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Abstract 

This paper propose an effective estimation of distribution algorithm (EDA), which solves the stochastic job-shop scheduling 
problem (S-JSP) with the uncertainty of processing time, to minimize the expected average makespan within a reasonable 
amount of calculation time. With the framework of proposed EDA, the probability model of operation sequence is estimated 
firstly. For sampling the processing time of each operation with the Monte Carlo methods, we use allocation method to decide the 
operation sequence then the expected makespan of each sampling is evaluated. Subsequently, updating mechanism of the 
probability models is proposed with the best solutions to obtain. Finally, for comparing with some existing algorithms by 
numerical experiments on the benchmark problems, we demonstrate the proposed effective estimation of distribution algorithm 
can obtain acceptable solution in the aspects of schedule quality and computational efficiency. 
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1. Introduction 

Over the past sixty years, a great number of researches have been conducted on Job-shop Scheduling Problem 
(JSP), which is one branch of the scheduling problem and highly popular in the manufacturing industry. JSP is one 
of the famous combinatorial optimization problems as NP-hard under the precedence and resource constraints [1,2]. 
For conventional job shop scheduling problem, there is often making the assumptions in traditional machine 
scheduling theory is that all time parameters are known exactly and in deterministic values. However, there are often 
uncertainties in manufacturing systems. These uncertainties may stem from a number of possible sources [3]: 
operation may take more or less time than originally estimated, moreover the resources may become unavailable, 
due dates may have to be changed, or new orders may have to be incorporated, etc. 

At present, the common mathematic methods for modeling scheduling problem with uncertainties are stochastic 
programming, fuzzy programming, rough sets, grey programming and interval theory [4]. In stochastic 
programming, the parameters are initially described in terms of probability distributions, and the problem is named 
as the stochastic scheduling [5]. 

In real-world problem, most of the job shop scheduling problems is the stochastic scheduling problems. As one of 
the newest issues, more and more attention is spent on the problem with random processing time. As a result, in the 
last several decades, a significant amount of results have been achieved on Stochastic Job Shop Scheduling Problem 
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(S-JSP). 
Meanwhile, there are some novel intelligent evolutionary computation methods are carried out. R. Tavakkoli-

Moghaddam et al. [6] proposed a hybrid method using a neural network approach and a simulated annealing 
algorithm in 2 stages, in order to produce the optimal/near-optimal solution. B. Liu, L. Wang and Y. Jin [7] 
proposed an approach named PSOSAHT, which is hybrid with simulated annealing (SA) and hypothesis test (HT), 
for stochastic flow shop scheduling with uncertain processing time. R. Zhou, A.Y.C. Nee and H.P. Lee [8] proposed 
an ant colony optimization algorithm (ACO) with different levels of machine utilizations, processing time 
distributions, and performance measures. J. Gu, X. Gu and M. Gu [3] proposed a Novel Parallel Quantum Genetic 
Algorithm (NPQGA) for the stochastic Job Shop Scheduling Problem with the objective of minimizing the expected 
value of makespan. M. Gholami and M. Zandieh [9] integrated simulation into genetic algorithm to the dynamic 
scheduling of a flexible job shop with the objectives of minimizing expected makespan and mean tardiness. D. Lei 
[10] developed an efficient decomposition-integration genetic algorithm (DIGA) to minimize the maximum fuzzy 
completion time. S. Horng, S. Lin and F. Yang [11] proposed an evolutionary algorithm ESOO as embedding 
evolutionary strategy (ES) in ordinal optimization (OO), to solve for a good enough schedule with the objective of 
minimizing the expected sum of storage expenses and tardiness penalties. 

Intelligent manufacturing scheduling based on meta-heuristics, such as GAs, SA, ACO and Particle Swarm 

Optimization (PSO), have become some of the common tools for finding satisfactory solutions. Recently, there are 
growing interests in stochastic optimization methods called Estimation of Distribution Algorithms (EDAs) that build 
and sample explicit probabilistic model for the distribution of promising candidate solutions found so far and use the 
constructed model to guide further search behavior. 

In this paper, we propose an effective EDA which solves the stochastic job shop scheduling problem (S-JSP) 
with the uncertainty of processing time, to minimize the expected average makespan within a reasonable amount of 
calculation time. With the framework of EDA, the probability model of operation sequence is formulated. By 
sampling the processing time of each operation with the Monte Carlo methods, we use allocation method to decide 
the operation sequence and then the expected makespan of each sampling is calculated. The remainder of this paper 
is organized as follows: Section 2 provides a review of the S-JSP; Section 3 presents the proposed EDA approach in 
the detail; Section 4 provides experimental comparisons that apply the EDA approach for analyzing and solving 
several S-JSP; and finally, Section 5 offers a conclusion. 

2. Stochastic Job Shop Scheduling Problem  

In order to solve a job shop scheduling problem in stochastic and static environments. It assumes that the 
probability distribution of the processing time is known in advance. The realized outcome of a random processing 
time of operation only gets to be known at the completion of the processing. In this paper, we use a pure integer 
programming model to transmute the processing times in term of stochastic variable. It assumes that the probability 
distribution of the processing time is known in advance. The stochastic job shop scheduling problem (S-JSP) can be 
formulated as an extended version of JSP. The stochastic expected value model of S-JSP may be formulated as 
follows: The makespan is the maximum completion time of jobs and objective is to find a schedule that minimizes 
the expected value of makespan Cmax  

Indices: 
i, k: the index of jobs; i, k J 
j, h: the index of operations; j, h N 
m: the index of machines; m M 
Parameters: 
J: the number of jobs 
N: the number of operations 
M: the number of machines 
oij: the operation j of the job i 
pijm: the random processing time of operation oij on machine m, a stochastic variable, subjected to independent  

ormal distribution 

Decision Variables: 
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1 if job  precedes job  on machine ;  0 otherwise.ikmx i k m  
1  if it is available to process operation  on machine ;  0 otherwise.ijm ijy o m

sijm: the starting time operation oij on machine m, a stochastic variable  
cijm: the completion time operation oij on machine m, a stochastic variable  

. 
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where, the equation (2) shows that only one operation can be in each sequence on a machine. The equation (3) 

guarantees that each operation for each job must be allocated to just one machine in a sequence. The equation (4) 
guarantees the operation precedence sequences for each job. The equation (5) shows that the processing time of each 
of operation does not have any overlap with any other. Equation (6) represents the nonnegative restrictions. 

3. Proposed Estimation of Distribution Algorithm 

EDAs is a class of population-based optimization algorithm that extracts statistical information from the 
population of solutions, which uses the estimated statistical information to generate new solutions instead of the 
crossover and mutation operators [12]. The algorithm starts by generating a population solution. A set of solutions 
(promising data) is selected from the population using a selection method, and the promising data is used to estimate 
the probability model. Finally, the new candidate solutions are incorporated into a solution pool, which keeps these 
individuals contribute to the makeup of promising data. The iteration will continue until the predefined termination 
criteria is met. The pseudo-code for the proposal is presented in Fig. 1. Hao et al reported a cooperative EDA for 
solving the simultaneous multiple resources scheduling problem by the semiconductor final test scheduling [14]. 

For traditional EAs, the representation of a chromosome for an individual is generated by mapping the decision 
space into the search space or directly encoding the decision variables. Each position in a probability vector 
indicates the distribution of probability regarding each variable. When prior knowledge of distribution is not 
assumed, the domain of discrete variable X is a set of predefined values (x). The distribution of random variable X 
has the same equal probability; the initialization is as following:  

0
1( )tP X
X

 (7) 

where |X| denotes the number of values in the set of domain X. 
After the initialization of EDA, probability sample new alternative solutions, and the new solutions are evaluated 

according to a specific system objective. EDA collects all new alternative solutions and replaces the inferior 
solutions in the promising data. The probability distribution of X can be estimated as follows: 

( ) 1 /
( )

1 /t
X x X

B X x
prSize X

 (8) 

where ( )X x denotes the number of instances in promising solutions with variable X = x, and  represents the low 
bound to the probability of X. 

The distribution probability of X in the probability vector is learned toward the estimated distribution of 
promising data, as follows: 
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1( ) (1 ) ( ) ( )t t tP X x P X x B X x   (9) 
where  denotes the learning rate from the current promising solutions; in particular, for  = 1, the probability 
distribution is completely reconstructed by the current promising solutions. 

To maintain the diversity of sampling, the distribution probability of X is updated toward the estimation 
distribution. The distribution can be tuned with probability pm of the mutation, and the mutation is performed using 
the following definition: 

  1

' \{ }

( )( )
max( ( ) / ( 1), ) ( ( ) )

t m
t

t m t m
x X x

P X xP X x
P x X P X x

 
(10) 

where m is the mutation shift that controls the amount for mutation operation, and  is a small probability value to 
avoid the negative probability value.  

4. Experiments and Discussion 

4.1.  Application of EDA for S-JSP 

The representation of the operation sequence uses job-based encoding [2], and the length of the chromosome 
equals the total number of operations. The job number denotes the operation of each job, and the l-th occurrence of a 
job number refers to the l-th operation in the sequence of this job. For a job-based operations sequence vector 

1 [3,1,3,1,2,2,3,1,2]v (shown in Fig. 2), the operations sequence can be interrupted as follows: (3,1), (1,1), (3,2), 
(1,2), (2,1), (2,2), (3,3), (1,3), (2,3).  

Compared to traditional EAs, the traditional EDA generates a new alternative solution according to the 
probability model. Therefore, the probability model has a considerable effect on the performances of EDA. The 
probability model was used to estimate the probability distribution based on both the order of the jobs in the 
sequence and on similar blocks of jobs in selected individuals of the promising data. 

    jl be the number of times that job i appears before or in position l in the promising data D. It denotes the 
importance of the order of jobs. il is the number of times that job i appears immediately after job i' when job i' is in 
position l-1. il indicates the importance of the similar blocks of jobs in the promising data D. Then, the probability 
for positioning job i in the l-th position of the offspring for generation t is determined by  

 

 
13 3 1 2 2 3 1 2

Job-based operations sequence

 
Fig.2 Illustration of the representation of a solution for S-JSP 

procedure: EDA-main routine
input: problem data, parameters

output: the best solution S best
begin

initialzation:
step1:
step2: initialize population Pop (t ) by encoding and probability model P (t ) ;  
step3: evaluate Pop (t ) by decoding and  keep the best solution  S best ;

Optimization:
while( not meeting termination criterion)

step4: subPop  = select(Pop (t ));
step5: P (t +1) = estimate(supPop , P (t ));
step6: newPop  =  create(subPop,P (t +1));
step7:
step8: evaluate Pop (t ) by decoding and update the best solution  S best ;

step10: t t +1;

output the best solution S best ; 
end;

Pop (t ) =  reproduce(Pop (t ),  newPop );

end;

 
Fig. 1 Pseudo-code for EDA 
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( , ) ( ) (1 ) ( )t il ilp i l M M  (11) 
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( )ilM  and ( )ilM  are completeness measures for importance of the order jobs and similar blocks respectively. 
behavior preference on which covering percentage we want to have a 

good discrimination. 
To examine the practical viability and efficiency of the proposed EDA, we designed a numerical study to 

compare EDA with efficient algorithms from previous studies. The proposed EDA was compared with CCQGA[13]  
based on a set of simulation data of testing standard FT benchmark problems FT06, FT10, and FT20. In order to 
ensure the fairness of comparison, The mean of normal distribution comes from the processing time of deterministic 
benchmark problems and the variance is generated from uniform distribution U[0, 1]. The experiments were 
conducted on a personal computer with an Intel Core I5 CPU at 2.8 GHz and 2 GB RAM. The parameters and 
strategies of related algorithms are categorized in Table 1. 

In order to evaluate the performance of a given algorithm for S-JSP, the following two measures, which 
introduced by Gu et al [13], is adopted: The 
the quality of the solution. This metric reflects the performance of algorithms in a statistical sense. The formulations 
could be given as 

run

max run
1

E( ) (1 / )
N

i
k

C N H  (12) 

Where Nrun is the number of simulations, and Hi is the makespan value at the k-th run of the method (i Nb). 
 of the solution. The 

formulations could be given as  
run

2
run max

1

(1 / ) ( E( ))
N

i
i

N H C  (13) 

4.2. Results and Discussion 

Performance: Table 2 shows that EDA algorithms exhibited superior performance to CCQGA n all experiments. 
In contrast to the evolutionary operator of CCQGA, EDA uses the estimated probability distributions of decision 
variables relating to operation sequence and machine setup planning. It provides a prediction mechanism on the 
variant of decision variables. As standard deviation shown in the Table. 2, EDA achieved superior stability to 
random strategy-based algorithms, although the accuracy of prediction was affected by the promising solutions. 

Table. 1 The parameters of CCAGA and EDA for S-JSP 
CCQGA EDA

Iteration 1000 1000
Population 100(50,50) 100
Selection roulette tournament(k )
Strategy co-evolutionary -

Operators
CycleCrossover(P c)
Mutation(P m )

Sampling
Improvement(P i )

Parameters P m = 0.10 samplingRate = 0.4
P c= 0.80 promisingRate = 0.5
promisingRate = 0.5

 = 0.02
P i  = 0.4  k  = 2  



107 Xinchang Hao et al.  /  Procedia Computer Science   20  ( 2013 )  102 – 107 

Computation Cost: The computational costs of evolutionary-based algorithms mainly depend on the number of 
fitness evaluations. The difference of time complexity between CCQGA and the proposed approach mainly relies on 
the operators. EDA samples a new candidate solution and improved the current candidate solution according to 
probability distribution. Moreover, it estimates the univariate margin distribution of decision variables using the 
promising data. The average CPU times of CCQGA with cooperative scheme on the FT06, FT10 and FT20 
problems were 174.28, 683.61 and 789.43 s, respectively. The computational times of EDA conducted on FT06, 
FT10 and FT20 problems were 165.15, 648.79 and 749.64 s respectively. The results show that CEDA achieved 
similar computational efficiency to CCQGA.  

5. Conclusion 

This paper presents an effective estimation of distribution algorithm (EDA), which solves the stochastic job shop 
scheduling problem (S-JSP) with the uncertainty of processing time. It minimizes the expected average makespan 
within a reasonable amount of calculation time. With the framework of the proposed EDA, the explicit probability 
model of the operation sequence is estimated on the distribution of good solutions found so far and use the 
constructed model to guide further search behavior. The sampling operator based on the probability model achieves 
better convergence and stability than the conventional operator such crossover and mutation. In our future work, 
further experiments will be conducted to determine the accuracy of the proposed EDA in response to variations 
among the parameters. Furthermore, we will extend EDA to adapt to multiple-objective optimizations. 

 
Acknowledgments: This work is partly supported by the Grant-in-Aid for Scientific Research (C) of The Japan Society of 

Promotion of Science (JSPS) No. 24510219.0001, National Science Council (NSC 101-2811-E-007-004, NSC 102-2811-E-007-
005) and the Fundamental Research Funds (Software+X) of Dalian University of Technology (No. DUT12JR05, No. 
DUT12JR12. 

References 

1. E.L. Lawler, J.K. Lenstra, A.R. Kan, D.B. Shmoys, Sequencing and scheduling: Algorithms and complexity, Handbooks of Operations Res. & 
Management Sci. 4 (1993) 445 522. 

2. M. Gen, R. Cheng, Genetic algorithms and engineering optimization, John Wiley & Sons, 2000. 
3. W. Herroelen, R. Leus, Project scheduling under uncertainty: Survey and research potentials, Eur. J. Operational Res. 165 (2005) 289 306. 
4. J. Gu, X. Gu, M. Gu, A novel parallel quantum genetic algorithm for stochastic job shop scheduling, J. Math. Anal. Appl. 355 (2009) 63 81. 
5. P. Kall, S.W. Wallace, Stochastic programming, John Wiley and Sons Ltd, 1994. 
6. R. Tavakkoli-Moghaddam, F. Jolai, F. Vaziri, P.K. Ahmed, A. Azaron, A hybrid method for solving stochastic job shop scheduling problems, 

Appl. Math. Computation 170 (2005) 185 206. 
7. B. Liu, L. Wang, Y. Jin, Hybrid particle swarm optimization for flow shop scheduling with stochastic processing time, in: Computer Intelligent 

Security, Springer, 2005: pp. 630 637. 
8. R. Zhou, A.Y.C. Nee, H.P. Lee, Performance of an ant colony optimisation algorithm in dynamic job shop scheduling problems, Int. J. Prod. 

Res. 47 (2009) 2903 2920. 
9. M. Gholami, M. Zandieh, Integrating simulation and genetic algorithm to schedule a dynamic flexible job shop, J. Intelligent  Manuf. 20 

(2009) 481 498. 
10. D. Lei, A genetic algorithm for flexible job shop scheduling with fuzzy processing time, Int. J. Prod. Res. 48 (2010) 2995 3013. 
11. S.-C. Horng, S.-S. Lin, F.-Y. Yang, Evolutionary algorithm for stochastic job shop scheduling with random processing time, Expert Syst. 

Appl. 39 (2012) 3603 3610. 
12. P. Larrañaga, J.A. Lozano, Estimation of distribution algorithms: a new tool for evolutionary computation, Springer, 2002. 
13. J. Gu, M. Gu, C. Cao, X. Gu, A novel competitive co-evolutionary quantum  genetic algorithm for stochastic job shop scheduling problem, 

Computers &  Oper. Res. 37 (2010) 927 937. 
14. X-C Hao, J-Z Wu, C-F Chien, M. Gen, The cooperative estimation of distribution algorithm: a novel approach for semiconductor final test 

scheduling problems, J. Intelligent Manuf., DOI 10.1007/s10845-013-0746-x, (2013) 13pp. 

Table. 2 Expected value and standard deviation of makespan of CCQGA and EDA 
 

 

CCQGA EDA CCQGA EDA CCQGA EDA
Min C max 54.76 54.25 1008.70 998.47 1270.84 1265.05
Max C max 55.65 55.50 1074.90 1063.49 1329.19 1324.70
E (C max) 55.15 55.02 1054.52 1043.29 1314.25 1304.35

0.36 0.28 18.08 15.13 20.02 16.77

FT06 FT10 FT20

 


