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a b s t r a c t

Given an acyclic digraph D, the competition graph C(D) of D is the graph with the same
vertex set as Dwhere two distinct vertices x and y are adjacent in C(D) if and only if there
is a vertex v in D such that (x, v) and (y, v) are arcs of D. The competition number κ(G)
of a graph G is the least number of isolated vertices that must be added to G to form a
competition graph. The purpose of this paper is to prove that the competition number of a
graph with exactly h holes, all of which are independent, is at most h+ 1. This generalizes
the result for h = 0 given by Roberts, and the result for h = 1 given by Cho and Kim.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Given an acyclic digraph D, the competition graph C(D) of D is the graph with the same vertex set as Dwhere two distinct
vertices x and y are adjacent in C(D) if and only if there is a vertex v in D such that (x, v) and (y, v) are arcs of D. The
notion of a competition graph was introduced by Cohen [1] for studying ecological systems. Since then, several variations
have been defined and studied by many authors (see, for examples, [2–7]). Besides the application to ecology, the concept
of competition graph can be applied in the study of communication over noisy channels (see [8,9]) and to the problem of
assigning channels to radio or television transmitters (see [10–12]).
While not all graphs are competition graphs, Roberts [8] observed that any graph G together with sufficiently many

isolated vertices is the competition graph of some acyclic digraph. In fact, |E(G)| isolated vertices are enough, as G ∪ I|E(G)|
is the competition graph of D with V (D) = V (G) ∪ E(G) and E(D) = {(x, e) : x is incident to e}, where Ir is the graph of r
vertices and no edges and G∪ Ir is the disjoint union of G and Ir . Roberts then defined the competition number κ(G) of a graph
G to be the smallest number r such that G∪ Ir is the competition graph of an acyclic digraph. It is clear that G is a competition
graph if and only if κ(G) = 0. For graphs whose competition numbers are known, see [4,5]. From an algorithmic point of
view, Opsut [12] proved that determining the competition number of a graph is NP-hard.
In a graphG, a chord of a path (v1, v2, . . . , vr) is an edge vivjwith |i−j| ≥ 2. Similarly, a chord of a cycle (v1, v2, . . . , vr , v1)

is an edge vivj with |i − j|r ≥ 2, where |i − j|r = min{|i − j|, r − |i − j|}. A chordless path (respectively, cycle) is a path
(respectively, cycle) with no chord. We remark that a ‘‘chordless path/cycle’’ is also called an ‘‘induced path/cycle’’ by other
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Fig. 1. A graph Gwith exactly four holes, where C1 is the only independent hole.

authors. A hole is a chordless cycle of length at least 4. A chordal graph is a graph with no hole. For any integer n ≥ 4, Harray,
Kim and Roberts [13] showed that the maximum competition number of a graph on n vertices is achieved uniquely by the
complete bipartite graph Kbn/2c,dn/2e which has a lot of holes. On the other hand, Roberts [8] proved that the competition
number of a chordal graph is at most 1. Cho and Kim [14] established that the competition number of a graph with exactly
one hole is at most 2. They also gave a sufficient condition for a graph with exactly one hole to have competition number
at most 1. They raised the problem of determining graphs with exactly one hole and with competition number at most 1.
Kim [15] gave another sufficient condition for a graph with exactly one hole to have competition number 1. He then asked
an interesting question: that of whether h+ 1 is the maximum competition number of a graph with exactly h holes.
The purpose of this paper is to partially answer Kim’s question. Roughly speaking, we confirm that the answer is yes

when the holes do not ‘overlap’ much. More precisely, in a graph G, a hole C is independent if the following two conditions
hold for any other hole C ′ of G.
1. C and C ′ have at most two common vertices.
2. If C and C ′ have two common vertices, then they have one common edge and C is of length at least 5.

Fig. 1 shows a graph G with exactly four holes C1 = (v1, v2, v9, v8, v6, v4, v1), C2 = (v2, v3, v7, v5, v2), C3 =
(v9, v10, v7, v5, v9) and C4 = (v2, v3, v10, v9, v2). The hole C1 is the only independent hole. Notice that C2, C3 and C4 are
pairwise intersecting an edge, but they are of length 4, and so are not independent by point 2 in the definition. The reason
that we need the condition ‘‘C is of length at least 5’’ in point 2 will become clear after Lemma 3.
Notice that if a graph has exactly one hole then the hole is independent. In this paper, we prove that if G is a graph with

exactly h holes, all of which are independent, then its competition number is at most h+ 1.

2. Preliminaries

In this section, we establish some properties that are useful in this paper. First, we fix some notation. A subgraph of a
graph G is a graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G). The subgraph induced by a subset S ⊆ V (G) is the graph G[S]
with vertex set S and edge set {xy ∈ E(G) : x, y ∈ S}. The deletion of a subset S ⊆ V (G) from G results in the graph G − S
which isG[V (G)−S].We denoteG−{v} byG−v.We useG−uv to denote the graph obtained fromG by deleting edge uv. The
neighborhood N(v) of a vertex v is the set of all vertices adjacent to v; and the closed neighborhood of v is N[v] = {v}∪N(v).
Next we state two easy lemmas whose proofs we have omitted.

Lemma 1. In any graph, if a vertex is not in an independent hole but is adjacent to two non-adjacent vertices of this hole, then it
is adjacent to all vertices of this hole.

Lemma 2. In any graph, the set of vertices adjacent to all vertices of an independent hole is a clique.
For a hole C , a C-avoiding walk is a walkwhose internal vertices are not in V (C)∪X , where X is the set of vertices adjacent

to all vertices of C . Notice that repeated vertices are allowed in a C-avoiding walk. Notice that we need the concept of a C-
avoiding walk rather than only a C-avoiding path, as you will see that the former is essential in the third paragraph of the
proof of Theorem 6.

Lemma 3. For any two distinct non-adjacent vertices vi and vj in an independent hole C = (v1, v2, . . . , vr , v1) of a graph G,
there is no C-avoiding walk from vi to vj.
Proof. Suppose to the contrary that there is a C-avoiding walk P = (vi, u1, u2, . . . , us, vj) from vi to vj. First, s ≥ 2 as C has
no chord and u1 is not in X by Lemma 1, where X is the set of vertices adjacent to all vertices of C . Without loss of generality,
wemay assume that i = 1 and 3 ≤ j ≤ r−1.Wemay also assume that vi, vj and P are chosen so that |P| = s+1 is minimal,
where |P| denotes the number of edges of P . In this case, P is a chordless path.
We now consider the two cycles C1 = (v1, u1, u2, . . . , us, vj, vj−1, . . . , v2, v1) and C2 = (v1, u1, u2, . . . , us, vj, vj+1, . . . ,

vr , v1). Since C1 intersects C at v1 and vj, by the independence of C , C1 is not a hole and so there is a chord ukvk′ where
1 ≤ k ≤ s and 2 ≤ k′ ≤ j − 1. Similarly, C2 has a chord u`v`′ where 1 ≤ ` ≤ s and j + 1 ≤ `′ ≤ r . In
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fact, for all such uk and u`, we always have uk 6= u` for otherwise uk = u` ∈ X by Lemma 1, violating that P is a C-
avoiding walk. For simplicity, assume that k < `. Since P ′ = (vk′ , uk, uk+1, . . . , u`, v`′) is a C-avoiding walk between
two non-adjacent vertices vk′ and v`′ in C , by the minimality of |P|, we have s + 1 ≤ 2 + ` − k ≤ 2 + s − 1 and
so k = 1 and ` = s. Again, by Lemma 1, we have k′ = 2 and `′ = j + 1. Thus the only edges between P and C are
u1v1, u1v2, usvj and usvj+1. Then, C ′1 = (v2, u1, u2, . . . , us, vj, vj−1, . . . , v2) is a hole intersecting C at j − 1 vertices, and
C ′2 = (v1, u1, u2, . . . , us, vj+1, vj+2, . . . , vr , v1) is a hole intersecting C at r − j + 1 vertices. By the independence of C ,
j− 1 ≤ 2 and r − j+ 1 ≤ 2, so r = 4. But this is still a contradiction as C and C ′1 intersect at two vertices while C is of size
4 only. �

We notice that it is possible to have a C-avoiding walk between two adjacent vertices vi and vi+1 of an independent hole
C . In graph G of Fig. 1, (v2, v5, v9) is a C1-avoiding walk between two adjacent vertices v2 and v9 in C1. On the other hand,
(v2, v9, v10, v7) is a C2-avoiding walk between two non-adjacent vertices v2 and v7 in C2. This justifies the inclusion of the
second point in the definition of an independent hole, since without it, Lemma 3 would fail.
We now consider the case when G has exactly h holes C1, C2, . . . , Ch, all of which are independent. Let Xi be the set of

vertices adjacent to all the vertices of the hole Ci for i = 1, 2, . . . , h. For any edge uv of hole Ci, define the set Si,uv = {w : w
is an internal vertex of a Ci-avoiding walk from u to v}. Notice that the set Si,uv may possibly be empty.

Lemma 4. Suppose a graph G has exactly h holes C1, C2, . . . , Ch, all of which are independent. For any edge uv in Ch, if Sh,uv is
empty then G− uv has exactly h− 1 holes, all of which are independent.

Proof. Suppose that uv ∈ E(Ci) for some i 6= h. Since Ci is a hole, any vertex in V (Ci)− {u, v} is not adjacent to both u and
v, and hence is not in Xh. Then, Ci − uv is a Ch-avoiding walk from u to v, a contradiction to the fact that Sh.uv is empty. This
proves that uv 6∈ E(Ci) for all i 6= h and so C1, C2, . . . , Ch−1 are holes in G− uv.
Next, we show that G−uv has only these h−1 holes and so they are also independent in G−uv. Suppose to the contrary

that G− uv has another hole C ′ which is a cycle other than Ch in G. In G, the edge uv is the only chord of C ′ and so it divides
C ′ into two chordless cycles. As these two cycles contain u and v, either one is Ch and the other is a triangle uvw or else they
are two triangles uvw and uvw′. For the former case, w 6∈ Xh and so (u, w, v) is a Ch-avoiding walk, a contradiction to the
fact that Sh,uv is empty. For the latter case, (u, w, v,w′, u) is a hole in G− uv and soww′ 6∈ E(G). By Lemma 2, one ofw and
w′ is not in Xh; without loss of generality assume that w 6∈ Xh. Again, (u, w, v) is a Ch-avoiding walk, a contradiction to the
fact that Sh,uv is empty. �

3. Main result

This section gives the main result that the competition number of a graph with exactly h holes, all of which are
independent, is at most h+ 1. First, we state a useful result for the case of h = 0.

Theorem 5 ([8]). For any clique Q of a chordal graph G, there exists an acyclic digraph D such that C(D) = G
⋃
I1 and the

vertices of Q have only outgoing arcs in D.

We now have our main result as follows.

Theorem 6. Suppose G is a graph with exactly h holes C1, C2, . . . , Ch, all of which are independent. If Q is a clique of G, then
there exists an acyclic digraph D such that C(D) = G

⋃
Ih+1 and the vertices of Q have only outgoing arcs in D. Consequently,

κ(G) ≤ h+ 1.

Proof. We shall prove the theorem by induction on h. The theorem is true for h = 0 by Theorem 5. Suppose h ≥ 1 and the
theorem is true for h′ < h.
Suppose (e ∪ Sh,e) ∩ Q contains some vertex x for some edge e in Ch. Since Q is a clique and Ch is a hole, we may assume

e′ ∩ Q = ∅ for any edge e′ of Ch disjoint from e. For such e′ we have (e′ ∪ Sh,e′) ∩ Q = ∅, for otherwise if x′ ∈ Sh,e′ ∩ Q
then x′ ∈ N[x]. By the definitions of Sh,e and Sh,e′ , there is a Ch-avoiding walk from an end vertex y of e to any end vertex y′
of e′, which can be chosen so that y and y′ are not adjacent, a contradiction to Lemma 3. Since Ch has at most three edges e′
that are not disjoint from e, the set (e ∪ Sh,e) ∩ Q is nonempty for at most three edges e in E(Ch). Now, since Ch has at least
four edges, we may choose an edge uv in E(Ch) such that ({u, v} ∪ Sh,uv)∩ Q is empty. Consider the two induced subgraphs
G1 = G− Sh,uv and G2 = G[Xh ∪ {u, v} ∪ Sh,uv] of G; see Fig. 2.
We claim that no vertex of Sh,uv is adjacent to a vertex of V (G)− (Xh∪V (Ch)∪ Sh,uv). For otherwise there is a Ch-avoiding

walkW from u to v that contains a vertex x adjacent to a vertex y 6∈ Xh ∪ V (Ch) ∪ Sh,uv . The walkW ′ obtained fromW by
replacing xwith xyx is then Ch-avoiding, contradicting the fact that y 6∈ Sh,uv . By Lemma 3, no vertex of Sh,uv is adjacent to a
vertex of V (Ch)−{u, v}. Hence, Xh ∪ {u, v} is a vertex cut of G and no vertex in Sh,uv belongs to the component that includes
V (Ch) − {u, v}. Since V (G1) ∩ V (G2) = Xh ∪ {u, v} is a clique vertex cut of G, we have that G1 has exactly h1 holes, all of
which are independent; and G2 has exactly h2 = h− h1 holes, all of which are independent.
Since Ch is not in G2, we have h2 < h. By the induction hypothesis, there exists an acyclic digraph D2 such that

C(D2) = G2 ∪ Ih2+1 and the vertices of Xh
⋃
{u, v} have only outgoing arcs in D2. Notice that Ch is a hole in G1 which has no

Ch-avoiding walk from u to v. By Lemma 4, G1− uv has exactly h1− 1 holes, all of which are independent. As Q is a clique in
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Fig. 2. A graph with exactly h holes, all of which are independent.

Fig. 3. A graph G has exactly h holes with κ(G) = k, where 1 ≤ k ≤ h.

G1 − uv, by the induction hypothesis, there exists an acyclic digraph D1 such that C(D1) = (G1 − uv) ∪ Ih1 and the vertices
of Q have only outgoing arcs in D1. Having D1 and D2 at hand, we now construct the digraph Dwith V (D) = V (D1)∪ V (D2)
and E(D) = E(D1) ∪ E(D2). It is then easy to check that D is an acyclic digraph with the vertices of Q having only outgoing
arcs in D and C(D) = G ∪ Ih+1. Consequently, κ(G) ≤ h+ 1. �

We remark that the upper bound in Theorem 6 is sharp as the following examples show. Kim [4] observed that for
1 ≤ k ≤ h+ 1 there is a graph Gwith exactly h holes and κ(G) = k. In fact, G is the graph obtained from h copies of 4-cycles
and a copy of a complete graph Kh−k+3 by first identifying a vertex at each 4-cycle and then another vertex of a 4-cycle with
a vertex of the complete graph Kh−k+3; see Fig. 3.
Notice that if G has exactly one hole then the hole is independent. Consequently, we have the following corollary.

Corollary 7 ([14]). If G has exactly one hole, then κ(G) ≤ 2.

Another interesting consequence is as follows.

Corollary 8. Suppose G has exactly r components G1,G2, . . . ,Gr , where each component Gi has a clique of size ωi and exactly hi
holes, all of which are independent. If h′0 = ω

′

0 = 0 and h
′

i = h
′

i−1+max{0, hi+1−ω
′

i−1} andω
′

i = ωi+max{0, ω
′

i−1−hi−1}
for 1 ≤ i ≤ h, then κ(G) ≤ h′r .

Proof. For each component Gi of G, choose a clique Qi of size ωi in Gi. By Theorem 6, there exists an acyclic digraph Di such
that C(Di) = Gi ∪ Ihi+1 and the vertices of Qi have only outgoing arcs in Di. Since the vertices of Qj have only outgoing arcs in
Dj for all j, min{hi + 1, ω′i−1} new vertices of Di can be replaced by vertices in the Qj with j < i, while max{0, hi + 1− ω

′

i−1}

new vertices of Di remain unreplaced, which gives the formula for h′i . On the other hand, max{0, ω
′

i−1 − hi − 1} vertices in
the cliques Qj with j < i remain. This together with the ωi vertices in Qi gives the formula for ω′i . Thus, we can construct an
acyclic digraph D from the digraphs D1,D2, . . . ,Dr such that C(D) = G ∪ Ih′r . This gives that κ(G) ≤ h

′
r . �

In particular, we have:

Corollary 9. If G is a graph in which each component has at most one hole, then κ(G) ≤ 2. If, in addition, G has a component
containing no hole, then κ(G) ≤ 1.

An interesting question is how to determine graphs Gwith exactly one hole such that κ(G) ≤ 1.

4. The sufficient condition for κ(G) ≤ h

We close this paper by giving a sufficient condition for a graph having exactly h holes, all of which are independent, to
have the competition number at most h. First, we need a well known lemma. A vertex is simplicial if its neighbors form a
clique.
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Lemma 10 ([16]). Every chordal graph has a simplicial vertex. Moreover, every chordal graph that is not a complete graph has
two non-adjacent simplicial vertices.

Theorem 11. Suppose G is a graphwith exactly h holes, all of which are independent. If Si,uv is not empty and G[Xi∪{u, v}∪Si,uv]
has no hole for some i and uv ∈ E(Ci), then κ(G) ≤ h.

Proof. We may assume that S1,uv is not empty and G1 = G[X1 ∪ {u, v} ∪ S1,uv] has no hole. Then there is a shortest C1-
avoiding walk P , which is a chordless path, from u to v in G. If P is of length at least 3, then P together with uv is a hole
in G1, a contradiction to the fact that G1 has no hole. Therefore, there is a vertex w in S1,uv such that w is adjacent to
u and v. By Lemma 10, there exists a vertex ordering v1, v2, . . . , vn of G1 with X1 ∪ {u, v} = {v1, v2, . . . , vt} for some
t < n such that Qi = {vj : 1 ≤ j < i, vjvi ∈ E(G1)} ∪ {vi} is a clique for 1 ≤ i ≤ n. We construct a digraph D1
with V (D1) = {v1, v2, . . . , vn, vn+1} and E(D1) =

⋃
t+1≤i≤n{(y, vi+1) : y ∈ Qi}. Then D1 is acyclic and the vertices of

X1 ∪ {u, v, vt+1} have only outgoing arcs in D1. Notice that C(D1) is a subgraph of G1 such that E(C(D1)) contains the set
E(G1) − E(X1 ∪ {u, v}). Since w 6∈ X1 ∪ {u, v}, we have w = vj for some j > t with {u, v} ⊆ Qj, and so uv ∈ E(C(D1)).
Let G2 = G − S1,uv . Notice that G2 is a graph with exactly h holes, all of which are independent, and G2 has no C1-avoiding
walk from u to v. By Lemma 4, we have that G2 − uv is a graph with exactly h − 1 holes, all of which are independent. By
Theorem 6, there exists an acyclic digraph D2 such that C(D2) = (G2 − uv) ∪ Ih, where vt+1 ∈ V (Ih). Now we construct a
digraphDwith V (D) = V (D1)∪V (D2) and E(D) = E(D1)∪E(D2). It can be easily checked thatD is acyclic and C(D) = G∪ Ih.
This gives that κ(G) ≤ h. �

Corollary 12. If G is a graph with exactly one hole C1 and S1,uv is not empty for some edge uv in E(C1), then κ(G) ≤ 1.

Corollary 13 ([15]). If G is a graph with exactly one hole C1 and there is a vertex w adjacent to u and v for some edge uv in
E(C1), then κ(G) ≤ 1.

Proof. The corollary follows from Corollary 12 and the fact that ‘‘there is a vertex w adjacent to u and v’’ implies ‘‘S1,uv is
not empty’’. �

Acknowledgements

The authors thank the referees for many constructive suggestions regarding the paper.

References

[1] J.E. Cohen, Interval graphs and food webs: A finding and a problem, RAND Corporation Document 17696-PR, Santa Monica, CA, 1968.
[2] C. Cable, K.F. Jones, J.R. Lundgren, S. Seager, Niche graphs, Discrete Appl. Math. 23 (1989) 231–241.
[3] P.C. Fishburn, W.V. Gehrlein, Niche numbers, J. Graph Theory 16 (1992) 131–139.
[4] S.-R. Kim, The competition number and its variants, in: J. Gimbel, J.W. Kennedy, L.V. Quintas (Eds.), Quo Vadis, Graph Theory? in: Annals of Discrete
Mathematics, vol. 55, North-Holland B. V, Amsterdam, The Netherlands, 1993, pp. 313–326.

[5] S.-R. Kim, F.S. Roberts, Competition numbers of graphs with a small number of triangles, Discrete Appl. Math. 78 (1997) 153–162.
[6] J.R. Lundgren, Food webs, competition graphs, competition–common enemy graphs, and Niche graphs, in: F.S. Roberts (Ed.), Applications of
Combinatorics and Graph Theory to the Biological and Social Sciences, in: IMH Volumes in Mathematics and its Application, vol. 17, Springer, New
York, 1989, pp. 221–243.

[7] D. Scott, The competition–common enemy graph of a digraph, Discrete Appl. Math. 17 (1987) 269–280.
[8] F.S. Roberts, Food webs, competition graphs, and the boxicity of ecological phase space, in: Y. Alavi, D. Lick (Eds.), Theory and Applications of Graphs,
Springer, New York, 1978, pp. 477–490.

[9] C.E. Shannon, The zero capacity of a noisy channel, IRE Trans. Inform Theory IT-2 (1956) 8–19.
[10] M.B. Cozzens, F.S. Roberts, T-colorings of graphs and the channel assignment problem, Congr. Numer. 25 (1982) 191–208.
[11] W.K. Hale, Frequency assignment: Theory and application, Proc. IEEE 68 (1980) 1497–1514.
[12] R.J. Opsut, On the computation of the competition number of a graph, SIAM J. Alg. Discrete Math. 3 (1982) 420–428.
[13] F. Harary, S.-R. Kim, F.S. Roberts, Extremal competition numbers as a generalization of Turan’s theorem, J. Ramanujan Math. Soc. 5 (1990) 33–43.
[14] H.H. Cho, S.-R. Kim, The competition number of a graph having exactly one hole, Discrete Math. 303 (2005) 32–41.
[15] S.-R. Kim, Graphs with one hole and competition number one, J. Korean Math. Soc. 42 (2005) 1251–1264.
[16] G.A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25 (1961) 71–76.


	The competition number of a graph with exactly  h  holes, all of which are independent
	Introduction
	Preliminaries
	Main result
	The sufficient condition for  κ (G) leq h 
	Acknowledgements
	References


