The competition number of a graph with exactly h holes, all of which are independent ${ }^{\text {a }}$

Bo-Jr Li ${ }^{\text {a }}$, Gerard J. Chang ${ }^{\text {a,b,c,* }}$
${ }^{\text {a }}$ Department of Mathematics, National Taiwan University, Taipei 10617, Taiwan
${ }^{\text {b }}$ Institute for Mathematical Sciences, National Taiwan University, Taipei 10617, Taiwan
${ }^{\text {c }}$ National Center for Theoretical Sciences, Taiwan

ARTICLE INFO

Article history:

Received 24 December 2007
Received in revised form 25 August 2008
Accepted 11 November 2008
Available online 27 December 2008

Keywords:

Competition graph
Competition number
Chordal graph
Chordless cycle
Hole
Independent hole

Abstract

Given an acyclic digraph D, the competition graph $C(D)$ of D is the graph with the same vertex set as D where two distinct vertices x and y are adjacent in $C(D)$ if and only if there is a vertex v in D such that (x, v) and (y, v) are arcs of D. The competition number $\kappa(G)$ of a graph G is the least number of isolated vertices that must be added to G to form a competition graph. The purpose of this paper is to prove that the competition number of a graph with exactly h holes, all of which are independent, is at most $h+1$. This generalizes the result for $h=0$ given by Roberts, and the result for $h=1$ given by Cho and Kim.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Given an acyclic digraph D, the competition graph $C(D)$ of D is the graph with the same vertex set as D where two distinct vertices x and y are adjacent in $C(D)$ if and only if there is a vertex v in D such that (x, v) and (y, v) are arcs of D. The notion of a competition graph was introduced by Cohen [1] for studying ecological systems. Since then, several variations have been defined and studied by many authors (see, for examples, [2-7]). Besides the application to ecology, the concept of competition graph can be applied in the study of communication over noisy channels (see $[8,9]$) and to the problem of assigning channels to radio or television transmitters (see [10-12]).

While not all graphs are competition graphs, Roberts [8] observed that any graph G together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. In fact, $|E(G)|$ isolated vertices are enough, as $G \cup I_{|E(G)|}$ is the competition graph of D with $V(D)=V(G) \cup E(G)$ and $E(D)=\{(x, e): x$ is incident to $e\}$, where I_{r} is the graph of r vertices and no edges and $G \cup I_{r}$ is the disjoint union of G and I_{r}. Roberts then defined the competition number $\kappa(G)$ of a graph G to be the smallest number r such that $G \cup I_{r}$ is the competition graph of an acyclic digraph. It is clear that G is a competition graph if and only if $\kappa(G)=0$. For graphs whose competition numbers are known, see [4,5]. From an algorithmic point of view, Opsut [12] proved that determining the competition number of a graph is NP-hard.

In a graph G, a chord of a path $\left(v_{1}, v_{2}, \ldots, v_{r}\right)$ is an edge $v_{i} v_{j}$ with $|i-j| \geq 2$. Similarly, a chord of a cycle $\left(v_{1}, v_{2}, \ldots, v_{r}, v_{1}\right)$ is an edge $v_{i} v_{j}$ with $|i-j|_{r} \geq 2$, where $|i-j|_{r}=\min \{|i-j|, r-|i-j|\}$. A chordless path (respectively, cycle) is a path (respectively, cycle) with no chord. We remark that a "chordless path/cycle" is also called an "induced path/cycle" by other

[^0]

Fig. 1. A graph G with exactly four holes, where C_{1} is the only independent hole.
authors. A hole is a chordless cycle of length at least 4. A chordal graph is a graph with no hole. For any integer $n \geq 4$, Harray, Kim and Roberts [13] showed that the maximum competition number of a graph on n vertices is achieved uniquely by the complete bipartite graph $K_{\lfloor n / 2\rfloor,\lceil n / 2\rceil}$ which has a lot of holes. On the other hand, Roberts [8] proved that the competition number of a chordal graph is at most 1 . Cho and Kim [14] established that the competition number of a graph with exactly one hole is at most 2 . They also gave a sufficient condition for a graph with exactly one hole to have competition number at most 1 . They raised the problem of determining graphs with exactly one hole and with competition number at most 1. Kim [15] gave another sufficient condition for a graph with exactly one hole to have competition number 1 . He then asked an interesting question: that of whether $h+1$ is the maximum competition number of a graph with exactly h holes.

The purpose of this paper is to partially answer Kim's question. Roughly speaking, we confirm that the answer is yes when the holes do not 'overlap' much. More precisely, in a graph G, a hole C is independent if the following two conditions hold for any other hole C^{\prime} of G.

1. C and C^{\prime} have at most two common vertices.
2. If C and C^{\prime} have two common vertices, then they have one common edge and C is of length at least 5 .

Fig. 1 shows a graph G with exactly four holes $C_{1}=\left(v_{1}, v_{2}, v_{9}, v_{8}, v_{6}, v_{4}, v_{1}\right), C_{2}=\left(v_{2}, v_{3}, v_{7}, v_{5}, v_{2}\right), C_{3}=$ $\left(v_{9}, v_{10}, v_{7}, v_{5}, v_{9}\right)$ and $C_{4}=\left(v_{2}, v_{3}, v_{10}, v_{9}, v_{2}\right)$. The hole C_{1} is the only independent hole. Notice that C_{2}, C_{3} and C_{4} are pairwise intersecting an edge, but they are of length 4 , and so are not independent by point 2 in the definition. The reason that we need the condition " C is of length at least 5 " in point 2 will become clear after Lemma 3 .

Notice that if a graph has exactly one hole then the hole is independent. In this paper, we prove that if G is a graph with exactly h holes, all of which are independent, then its competition number is at most $h+1$.

2. Preliminaries

In this section, we establish some properties that are useful in this paper. First, we fix some notation. A subgraph of a graph G is a graph H such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. The subgraph induced by a subset $S \subseteq V(G)$ is the graph $G[S]$ with vertex set S and edge set $\{x y \in E(G): x, y \in S\}$. The deletion of a subset $S \subseteq V(G)$ from G results in the graph $G-S$ which is $G[V(G)-S]$. We denote $G-\{v\}$ by $G-v$. We use $G-u v$ to denote the graph obtained from G by deleting edge $u v$. The neighborhood $N(v)$ of a vertex v is the set of all vertices adjacent to v; and the closed neighborhood of v is $N[v]=\{v\} \cup N(v)$.

Next we state two easy lemmas whose proofs we have omitted.
Lemma 1. In any graph, if a vertex is not in an independent hole but is adjacent to two non-adjacent vertices of this hole, then it is adjacent to all vertices of this hole.

Lemma 2. In any graph, the set of vertices adjacent to all vertices of an independent hole is a clique.
For a hole C, a C-avoiding walk is a walk whose internal vertices are not in $V(C) \cup X$, where X is the set of vertices adjacent to all vertices of C. Notice that repeated vertices are allowed in a C-avoiding walk. Notice that we need the concept of a C avoiding walk rather than only a C-avoiding path, as you will see that the former is essential in the third paragraph of the proof of Theorem 6.
Lemma 3. For any two distinct non-adjacent vertices v_{i} and v_{j} in an independent hole $C=\left(v_{1}, v_{2}, \ldots, v_{r}, v_{1}\right)$ of a graph G, there is no C-avoiding walk from v_{i} to v_{j}.
Proof. Suppose to the contrary that there is a C-avoiding walk $P=\left(v_{i}, u_{1}, u_{2}, \ldots, u_{s}, v_{j}\right)$ from v_{i} to v_{j}. First, $s \geq 2$ as C has no chord and u_{1} is not in X by Lemma 1, where X is the set of vertices adjacent to all vertices of C. Without loss of generality, we may assume that $i=1$ and $3 \leq j \leq r-1$. We may also assume that v_{i}, v_{j} and P are chosen so that $|P|=s+1$ is minimal, where $|P|$ denotes the number of edges of P. In this case, P is a chordless path.

We now consider the two cycles $C_{1}=\left(v_{1}, u_{1}, u_{2}, \ldots, u_{s}, v_{j}, v_{j-1}, \ldots, v_{2}, v_{1}\right)$ and $C_{2}=\left(v_{1}, u_{1}, u_{2}, \ldots, u_{s}, v_{j}, v_{j+1}, \ldots\right.$, v_{r}, v_{1}. Since C_{1} intersects C at v_{1} and v_{j}, by the independence of C, C_{1} is not a hole and so there is a chord $u_{k} v_{k^{\prime}}$ where $1 \leq k \leq s$ and $2 \leq k^{\prime} \leq j-1$. Similarly, C_{2} has a chord $u_{\ell} v_{\ell^{\prime}}$ where $1 \leq \ell \leq s$ and $j+1 \leq \ell^{\prime} \leq r$. In
fact, for all such u_{k} and u_{ℓ}, we always have $u_{k} \neq u_{\ell}$ for otherwise $u_{k}=u_{\ell} \in X$ by Lemma 1 , violating that P is a C avoiding walk. For simplicity, assume that $k<\ell$. Since $P^{\prime}=\left(v_{k^{\prime}}, u_{k}, u_{k+1}, \ldots, u_{\ell}, v_{\ell^{\prime}}\right)$ is a C-avoiding walk between two non-adjacent vertices $v_{k^{\prime}}$ and $v_{\ell^{\prime}}$ in C, by the minimality of $|P|$, we have $s+1 \leq 2+\ell-k \leq 2+s-1$ and so $k=1$ and $\ell=s$. Again, by Lemma 1, we have $k^{\prime}=2$ and $\ell^{\prime}=j+1$. Thus the only edges between P and C are $u_{1} v_{1}, u_{1} v_{2}, u_{s} v_{j}$ and $u_{s} v_{j+1}$. Then, $C_{1}^{\prime}=\left(v_{2}, u_{1}, u_{2}, \ldots, u_{s}, v_{j}, v_{j-1}, \ldots, v_{2}\right)$ is a hole intersecting C at $j-1$ vertices, and $C_{2}^{\prime}=\left(v_{1}, u_{1}, u_{2}, \ldots, u_{s}, v_{j+1}, v_{j+2}, \ldots, v_{r}, v_{1}\right)$ is a hole intersecting C at $r-j+1$ vertices. By the independence of C, $j-1 \leq 2$ and $r-j+1 \leq 2$, so $r=4$. But this is still a contradiction as C and C_{1}^{\prime} intersect at two vertices while C is of size 4 only.

We notice that it is possible to have a C-avoiding walk between two adjacent vertices v_{i} and v_{i+1} of an independent hole C. In graph G of Fig. $1,\left(v_{2}, v_{5}, v_{9}\right)$ is a C_{1}-avoiding walk between two adjacent vertices v_{2} and v_{9} in C_{1}. On the other hand, ($v_{2}, v_{9}, v_{10}, v_{7}$) is a C_{2}-avoiding walk between two non-adjacent vertices v_{2} and v_{7} in C_{2}. This justifies the inclusion of the second point in the definition of an independent hole, since without it, Lemma 3 would fail.

We now consider the case when G has exactly h holes $C_{1}, C_{2}, \ldots, C_{h}$, all of which are independent. Let X_{i} be the set of vertices adjacent to all the vertices of the hole C_{i} for $i=1,2, \ldots, h$. For any edge $u v$ of hole C_{i}, define the set $S_{i, u v}=\{w: w$ is an internal vertex of a C_{i}-avoiding walk from u to $\left.v\right\}$. Notice that the set $S_{i, u v}$ may possibly be empty.

Lemma 4. Suppose a graph G has exactly h holes $C_{1}, C_{2}, \ldots, C_{h}$, all of which are independent. For any edge $u v$ in C_{h}, if $S_{h, u v}$ is empty then $G-u v$ has exactly $h-1$ holes, all of which are independent.
Proof. Suppose that $u v \in E\left(C_{i}\right)$ for some $i \neq h$. Since C_{i} is a hole, any vertex in $V\left(C_{i}\right)-\{u, v\}$ is not adjacent to both u and v, and hence is not in X_{h}. Then, $C_{i}-u v$ is a C_{h}-avoiding walk from u to v, a contradiction to the fact that $S_{h . u v}$ is empty. This proves that $u v \notin E\left(C_{i}\right)$ for all $i \neq h$ and so $C_{1}, C_{2}, \ldots, C_{h-1}$ are holes in $G-u v$.

Next, we show that $G-u v$ has only these $h-1$ holes and so they are also independent in $G-u v$. Suppose to the contrary that $G-u v$ has another hole C^{\prime} which is a cycle other than C_{h} in G. In G, the edge $u v$ is the only chord of C^{\prime} and so it divides C^{\prime} into two chordless cycles. As these two cycles contain u and v, either one is C_{h} and the other is a triangle $u v w$ or else they are two triangles $u v w$ and $u v w^{\prime}$. For the former case, $w \notin X_{h}$ and so (u, w, v) is a C_{h}-avoiding walk, a contradiction to the fact that $S_{h, u v}$ is empty. For the latter case, $\left(u, w, v, w^{\prime}, u\right)$ is a hole in $G-u v$ and so $w w^{\prime} \notin E(G)$. By Lemma 2 , one of w and w^{\prime} is not in X_{h}; without loss of generality assume that $w \notin X_{h}$. Again, (u, w, v) is a C_{h}-avoiding walk, a contradiction to the fact that $S_{h, u v}$ is empty.

3. Main result

This section gives the main result that the competition number of a graph with exactly h holes, all of which are independent, is at most $h+1$. First, we state a useful result for the case of $h=0$.

Theorem 5 ([8]). For any clique Q of a chordal graph G, there exists an acyclic digraph D such that $C(D)=G \bigcup I_{1}$ and the vertices of Q have only outgoing arcs in D.

We now have our main result as follows.
Theorem 6. Suppose G is a graph with exactly h holes $C_{1}, C_{2}, \ldots, C_{h}$, all of which are independent. If Q is a clique of G, then there exists an acyclic digraph D such that $C(D)=G \bigcup I_{h+1}$ and the vertices of Q have only outgoing arcs in D. Consequently, $\kappa(G) \leq h+1$.

Proof. We shall prove the theorem by induction on h. The theorem is true for $h=0$ by Theorem 5 . Suppose $h \geq 1$ and the theorem is true for $h^{\prime}<h$.

Suppose $\left(e \cup S_{h, e}\right) \cap Q$ contains some vertex x for some edge e in C_{h}. Since Q is a clique and C_{h} is a hole, we may assume $e^{\prime} \cap Q=\emptyset$ for any edge e^{\prime} of C_{h} disjoint from e. For such e^{\prime} we have $\left(e^{\prime} \cup S_{h, e^{\prime}}\right) \cap Q=\emptyset$, for otherwise if $x^{\prime} \in S_{h, e^{\prime}} \cap Q$ then $x^{\prime} \in N[x]$. By the definitions of $S_{h, e}$ and $S_{h, e^{\prime}}$, there is a C_{h}-avoiding walk from an end vertex y of e to any end vertex y^{\prime} of e^{\prime}, which can be chosen so that y and y^{\prime} are not adjacent, a contradiction to Lemma 3 . Since C_{h} has at most three edges e^{\prime} that are not disjoint from e, the set $\left(e \cup S_{h, e}\right) \cap Q$ is nonempty for at most three edges e in $E\left(C_{h}\right)$. Now, since C_{h} has at least four edges, we may choose an edge $u v$ in $E\left(C_{h}\right)$ such that ($\left.\{u, v\} \cup S_{h, u v}\right) \cap Q$ is empty. Consider the two induced subgraphs $G_{1}=G-S_{h, u v}$ and $G_{2}=G\left[X_{h} \cup\{u, v\} \cup S_{h, u v}\right]$ of G; see Fig. 2.

We claim that no vertex of $S_{h, u v}$ is adjacent to a vertex of $V(G)-\left(X_{h} \cup V\left(C_{h}\right) \cup S_{h, u v}\right)$. For otherwise there is a C_{h}-avoiding walk W from u to v that contains a vertex x adjacent to a vertex $y \notin X_{h} \cup V\left(C_{h}\right) \cup S_{h, u v}$. The walk W^{\prime} obtained from W by replacing x with $x y x$ is then C_{h}-avoiding, contradicting the fact that $y \notin S_{h, u v}$. By Lemma 3, no vertex of $S_{h, u v}$ is adjacent to a vertex of $V\left(C_{h}\right)-\{u, v\}$. Hence, $X_{h} \cup\{u, v\}$ is a vertex cut of G and no vertex in $S_{h, u v}$ belongs to the component that includes $V\left(C_{h}\right)-\{u, v\}$. Since $V\left(G_{1}\right) \cap V\left(G_{2}\right)=X_{h} \cup\{u, v\}$ is a clique vertex cut of G, we have that G_{1} has exactly h_{1} holes, all of which are independent; and G_{2} has exactly $h_{2}=h-h_{1}$ holes, all of which are independent.

Since C_{h} is not in G_{2}, we have $h_{2}<h$. By the induction hypothesis, there exists an acyclic digraph D_{2} such that $C\left(D_{2}\right)=G_{2} \cup I_{h_{2}+1}$ and the vertices of $X_{h} \bigcup\{u, v\}$ have only outgoing arcs in D_{2}. Notice that C_{h} is a hole in G_{1} which has no C_{h}-avoiding walk from u to v. By Lemma $4, G_{1}-u v$ has exactly $h_{1}-1$ holes, all of which are independent. As Q is a clique in

Fig. 2. A graph with exactly h holes, all of which are independent.

Fig. 3. A graph G has exactly h holes with $\kappa(G)=k$, where $1 \leq k \leq h$.
$G_{1}-u v$, by the induction hypothesis, there exists an acyclic digraph D_{1} such that $C\left(D_{1}\right)=\left(G_{1}-u v\right) \cup I_{h_{1}}$ and the vertices of Q have only outgoing arcs in D_{1}. Having D_{1} and D_{2} at hand, we now construct the digraph D with $V(D)=V\left(D_{1}\right) \cup V\left(D_{2}\right)$ and $E(D)=E\left(D_{1}\right) \cup E\left(D_{2}\right)$. It is then easy to check that D is an acyclic digraph with the vertices of Q having only outgoing arcs in D and $C(D)=G \cup I_{h+1}$. Consequently, $\kappa(G) \leq h+1$.

We remark that the upper bound in Theorem 6 is sharp as the following examples show. Kim [4] observed that for $1 \leq k \leq h+1$ there is a graph G with exactly h holes and $\kappa(G)=k$. In fact, G is the graph obtained from h copies of 4 -cycles and a copy of a complete graph K_{h-k+3} by first identifying a vertex at each 4-cycle and then another vertex of a 4-cycle with a vertex of the complete graph K_{h-k+3}; see Fig. 3.

Notice that if G has exactly one hole then the hole is independent. Consequently, we have the following corollary.
Corollary 7 ([14]). If G has exactly one hole, then $\kappa(G) \leq 2$.
Another interesting consequence is as follows.
Corollary 8. Suppose G has exactly r components $G_{1}, G_{2}, \ldots, G_{r}$, where each component G_{i} has a clique of size ω_{i} and exactly h_{i} holes, all of which are independent. If $h_{0}^{\prime}=\omega_{0}^{\prime}=0$ and $h_{i}^{\prime}=h_{i-1}^{\prime}+\max \left\{0, h_{i}+1-\omega_{i-1}^{\prime}\right\}$ and $\omega_{i}^{\prime}=\omega_{i}+\max \left\{0, \omega_{i-1}^{\prime}-h_{i}-1\right\}$ for $1 \leq i \leq h$, then $\kappa(G) \leq h_{r}^{\prime}$.
Proof. For each component G_{i} of G, choose a clique Q_{i} of size ω_{i} in G_{i}. By Theorem 6, there exists an acyclic digraph D_{i} such that $C\left(D_{i}\right)=G_{i} \cup I_{h_{i}+1}$ and the vertices of Q_{i} have only outgoing arcs in D_{i}. Since the vertices of Q_{j} have only outgoing arcs in D_{j} for all $j, \min \left\{h_{i}+1, \omega_{i-1}^{\prime}\right\}$ new vertices of D_{i} can be replaced by vertices in the Q_{j} with $j<i$, while $\max \left\{0, h_{i}+1-\omega_{i-1}^{\prime}\right\}$ new vertices of D_{i} remain unreplaced, which gives the formula for h_{i}^{\prime}. On the other hand, $\max \left\{0, \omega_{i-1}^{\prime}-h_{i}-1\right\}$ vertices in the cliques Q_{j} with $j<i$ remain. This together with the ω_{i} vertices in Q_{i} gives the formula for ω_{i}^{\prime}. Thus, we can construct an acyclic digraph D from the digraphs $D_{1}, D_{2}, \ldots, D_{r}$ such that $C(D)=G \cup I_{h_{r}^{\prime}}$. This gives that $\kappa(G) \leq h_{r}^{\prime}$.

In particular, we have:
Corollary 9. If G is a graph in which each component has at most one hole, then $\kappa(G) \leq 2$. If, in addition, G has a component containing no hole, then $\kappa(G) \leq 1$.

An interesting question is how to determine graphs G with exactly one hole such that $\kappa(G) \leq 1$.

4. The sufficient condition for $\kappa(G) \leq h$

We close this paper by giving a sufficient condition for a graph having exactly h holes, all of which are independent, to have the competition number at most h. First, we need a well known lemma. A vertex is simplicial if its neighbors form a clique.

Lemma 10 ([16]). Every chordal graph has a simplicial vertex. Moreover, every chordal graph that is not a complete graph has two non-adjacent simplicial vertices.

Theorem 11. Suppose G is a graph with exactly h holes, all of which are independent. If $S_{i, u v}$ is not empty and $G\left[X_{i} \cup\{u, v\} \cup S_{i, u v}\right]$ has no hole for some i and $u v \in E\left(C_{i}\right)$, then $\kappa(G) \leq h$.

Proof. We may assume that $S_{1, u v}$ is not empty and $G_{1}=G\left[X_{1} \cup\{u, v\} \cup S_{1, u v}\right]$ has no hole. Then there is a shortest $C_{1}-$ avoiding walk P, which is a chordless path, from u to v in G. If P is of length at least 3 , then P together with $u v$ is a hole in G_{1}, a contradiction to the fact that G_{1} has no hole. Therefore, there is a vertex w in $S_{1, u v}$ such that w is adjacent to u and v. By Lemma 10 , there exists a vertex ordering $v_{1}, v_{2}, \ldots, v_{n}$ of G_{1} with $X_{1} \cup\{u, v\}=\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}$ for some $t<n$ such that $Q_{i}=\left\{v_{j}: 1 \leq j<i, v_{j} v_{i} \in E\left(G_{1}\right)\right\} \cup\left\{v_{i}\right\}$ is a clique for $1 \leq i \leq n$. We construct a digraph D_{1} with $V\left(D_{1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}\right\}$ and $E\left(D_{1}\right)=\bigcup_{t+1 \leq i \leq n}\left\{\left(y, v_{i+1}\right): y \in Q_{i}\right\}$. Then D_{1} is acyclic and the vertices of $X_{1} \cup\left\{u, v, v_{t+1}\right\}$ have only outgoing arcs in D_{1}. Notice that $C\left(D_{1}\right)$ is a subgraph of G_{1} such that $E\left(C\left(D_{1}\right)\right)$ contains the set $E\left(G_{1}\right)-E\left(X_{1} \cup\{u, v\}\right)$. Since $w \notin X_{1} \cup\{u, v\}$, we have $w=v_{j}$ for some $j>t$ with $\{u, v\} \subseteq Q_{j}$, and so $u v \in E\left(C\left(D_{1}\right)\right)$. Let $G_{2}=G-S_{1, u v}$. Notice that G_{2} is a graph with exactly h holes, all of which are independent, and G_{2} has no C_{1}-avoiding walk from u to v. By Lemma 4, we have that $G_{2}-u v$ is a graph with exactly $h-1$ holes, all of which are independent. By Theorem 6, there exists an acyclic digraph D_{2} such that $C\left(D_{2}\right)=\left(G_{2}-u v\right) \cup I_{h}$, where $v_{t+1} \in V\left(I_{h}\right)$. Now we construct a digraph D with $V(D)=V\left(D_{1}\right) \cup V\left(D_{2}\right)$ and $E(D)=E\left(D_{1}\right) \cup E\left(D_{2}\right)$. It can be easily checked that D is acyclic and $C(D)=G \cup I_{h}$. This gives that $\kappa(G) \leq h$.

Corollary 12. If G is a graph with exactly one hole C_{1} and $S_{1, u v}$ is not empty for some edge uv in $E\left(C_{1}\right)$, then $\kappa(G) \leq 1$.
Corollary 13 ([15]). If G is a graph with exactly one hole C_{1} and there is a vertex w adjacent to u and v for some edge $u v$ in $E\left(C_{1}\right)$, then $\kappa(G) \leq 1$.

Proof. The corollary follows from Corollary 12 and the fact that "there is a vertex w adjacent to u and v " implies " $S_{1, u v}$ is not empty".

Acknowledgements

The authors thank the referees for many constructive suggestions regarding the paper.

References

[1] J.E. Cohen, Interval graphs and food webs: A finding and a problem, RAND Corporation Document 17696-PR, Santa Monica, CA, 1968.
[2] C. Cable, K.F. Jones, J.R. Lundgren, S. Seager, Niche graphs, Discrete Appl. Math. 23 (1989) 231-241.
[3] P.C. Fishburn, W.V. Gehrlein, Niche numbers, J. Graph Theory 16 (1992) 131-139.
[4] S.-R. Kim, The competition number and its variants, in: J. Gimbel, J.W. Kennedy, L.V. Quintas (Eds.), Quo Vadis, Graph Theory? in: Annals of Discrete Mathematics, vol. 55, North-Holland B. V, Amsterdam, The Netherlands, 1993, pp. 313-326.
[5] S.-R. Kim, F.S. Roberts, Competition numbers of graphs with a small number of triangles, Discrete Appl. Math. 78 (1997) 153-162.
[6] J.R. Lundgren, Food webs, competition graphs, competition-common enemy graphs, and Niche graphs, in: F.S. Roberts (Ed.), Applications of Combinatorics and Graph Theory to the Biological and Social Sciences, in: IMH Volumes in Mathematics and its Application, vol. 17, Springer, New York, 1989, pp. 221-243.
[7] D. Scott, The competition-common enemy graph of a digraph, Discrete Appl. Math. 17 (1987) 269-280.
[8] F.S. Roberts, Food webs, competition graphs, and the boxicity of ecological phase space, in: Y. Alavi, D. Lick (Eds.), Theory and Applications of Graphs, Springer, New York, 1978, pp. 477-490
[9] C.E. Shannon, The zero capacity of a noisy channel, IRE Trans. Inform Theory IT-2 (1956) 8-19.
[10] M.B. Cozzens, F.S. Roberts, T-colorings of graphs and the channel assignment problem, Congr. Numer. 25 (1982) 191-208.
[11] W.K. Hale, Frequency assignment: Theory and application, Proc. IEEE 68 (1980) 1497-1514.
[12] R.J. Opsut, On the computation of the competition number of a graph, SIAM J. Alg. Discrete Math. 3 (1982) 420-428.
[13] F. Harary, S.-R. Kim, F.S. Roberts, Extremal competition numbers as a generalization of Turan's theorem, J. Ramanujan Math. Soc. 5 (1990) 33-43.
[14] H.H. Cho, S.-R. Kim, The competition number of a graph having exactly one hole, Discrete Math. 303 (2005) 32-41.
[15] S.-R. Kim, Graphs with one hole and competition number one, J. Korean Math. Soc. 42 (2005) 1251-1264.
[16] G.A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25 (1961) 71-76.

[^0]: * Supported in part by the National Science Council under grant NSC95-2115-M-002-0013-MY3.
 * Corresponding author at: Department of Mathematics, National Taiwan University, Taipei 10617, Taiwan.

 E-mail address: gjchang@math.ntu.edu.tw (G.J. Chang).

