meets.cm c

� 4 � Ž .4Suppose R is an infinite subfamily of RR . Let LL S be thek k g K cm j jg J
Ž . Ž . Ž .subset of WW RR such that, for each j, LL S = LL R for all k in K. Letc j k

� 4 Ž . Ž . � Ž . 4J s j g J : S g RR . Let LL S be the glb in WW RR of LL S : j g J .0 j cm cm j 0
Ž . Ž . � Ž .4If m s 0, then J s J by 2.1 f , and LL S is the lub of LL R in0 k k g K

Ž . Ž . Ž . Ž .WW RR . If m / 0, then LL R : LL S rmS : LL S for k g K and j g J,c k j j j
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Ž . Ž . Ž .and LL S rmS s LL S for some q in J . So, LL S is also the glb forj j q 0
� Ž .4 Ž . � Ž .4 Ž .LL S in WW RR , and it equals the lub for LL R in WW RR .j jg J c k k g K c

Ž . Ž .Therefore, the inclusion WW RR ª WW RR preserves infinite joins also.cm c
Q.E.D.

Ž . Ž . Ž .It is not known whether LL R m S is a glb for LL R and LL S in
Ž . Ž . Ž .WW RR . In particular, LL R : LL R m R might not hold for noncommuta-

tive R.
Ž .Let R ? S denote the noncommutative coproduct of rings R and S in

RR. Essentially, R ? S can be formed from a ring with unit, freely generated
by a disjoint union R j S and then divided by the two-sided ideal gener-
ated by relations true in R, relations true in S, and 1 s 1 s 1 . As inR S

Ž . Ž . Ž . Ž . Ž . Ž .2.2 a ] c , LL R ? S is a lower bound for LL R and LL S in WW RR ,
Ž . Ž . Ž . Ž .LL R ? R s LL R , and LL R ? S s LL S ? R .

Ž . Ž . Ž . Ž .It is not clear whether LL R : LL S implies LL R ? T : LL S ? T in
Ž . Ž .general. If this is true, then we can prove LL R ? S is a glb for LL R and

Ž . Ž .LL S in WW R as in 3.2. In that case, adapting the proof of 3.4 shows that
Ž . Ž .WW RR is a complete lattice, and similarly for 3.7 and WW RR .m

4. SUBMODULE LATTICE QUASIVARIETIES FOR RINGS
WITH CHARACTERISTIC ZERO

Ž .In the following, we show that LL R for rings with characteristic zero
Ž . Ž . Ž .can be determined from char R , dgr p for primes p, and LL R forR p

certain associated rings R which have prime power characteristic.p

Ž . kq14.1. PROPOSITION. Suppose dgr p s k - q` for R in RR, so p ? rR
s pk ? 1 for some r in R. Choosing such an r, we ha¨e:R

Ž . Ž j .Ž n m. n myja If n G k and m G j ) 0, then p ? 1 p ? r s p ? r .R
n n k k k k Ž 2 kTherefore, p ? r s p ? r if n ) k, and so p ? r is an idempotent p ?

2 k k k . k k kr s p ? r . Also, e s 1 y p ? r is an idempotent, and p ? e s 0. Note
that RrpkR has characteristic pk in this case.

Ž . k k Ž k .b If e s 1 y p ? r as abo¨e, then h x q p R s exe determines a
ring isomorphism h: RrpkR ª eRe.

4.2. DEFINITIONS. Suppose R is in RR and p is a prime. Let R denotep
Ž � 4. Ž . k Ž .Q P y p if dgr p s q`, and Rrp R if dgr p s k, 0 F k - q`.R R

Ž . Ž .Define Reduct R for R in RR to equal Q = Ł R if char R s 0,pg P p
Ž .and to equal Ł R if char R ) 0.pg P p

Ž . Ž . Ž . Ža If R is a ring and char R s m ) 0, then R f Reduct R . If m
has prime factorization q k1 q k 2 ??? q k n for some primes q and k G 1,1 2 n i i
i s 1, 2, . . . , n, then R s Rrqk i R for i F n and R is trivial for otherq i pi



GEORGE HUTCHINSON774

Ž . Ž . Ž . k iprimes p by 2.5 b and c . Since Reduct R f Ł Rrq R, we can applyiF n i
w xthe Chinese remainder theorem 1, Exercise 7.13, p. 103 . If m s 1, then R

.and all R are trivial.p

Ž . Ž . Ž Ž ..b For each R in RR, char R s char Reduct R and R is isomor-p
Ž . Ž Ž ..phic to Reduct R for each prime p. So, Reduct Reduct R f Re-p

Ž .duct R .
Ž . Ž . Ž i . jc If dgr p s k - q`, then char Rrp R s p for i G 0 andR

� 4 Ž . Ž i . ij s min i, k . If dgr p s q`, then char Rrp R s p for i G 0.R

Ž . Ž .4.3. PROPOSITION. If R is in RR and p is prime, then LL R : LL R .p

Ž . Ž � 4.Proof. Suppose dgr p s q`. So, R s Z s Q P y p andR p ² p:
Ž . Ž . Ž .char R s 0 by 2.5 c . Let S s R and T s R m S , an R, S -bimodule.p 0 R S

By localization properties, T can be regarded as consisting of fractions0
rru with r in R and u in Z y pZ, where rru s rXruX if and only if
Ž X X . �¨ ru y r u s 0 for some ¨ in Z y pZ. Let Ker m ? 1 s ¨ g T : m ? ¨T 00

4 is 0 , and let T s T rT for T s D Ker p ? 1 . If T is notR S 0 p p iG 0 T S0

torsion-free, then ¨q s 0 for some prime q and ¨ / 0 in T . If q / p, thenS
Ž .1rq is in S, and we get the contradiction ¨ s ¨q 1rq s 0. Suppose

Ž . kq s p, and ¨ s w q T in T s T rT . Since wp g T , wp p s 0 forp S 0 p p
some k G 0. But then w g T and again ¨ s 0. This proves that T isp S

Ž .torsion-free, and so is flat by 2.6 c . Since S is local with maximal ideal pS,
Ž . Ž .T is faithfully flat if T m SrpS / 0. By 2.6 b , we can prove this isS S

w xequivalent to TrpT / 0. For more details, cf. 14, Proposition 11 . Assume
Ž .the contrary, so that pT s T. Then rru q T p s 1 r1 q T for some rp R p

Ž .in R and u in Z y pZ. Let 1 denote 1 r1, so rru p y 1 s y in T , for yR 0
satisfying ypk s 0 for some k G 0. Choose integers a and b such that
au q bp s 1, so that

kq1 kq1 krar1 q 1b p s rru aup q 1 1 y au pŽ . Ž .Ž .
k ks rpru y 1 aup q 1 pŽ .

k k ks yaup q 1 p s 1 p .

So, xz s 0 for x s rapkq1 q 1 bpkq1 y 1 pk in R and some z in Z y pZ.R R
Ž .Choosing integers c and d with cz q dp s 1, we see that x 1 y dp s 0 in

Ž .R, which leads to the contradiction dgr p F k - q`. So pT / T , andR
Ž . Ž . Ž .LL R : LL R follows by using 2.1 c with T .p R S

Ž . k Ž . Ž . Ž .If dgr p s k - q`, then R s Rrp R and LL R : LL R by 2.1 b .R p p
Q.E.D.

Ž .In general, we do not assert that 2.3 a can be extended to infinite
products of rings. However, this extension is possible for products of the

Ž .form Reduct R .



EXACT EMBEDDING FUNCTORS 775

Ž Ž ..4.4. PROPOSITION. For all R in RR , LL Reduct R is the join in WW of0
Ž . Ž .LL Q and LL R for all p in P.p

Ž . Ž .Proof. Suppose R is in RR and char R s 0. Let LL s LL Q k1
Ž . Ž Ž .. Ž .E LL R in WW . Then LL : LL Reduct R by 3.6, 4.2 b , and 4.3.pg P p 1

Ž .Suppose LL * L for some lattice Horn formula L. Since LL Q * L, there1
Ž . Ž . ² :is a system of ring equations 'x G x for x s x , x , . . . , x such that0 1 2 s

Ž . Ž . Ž . Ž . Ž . Ž .Q * 'x G x , and LL S * L if S * 'x G x by 2.1 e . Suppose Q *0 0
Ž .G m rn , m rn , . . . , m rn . Choose n large enough so that m rn is in0 1 1 2 2 s s i i
Ž . Ž Ž ..Q P for i s 1, 2, . . . , s. By construction, LL Q P * L. Since LL * L,n n 1
Ž . Ž Ž . .LL R * L for p prime. In particular, LL Q P = R = R = ??? = Rp n p p p1 2 n

Ž . Ž . Ž .* L by 2.1 h and 2.3 a . Again using 2.1 e and adjusting s, there is a
Ž .Ž Ž ..system of ring equations 'x G x such that1

Q P = R = R = ??? = R * 'x G x ,Ž . Ž . Ž .Ž .n p p p 11 2 n

Ž . Ž .Ž Ž .. Ž . Ž .Ž Ž ..and LL S * L if S * 'x G x . We assert that Reduct R * 'x G x .1 1
Ž . Ž .Ž Ž .. Ž .Ž Ž ..Since Q = Q P * 'x G x , it suffices to prove that R * 'x G xn 1 p 1

for all primes p. If p s p for i F n, this follows from the definition of G .i 1
Ž . Ž .If p s p for i ) n and dgr p s q`, then it follows because Q P :i R n

Ž � 4. Ž . Ž .Q P y p s R by 2.6 a . If p s p for i ) n and dgr p s k - q`,p i R
then R s RrpkR and there are ring homomorphismsp

Q P ª Q P rpk Q P ª ZrpkZ ª RrpkRŽ . Ž . Ž .n n n

Ž . Ž . Ž .Ž Ž ..by 2.6 b and 4.1 a . But then R * 'x G x for all primes p, and sop 1

Ž . Ž .Ž Ž .. Ž Ž .. Ž .Reduct R * 'x G x , and LL Reduct R * L. It follows by 2.1 d that1
Ž Ž .. Ž Ž ..LL Reduct R : LL , and so LL Reduct R s LL . Q.E.D.1 1

Ž . Ž Ž ..4.5. THEOREM. If R is a ring, then LL R s LL Reduct R .

Ž . Ž . Ž Ž .. Ž .Proof. If char R s m G 1, then LL R s LL Reduct R by 4.2 a . So,
Ž . Ž Ž .. Ž .assume char R s 0. By 3.6, 4.3, and 4.4, LL Reduct R : LL R . To prove

Ž . Ž Ž ..LL R : LL Reduct R , we construct exact functors F : R-Mod ª R -Modp p
Ž .for each prime p and F : R-Mod ª Q-Mod such that 2.1 i applies. For0

Ž .F , we compose the functor H: R-Mod ª Z-Mod from 2.1 b with the0
functor Q m ] from Z-Mod into Q-Mod. This is an exact functor byQ Z

Ž .2.6 c .
Ž . Ž � 4.Suppose p is prime and dgr p s q`. Let T s R s Q P y p .R p

Here, T is torsion-free as a Z-module, and so we can compose H with
T m ] to obtain an exact functor F : R-Mod ª R -Mod.T Z p p

Ž .Suppose p is prime and dgr p s k - q`. There is an idempotentR
k k k Ž . Ž .e s 1 y p ? r in R such that p e s 0 by 4.1 a , and G M s eM deter-

Ž .mines an exact functor G: R-Mod ª eRe-Mod, using G f : eM ª eN
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induced by f : M ª N in R-Mod. Since R s RrpkR is isomorphic to eRep
Ž .by 4.1 b , we see that G can be regarded as an exact functor F : R-Mod ªp

R -Mod.p
Suppose M / 0 in R-Mod. If M contains an element of infinite order,

Ž . Ž . Ž .then Q m H M / 0 by 2.6 d , and so F M / 0. If there is no element0
of infinite order, then we can find ¨ / 0 in M and a prime p such that

Ž . Ž .p ? ¨ s 0. If dgr p s q`, then there is a Z-submodule of H M isomor-R
Ž . Ž . Ž .phic to ZrpZ, hence F M / 0 by 2.6 e . Suppose dgr p s k - q`.p R

Ž .Then k ) 0, since otherwise p ? 1 is invertible by 2.5 b . So ¨ s e¨ forR
k k kq1 k Ž .e s 1 y p ? r , where p ? r s p ? 1 . Again, F M / 0.R p

� Ž .4 � Ž .4Therefore, F M j F M always contains a nonzero module if0 p pg P
Ž .M is a nonzero R-module. By 2.1 i , there exists an exact embedding

Ž . Ž . Ž Ž .. Ž .functor R-Mod ª Reduct R -Mod. So, LL R s LL Reduct R by 2.1 a .
Q.E.D.

Ž . Ž .By 4.5, we can conclude that LL R is determined by char R and
Ž . Ž . Ž . Ž .LL R for p in P. Alternatively, LL R is determined by char R , dgr pp R

Ž . Ž .for p in P, and LL R for p such that 2 F dgr p - q`.p R

4.6. THEOREM. For rings R and S, the following are equï alent:

Ž . Ž . Ž .a LL R : LL S .
Ž . Ž Ž .. Ž Ž ..b LL Reduct R : LL Reduct S .
Ž . Ž . Ž . Ž . Ž .c LL R : LL S for all p in P, and char R dï ides char S orp p
Ž .char S s 0.
Ž . Ž . Ž . Ž . Ž .d char S s 0 if char R s 0, and dgr p F dgr p for all p inR S

Ž k . Ž k . Ž . Ž .P, and LL Rrp R : LL Srp S whene¨er 2 F k s dgr p F dgr p -R S
q`.

Ž . Ž . Ž . Ž .Proof. Suppose 2 F k s dgr p F dgr p - q` and LL R : LL S .R S
Then there is an exact embedding functor RrpkR-Mod ª S-Mod by

Ž . k2.1 b , which clearly induces an exact embedding functor Rrp R-Mod ª
k Ž k . Ž k . Ž . Ž .Srp S-Mod. So, LL Rrp R : LL Srp S . But then 4.6 a implies 4.6 d ,

Ž . Ž .using 2.1 f and 2.5 d .
Ž . Ž . Ž . Ž . Ž .Assume 4.6 d , so char R divides char S or char S s 0 by 2.5 c .

Ž . Ž .Suppose p is a prime, a s dgr p , and b s dgr p , so a F b. If a s bR S
s q`, then R s S s Z . If a - b s q`, then there is a homomor-p p ² p:

Ž . Ž . Ž . Ž . Ž .phism S ª R by 2.6 b and 2.5 a , so LL R : LL S by 2.1 b . Supposep p p p

Ž . Ž . Ž .a F b - q`. If a G 2, then LL R : LL S by the assumption 4.6 b andp p

Ž . Ž . Ž a . Ž .2.1 b . If a F 1, then LL R s LL S rp S : LL S , because R andp p p p p
a Ž . Ž a . Ž .S rp S are trivial if a s 0, and LL R s LL S rp S s LL ZrpZ ifp p p p p

Ž . Ž . Ž . Ž .a s 1 by 2.1 g . So, LL R : LL S in all cases, proving that 4.6 d impliesp p
Ž .4.6 c .
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Ž . Ž . Ž . Ž .Using 2.3 a , 4.2 a , and 4.4, we see that 4.6 c implies 4.6 b . Finally,
Ž . Ž .4.6 b implies 4.6 a , by 4.5. Q.E.D.

Ž . Ž k . Ž k . Ž .By 4.2 c , each relation LL Rrp R : LL Srp S of 4.6 d compares
rings with the same power characteristic pk.
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