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We develop a space–time fractional Schrödinger equation containing Caputo fractional
derivative and the quantum Riesz fractional operator from a space fractional Schrödinger
equation in this paper. By use of the new equation we study the time evolution behaviors
of the space–time fractional quantum system in the time-independent potential fields and
two cases that the order of the time fractional derivative is between zero and one and
between one and two are discussed respectively. The space–time fractional Schrödinger
equation with time-independent potentials is divided into a space equation and a time one.
A general solution, which is composed of oscillatory terms and decay ones, is obtained.
We investigate the time limits of the total probability and the energy levels of particles
when time goes to infinity and find that the limit values not only depend on the order
of the time derivative, but also on the sign (positive or negative) of the eigenvalues of
the space equation. We also find that the limit value of the total probability can be
greater or less than one, which means the space–time fractional Schrödinger equation
describes the quantum system where the probability is not conservative and particles may
be extracted from or absorbed by the potentials. Additionally, the non-Markovian time
evolution laws of the space–time fractional quantum system are discussed. The formula
of the time evolution of the mechanical quantities is derived and we prove that there is no
conservative quantities in the space–time fractional quantum system. We also get a Mittag–
Leffler type of time evolution operator of wave functions and then establish a Heisenberg
equation containing fractional operators.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

The history of the fractional calculus [1–4], dating back to the 17th century, is almost as long as that of the integer-order
calculus. During the initial stage of the foundation of fractional calculus, its theory and application were made very slow
progress due to without supporting of physics and mechanics. And this situation had not changed until the end of 1970s
Mandelbrot [5] proposed that there is a lot of fractional dimension in nature and technology in which the phenomenon
of self-similarity between entirety and part exists and there is a close connection between fractional Brownian motion
and Riemann–Liouville fractional calculus. From then on, the fractional calculus has been used successfully to study many
complex systems (or named complex phenomena). It has many important applications in various fields of science and
engineering and the fractional differential equations become very popular for describing anomalous transport, diffusion–
reaction processes, super-slow relaxation, etc. [6–10] (and the references therein).
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The classical Hamiltonian (or Lagrangian) mechanics is formulated in terms of derivative of integer order. This technique
suggests advanced methods for the analysis of conservative systems, while the physical world is rather non-conservative be-
cause of friction [11]. The account of frictional forces in physical models increases the complexity in the mathematics needed
to deal with them. The fractional Hamiltonian (and Lagrangian) equations of motion for the non-conservative systems were
introduced into consideration by Riewe [12,13]. Recently, some papers on the fractional calculus applied in the classical
mechanics appear, and the fractional Hamiltonian mechanics [14–16] and the fractional variational calculus are constructed
for the classical mechanics [17,18]. We know that the Schrödinger equation in the quantum physics can be reformulated by
use of the Hamiltonian canonical equations of motion in the classical mechanics. Muslih et al. [19] studied the fractional
path-integral quantization of classical fields and derived a fractional Schrödinger equation containing partial left and right
Riemann–Liouville fractional derivatives using the fractional canonical equations of motion. We as researchers naturally ask
the questions: “How does the quantum world change if we make changes to the equations that describe it (i.e. generalize
the derivative operators to become fractional derivative operators)?,” “Do these changes shed any light on our current un-
derstanding?,” and “Will the modified equations predict any new phenomena?” There is a physical reason for the merger
of fractional calculus with quantum mechanics. The Feynman path integral formulation of quantum mechanics is based on
a path integral over Brownian paths. In diffusion theory, this can also be done to generate the standard diffusion equation;
however, there are examples of many phenomena that are only properly described when non-Brownian paths are consid-
ered. When this is done, the resulting diffusion equation has factional derivatives [7,8]. Due to the strong similarity between
the Schrödinger equation and the standard diffusion equation one might expect modifications to the Schrödinger equation
generated by considering non-Brownian paths in the path integral derivation. This gives the time-factional, space-fractional,
and space–time-factional Schrödinger equation [21–23].

In quantum physics, the famous Schrödinger equation is given by (in one dimension)

i�
∂ψ(x, t)

∂t
= − �

2

2m

∂2ψ(x, t)

∂x2
+ V (x, t)ψ(x, t),

where ψ(x, t) and V (x, t) denote the wave function and the potential function, respectively. Feynman and Hibbs [20]
reformulated the Schrödinger equation by use of a path integral approach considering the Gaussian probability distribu-
tion. Following them, Laskin [23–26] generalized the Feynman path integral to Lévy one, and developed a space fractional
Schrödinger equation. The Lévy stochastic process is a natural generalization of the Gaussian process or the Wiener stochas-
tic process and is characterized by the Lévy index α, 0 < α � 2 (when α = 2, we have the Gaussian process). Laskin
constructed the fractional quantum mechanics using the Lévy path integral and showed some properties of the space frac-
tional quantum system. Afterwards, Guo and Xu [27], Dong and Xu [28] studied the space fractional Schrödinger equation
with some specific potential fields and drove the progress of the fractional quantum mechanics.

The standard Schrödinger equation and the space fractional one both obey the Markovian evolution law. When consid-
ering non-Markovian evolution, just similar to introducing the time fractional diffusion equation to describe sub- or super-
diffusion behavior [7,8], Naber [21] introduced the Caputo fractional derivative [2–4] instead of the first-order derivative
over time to the standard Schrödinger equation to describe non-Markovian evolution in quantum physics and formulated
a time fractional Schrödinger equation. The Hamiltonian for the time fractional quantum system was found to be non-
Hermitian and not local in time. Naber solved the time fractional Schrödinger equation for a free particle and for a potential
well. Probability and the resulting energy levels are found to increase over time to limiting values depending on the or-
der of the time derivative. More recently, Wang and Xu [22] established a fractional Schrödinger equation with both space
and time fractional derivatives from the standard Schrödinger equation and solved the generalized Schrödinger equation
for a free particle and for an infinite rectangular potential well. Thus far, the fractional quantum system has been basically
constructed and theoretically describes more extensive fractal [5] phenomena in quantum physics.

The authors of this paper develop a space–time fractional Schrödinger equation based on the space fractional Schrödinger
equation. This space–time fractional Schrödinger equation is of minor difference from the one given by Wang and Xu [22]
but formally better combines Naber’s work with Laskin’s. The space fractional Schrödinger equation [23] obtained by Laskin
reads (in one dimension)

i�
∂ψ(x, t)

∂t
= Hαψ(x, t), (1.1)

where ψ(x, t) is the time-dependent wave function, and Hα (1 < α � 2) is the fractional Hamiltonian operator given by

Hα = Dα

(−�
2�

)α/2 + V (x, t). (1.2)

Here Dα with physical dimension [Dα] = erg1−α × cmα × sec−α is dependent on α [Dα = 1/(2m) for α = 2, m denotes the
mass of a particle] and (−�

2�)α/2 is the quantum Riesz fractional operator [2,4,23] defined by

(−�
2�

)α/2
ψ(x, t) = 1

2π�

+∞∫
dp eipx/�|p|α

+∞∫
e−ipx/�ψ(x, t)dx. (1.3)
−∞ −∞



J. Dong, M. Xu / J. Math. Anal. Appl. 344 (2008) 1005–1017 1007
Note that by use of the method of dimensional analysis we have given a specific expression of Dα in [28] as Dα =
c̄2−α/(αmα−1), where c̄ denotes the characteristic velocity of the non-relativistic quantum system. Let us introduce the
Planck units [29]

L p =
√

G�

c3
, T p =

√
G�

c5
, M p =

√
�c

G
, E p = M pc2, (1.4)

where L p , T p , M p , E p are the Plank length, time, mass, and energy, and G and c are the gravitational constant and the speed
of light in the vacuum, respectively. Then, using these Planck units, we can get the space fractional Schrödinger equation in
the dimensionless form as

iT p
∂ψ(x, t)

∂t
= Dα T 2−2α

p

M1−α
p Eα

p L2−2α
p

(−�
2�

)α/2
ψ(x, t) + V (x, t)

E p
ψ(x, t). (1.5)

Substituting the Caputo fractional derivative (the order is denoted by β and 0 < β < 2 is considered in this paper) for the
first-order derivative over time, Eq. (1.5) can be fractionalized as

(iT p)β Dβ
t ψ(x, t) = Dα T 2−2α

p

M1−α
p Eα

p L2−2α
p

(−�
2�

)α/2
ψ(x, t) + V (x, t)

E p
ψ(x, t). (1.6)

This is a space–time fractional Schrödinger equation obtained from the space fractional Schrödinger equation. Here, it should
be noted that Naber [21] has given a superficial and a physical reason to raise the power of the imaginary unit i to the order
of the time derivative and all of the complex numbers in this paper are taken the principal value with the arguments θ

satisfying −π � θ < π.

In this paper, we focus on the time evolution properties of the space–time fractional Schrödinger equation with time-
independent potential functions. The solutions to the space–time fractional Schrödinger equation are given and the time
evolution law of the space–time fractional quantum system is investigated.

This paper is organized as follows. Sections 2 and 3 deal with the space–time fractional Schrödinger equation for 0 <

β < 1. The space–time fractional Schrödinger equation with time-independent potential is solved in Section 2. The equation
is divided into a space equation and a time one, and then the general solution containing a time-dependent Mittag–Leffler
function [3] is obtained. We find that the sign (positive or negative) of the eigenvalue of the space equation determines the
consequences of the time evolution of the total probability and the energy in the space–time fractional quantum system:
The total probability and the energy for a particle of any states in any time-independent potential fields are proved to
reach a limiting value depending on the order of the time derivative when the eigenvalue of the space equation is positive
and the limiting value is zero when the eigenvalue is negative. The space–time fractional Schrödinger equation for a free
particle and a δ-potential well are solved as examples. Section 3 presents the time evolution law of the space–time fractional
quantum system. The formula of the time evolution of mechanical quantities is derived in Section 3.1. When studying the
time evolution of wave functions, a time evolution operator of Mittag–Leffler type is obtained in Section 3.2. The formula
of the time limit of the total probability is proved again with the help of the time evolution operator. In Section 3.3, by
use of the time evolution operator, we develop a Heisenberg equation, which contains fractional operators. In Section 4, the
space–time fractional Schrödinger equation for 1 < β < 2 is discussed in detail and some properties different from the case
of 0 < β < 1 are revealed. Our conclusions are given in Section 5.

2. Solutions to the space–time fractional Schrödinger equation

When the potential function is time-independent, with the help of Eq. (1.4), Eq. (1.6) can be rewritten as

(i�)β Dβ
t ψ(x, t) = Hαψ(x, t), (2.1)

where

Hα = �
β

E p T β
p

(
Dα

(−�
2�

)α/2 + V (x, t)
)
. (2.2)

Here we should note that Hα is not the Hamiltonian of the quantum system, but it is still Hermitian because it is the same
as the Hamiltonian in the space fractional quantum mechanics [25] except for a positive product factor. When β = 1, the
space–time fractional quantum system reduces to the space fractional one and Hα reduces to the Hamiltonian Hα of the
system correspondingly [25]. So we can call Hα to be the pseudo-Hamiltonian of the system here.

Since Hα is time-independent, Eq. (2.1) can be solved by separation of variables. By assuming

ψ(x.t) = f (t)φ(x), (2.3)

Eq. (2.1) can be divided into the following two equations:
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Hαφ(x) = λφ(x), (2.4)

(i�)β Dβ
t f (t) = λ f (t), (2.5)

where λ is the eigenvalue of the operator Hα .
Eq. (2.4) can be solved after the fashion of same way as used in the space fractional quantum mechanics. We can assume

that there exist a series of eigenvalues λn (n = 0,1,2, . . .) for Eq. (2.4), and the corresponding orthonormal eigenfunctions
are φn(x), n = 0,1,2, . . . . It is necessary to note that λn are just the energy eigenvalues, of the space fractional Schrödinger
equation with the same potential, multiplied by �

β(E p T β
p )−1. Assuming f (0) = 1 and taking Laplace transform to Eq. (2.5)

yields

(i�)β
(

pβ f̂ (p) − pβ−1) = λ f̂ (p). (2.6)

So we have

f̂ (p) = pβ−1

pβ − λ(i�)−β
. (2.7)

Expanding the right side of Eq. (2.7) to a series form, after inverting the Laplace transform term by term [30], we can get

f (t) = Eβ

(
λ(−it/h)β

)
, (2.8)

where Eβ(·) is the Mittag–Leffler function [3] defined by

Eβ(z) =
∞∑

n=0

zn

�(βn + 1)
.

Therefore, we can get a series of solutions to the space–time fractional Schrödinger equation (2.1) as

ψn(x, t) = Eβ

(
λn(−it/h)β

)
φn(x), n = 0,1,2, . . . . (2.9)

Then, the general solution can be written as

ψ(x, t) =
∞∑

n=0

an Eβ

(
λn(−it/h)β

)
φn(x), (2.10)

where an can be any complex numbers and the condition
∑∞

n=0 |an|2 = 1 is required to guarantee the wave function is
normalized when t = 0. Thus, |an|2 represents the probability to find that the system is in state ψn(x, t).

To study the properties of the wave functions, let us give an another form of the Mittag–Leffler function in Eq. (2.8). In
fact, we can use the following formula to invert the Laplace transform of Eq. (2.7):

f (t) = 1

2π i

σ+i∞∫
σ−i∞

f̂ (p)ept dp. (2.11)

We can calculate the integral in Eq. (2.11) using contour integration method and residue theorem [31] in complex analysis.
Since the integrand has a branch point at p = 0, the usual Bromwich contour cannot be used. The contour can be chosen
like this [21,32]: A branch cut along the negative Real(p) should be made. That is, a cut from −∞ into and then around the
origin in a clockwise sense and then back out to −∞. The usual Bromwich contour is continued after the cut. The poles of
the integrand are

pk = �
−1λ1/β · ei(2kπ/β−π/2), k = 0,±1,±2, . . . . (2.12)

In the domain surrounded by the contour, the arguments of the poles should satisfy

−π < arg pk < π, k = 0,±1,±2, . . . . (2.13)

Therefore, in the case of 0 < β < 1, there is only one pole (p0 = �
−1λ1/βe−π i/2) to be considered to calculate the contour

integration. Finally, we can get

f (t) = Eβ

(
λ(−it/h)β

) = e−iλ1/β t/�

β
− Fβ(ρ, t), (2.14)

where

Fβ(ρ, t) = ρ sin (πβ)

π

∞∫
e−rtrβ−1

r2β − 2ρrβ cos (πβ) + ρ2
dr, (2.15)
0
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and ρ = λ�
−βe−iπβ/2. Some properties of Fβ(ρ, t) have been given by Naber in Ref. [21]. Additionally, Fβ(ρ, t) has the

following two estimation formulas:∣∣Fβ(ρ, t)
∣∣ < M−1|ρ|t−β�(β), (2.16)∣∣∣∣ ∂

∂t
Fβ(ρ, t)

∣∣∣∣ < M−1|ρ|t−(β+1)�(β + 1), (2.17)

where M = minr�0{|r2β − 2ρrβ cosπβ + ρ2|} > 0. We note that in the above part an assumption that λ is positive is made.
When λ < 0, some differences appear: In course of calculating the integral in Eq. (2.11), we can choose the same contour as
before but the pole should be taken to p0 = �

−1|λ|1/βe(π/β−π/2)i when 2/3 < β < 1, and there is no poles surrounded by
the contour when 0 < β � 2/3. Therefore, we have

f (t) =
{

β−1e|λ|1/β te(π/β−π/2)i/� − Fβ(ρ, t), 2
3 < β < 1,

−Fβ(ρ, t), 0 < β � 2
3 .

(2.18)

In the following part, we mainly consider the case of λ > 0 and the results for λ < 0 will be given by notes. Replacing
the Mittag–Leffler functions in Eq. (2.10) by use of Eq. (2.14) yields

ψ(x, t) = ψS (x, t) + ψD(x, t), (2.19)

where

ψS (x, t) = 1

β

∞∑
n=0

anφn(x)e−iλ1/β
n t/�, (2.20)

ψD(x, t) = −
∞∑

n=0

anφn(x)Fβ(ρn, t). (2.21)

Here, ψS (x, t) and ψD(x, t) are called the oscillatory term and the decay one, respectively. When t goes to infinite, ψS (x, t)
oscillates rapidly and ψD(x, t) approaches to zero. When β = 1, the decay term ψD(x, t) vanishes. Note that when λ < 0 the
solution can also be expanded to be an oscillatory term plus a decay one, but only the decay term exists when 0 < β � 2/3.

According to the statistical explanation of the wave function, the total probability to find a particle in the state ψ(x, t)
at time t is

P (t) =
+∞∫

−∞

∣∣ψ(x, t)
∣∣2

dx =
∞∑

n=0

|an|2∣∣Eβ

(
λn(−it/h)β

)∣∣2
, (2.22)

which contains the following special cases:

Pn(t) =
+∞∫

−∞

∣∣ψn(x, t)
∣∣2

dx = ∣∣Eβ

(
λn(−it/h)β

)∣∣2
, n = 0,1,2, . . . . (2.23)

Taking account of Eqs. (2.14) and (2.16), the following limits hold:

lim
t→+∞ P (t) = 1

β2

∞∑
n=0

|an|2 = 1

β2
, lim

t→+∞ Pn(t) = 1

β2
. (2.24)

Thus, the limits of the total probabilities are greater than one, which can be viewed that particles are created (extracted from
the potential field) as time goes ahead. So the probability in the space–time fractional quantum system is not conservative.
This result is the basic characteristics of all of the time fractional quantum system in the time-independent potential fields
no matter whether the space term is fractional or not. Some examples with specific potentials can be found in [21,22] as
special cases.

With the help of the energy operator, E = i� ∂
∂t , in the standard quantum mechanics, the energy levels En(t) of the states

ψn(x, t) can be calculated

En(t) =
+∞∫

−∞
ψ∗

n (x, t)i�
∂

∂t
ψn(x, t)dx = i�E∗

β

(
λn(−it/h)β

) ∂

∂t
Eβ

(
λn(−it/h)β

)
. (2.25)

Similarly, the energy of a particle in the state ψ(x, t) is

E(t) =
+∞∫

ψ∗(x, t)i�
∂

∂t
ψ(x, t)dx = i�

∞∑
n=0

|an|2 E∗
β

(
λn(−it/h)β

) ∂

∂t
Eβ

(
λn(−it/h)β

)
. (2.26)
−∞
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Here, E(t) should be interpreted as the weighted average of the energy of every energy eigenstates with the weighting
factor being |an|2.

Considering Eqs. (2.14) and (2.17), we obtain

lim
t→+∞ En(t) = λ

1/β
n /β2, lim

t→+∞ E(t) =
∞∑

n=0

|an|2λ1/β
n /β2. (2.27)

So the energy levels come to limiting values in the end of the time evolution. In [21,22], some special cases can be found.
Note that for λ < 0 (λn < 0), recalling Eqs. (2.16)–(2.18), and considering an inequality, cos(π/β − π/2) < 0 for 2/3 < β < 1,
we can draw a conclusion that the time limits of the total probability (see (2.24)) and the energy levels (see (2.27)) are all
zero, which means particles are completely absorbed by the potential in the end. Therefore, the consequences of the time
evolution of the total probability and the energy levels have essential differences between the case that λ > 0 and λ < 0.

To end this section, let us solve the space–time fractional Schrödinger equation for a free particle and a δ-potential well
as examples.

For a free particle [33], the space equation reads

Dα�
β

E p T β
p

(−�
2�

)α/2
φ(x) = λφ(x), (2.28)

which has a solution

φ(x) = C · eipx/�,

where C is a constant and p denotes the momentum of the particle, and the eigenvalue is

λ = Dα�
β

E p T β
p

|p|α. (2.29)

Then, with the help of Eqs. (2.3) and (2.14), the plane wave solution for a free particle can be written as

ψ(x, t) = C · Eβ

(
λ(−it/h)β

)
exp(ipx/�) = ψS (x, t) + ψD(x, t), (2.30)

where

ψS (x, t) = C

β
exp

{
i

px

�
− i

(
Dα

E p

)1/β |p|αt

T p

}
, (2.31)

ψD(x, t) = −C exp(ipx/�)Fβ(ρ, t). (2.32)

Therefore, they are the oscillatory term and the decay one, respectively. When β = 1, the decay term vanishes. Taking
Eqs. (1.4) and (2.29) into account, Eq. (2.30) becomes

ψ(x, t) = C · exp

(
i

px

�
− i

Dα |p|αt

�

)
,

which is just the plane wave solution for a free particle in the space fractional quantum mechanics [26].
A δ-potential well [28,34] is defined by V (x) = −γ δ(x) (γ > 0), where δ(x) denotes the Dirac delta function. The space

equation reads

Dα�
β

E p T β
p

[(−�
2�

)α/2 − γ δ(x)
]
φ(x) = λφ(x). (2.33)

With the help of the results about the space fractional Schrödinger equation with δ-potential in [28], Eq. (2.33) can be easily
solved. We have the unique eigenvalue

λ = − �
β

E p T β
p

(
sin(π/α)�αD1/α

α γ −1)α/(1−α)
,

and the corresponding eigenfunction, expressed in terms of H function [35], is

C · H2,1
2,3

[
|x|

(
Dα�

α

−λ

)−1/α∣∣∣∣
(1− 1

α , 1
α ),( 1

2 , 1
2 )

(0,1),(1− 1
α , 1

α ),( 1
2 , 1

2 )

]
,

where C is a constant. So the wave function is given by

ψ(x, t) = C · H2,1
2,3

[
|x|

(
Dα�

α

−λ

)−1/α∣∣∣∣
(1− 1

α , 1
α ),( 1

2 , 1
2 )

(0,1),(1− 1
α , 1

α ),( 1
2 , 1

2 )

]
Eβ

(
λ(−it/h)β

)
.

Using the above solution, we can construct the even parity state for the δ-potential well and the odd parity state also
does not exist here (for further details, see [28]). The energy level for the even parity state can be calculated by Eq. (2.25).
Because λ is negative, we know the time limit of the energy level is zero.
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3. Time evolution law

3.1. Time evolution law of mechanical quantities

Considering an identity of Caputo derivatives for 0 < β < 1 [3,21],

D1−β
t Dβ

t y(t) = d

dt
y(t) − [Dβ

t y(t)]t=0

t1−β�(β)
, (3.1)

Eq. (2.1) can be converted into

∂

∂t
ψ(x, t) = (i�)−βHα

(
D1−β

t ψ(x, t)
) + g(t), (3.2)

where g(t) = [t1−β�(β)]−1[Dβ
t ψ(x, t)]t=0, and the right side of Eq. (3.2) is the Hamiltonian of the space–time fractional

quantum system.
Now, we can study the time evolution of a mechanical quantity F in the space–time fractional quantum system. The

average value of the mechanical quantity F in the state ψ(x, t) is given by

F = (
ψ(x, t), Fψ(x, t)

)
. (3.3)

With the help of Eq. (3.2), we have

d

dt
F =

(
∂

∂t
ψ(x, t), Fψ(x, t)

)
+

(
ψ(x, t), F

∂

∂t
ψ(x, t)

)
+

(
ψ(x, t),

∂ F

∂t
ψ(x, t)

)
= 2 Re

{(
∂

∂t
ψ, Fψ

)}
+ ∂ F

∂t

= 2 Re
{(

(i�)−βHα

(
D1−β

t ψ
) + g(t), Fψ

)} + ∂ F

∂t
, (3.4)

where Re{·} denotes the real part of a complex number.
The right side of Eq. (3.2) is time-dependent and non-local in time [21], so in general, dF/dt cannot be identically zero

for all ψ . It means there are no conservative mechanical quantities of motion for the space–time fractional quantum system.
When α = 2 and β = 1, Hα reduces to the standard Hamiltonian H . Then, Eq. (3.4) becomes

d

dt
F = 2 Re

{(
1

i�
Hψ, Fψ

)}
+ ∂ F

∂t
= 1

i�
(ψ, F Hψ) − 1

i�
(ψ, H Fψ) + ∂ F

∂t
= 1

i�
[F , H] + ∂ F

∂t
, (3.5)

which accords with the standard quantum mechanics.
When F is independent of time, Eq. (3.4) gives

d

dt
F = 2 Re

{(
(i�)−βHα

(
D1−β

t ψ
) + g(t), Fψ

)}
. (3.6)

Furthermore, we assume that F and Hα commute with each other, that is, [F ,Hα] = 0, which implies that there exist a
complete sets of common eigenfunctions φk(x) for F and Hα , and Hαφk(x) = λkφk(x), Fφk(x) = Fkφk(x), k = 0,1,2, . . . .

Therefore, the state function ψ(x, t) can be expanded as

ψ(x, t) =
∞∑

k=0

ak Eβ

(
λk(−it/h)β

)
φk(x), (3.7)

where ak = (φk(x),ψ(x,0)), k = 0,1,2, . . . .

Recalling Eq. (3.3), the average value of F in the state can be evaluated

F =
( ∞∑

k=0

ak Eβ

(
λk(−it/h)β

)
φk(x), F

∞∑
k=0

ak Eβ

(
λk(−it/h)β

)
φk(x)

)
=

∞∑
k=0

Fk|ak|2
∣∣Eβ

(
λk(−it/h)β

)∣∣2
. (3.8)

So,

d

dt
F =

∞∑
k=0

Fk|ak|2 d

dt

∣∣Eβ

(
λk(−it/h)β

)∣∣2
, (3.9)

which means that F is not a conservative quantity during the motion of the quantum system. However, if β = 1, Eq. (3.9)
comes to dF/dt = 0 and then F is conservative.
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3.2. Time evolution operator of wave functions

We mark the wave function at the initial time and time t by ψ(0) and ψ(t) respectively and assume

ψ(t) = U (t,0)ψ(0), (3.10)

where U (t,0) is called the time evolution operator [36,37], from initial time to time t , of the wave function. In view of the
fact that ψ(t) should satisfy Eq. (2.1), we can immediately derive an equation for U (t,0),

(i�)β Dβ
t U (t,0) = HαU (t,0). (3.11)

Moreover, taking t = 0 in Eq. (3.10), we can get the initial condition for U (t,0):

U (t,0)|t=0 = U (0,0) = 1. (3.12)

Combining Eqs. (3.11) and (3.12) and using Laplace transform, the expression of U (t,0) is obtained

U (t,0) = Eβ

(
(−it/h)βHα

)
. (3.13)

Therefore, the time evolution operator is of Mittag–Leffler type for the wave functions of the space–time fractional quantum
system in the time-independent potential fields, while the one in the standard quantum mechanics is of exponential type.

It is obvious that U (t,0) has the following properties:

1. U †(t,0) = U∗(t,0); (3.14)

2. U †(t,0)U (t,0) = U (t,0)U †(t,0) = ∣∣Eβ

(
(−it/h)βHα

)∣∣2; (3.15)

3. lim
t→+∞ U †(t,0)U (t,0) = 1/β2; (3.16)

4. Dβ
t U (t,0)|t=0 = (i�)−βHα; (3.17)

5. U (t,0) commutes with Hα, namely, [U ,Hα] = 0. (3.18)

Here U †(t,0) denotes the conjugate transpose of U (t,0). The second property tells us that U (t,0) is not a unitary oper-
ator, which differs from the behavior of the time evolution operator in the standard quantum mechanics. Besides, since
the Hamiltonian of this quantum system is time-dependent and non-local in time [21], the composition formula, that is,
U (t2, t0) = U (t2, t1)U (t1, t0) (t2 > t1 > t0) is not valid here.

By use of the time evolution operator, we can also prove Eq. (2.22) about the probability limit. In fact, if the initial wave
function ψ(0) is normalized, according to the third property of U (t,0), we have

lim
t→+∞ P (t) = lim

t→+∞

+∞∫
−∞

ψ∗(t)ψ(t)dx = lim
t→+∞

+∞∫
−∞

ψ∗(0)U †(t,0)U (t,0)ψ(0)dx = 1

β2

+∞∫
−∞

ψ∗(0)ψ(0)dx = 1

β2
. (3.19)

3.3. Heisenberg equation of motion

Using the identity (3.1) of Caputo derivative and considering Eq. (3.17), Eq. (3.11) changes into

∂

∂t
U (t,0) = Hα

(i�)β

[
D1−β

t U (t,0) + 1

t1−β�(β)

]
. (3.20)

To continue, we define a variable of a mechanical quantity F through

F H (t) = U †(t,0)F U (t,0), (3.21)

and denote U †(t,0)U (t,0) by U , the inverse operator of which is signed by U−1. The subscript H of F H (t) denotes the
Heisenberg picture.

In the Heisenberg picture, recalling Eqs. (3.3) and (3.10), the average value of F in state ψ(t) can be written as

F = (
U (t,0)ψ(0), F U (t,0)ψ(0)

) = (
ψ(0), F H (t)ψ(0)

)
. (3.22)

Therefore, instead of studying the behavior of F in the changeable state ψ(t) in the Schrödinger picture, we can study the
behavior of F H (t) in the fixed state ψ(0) in the Heisenberg picture.

With the help of Eqs. (3.20) and (3.21), the time rate of F H (t) can be calculated as follows:

d

dt
F H (t) =

(
∂

∂t
U †(t,0)

)
F U (t,0) + U †(t,0)F

∂

∂t
U (t,0) + U †(t,0)

∂ F

∂t
U (t,0) = 1

�β

[
HF H (t) + F H (t)H†] +

(
∂ F

∂t

)
H
,

(3.23)
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where

H = A

t1−β�(β)
+ B, A = iβHαU−1U , B = iβHα

(
D1−β

t U †)U−1U ,

and (
∂ F

∂t

)
H

= U † ∂ F

∂t
U .

Eq. (3.23) is just the Heisenberg equation of motion for the space–time fractional quantum system. When α = 2 and β = 1,
we have H = iH , and Eq. (3.23) reduces to

d

dt
F H (t) = 1

i�

[
F H (t), H

] +
(

∂ F

∂t

)
H
,

which accords with the standard quantum mechanics [36,37].

4. Some properties when 1 < β < 2

From now on, we will consider the space–time fractional Schrödinger equation with the order of the time derivative
being between one and two and all the notations here will have the same physical meanings mentioned before. In this case,
after defining d f (t)/dt|t=0 = f1, the Laplace transform of Eq. (2.5) should be

(i�)β
(

pβ f̂ (p) − pβ−1 − f1 pβ−2) = λ f̂ (p), (4.1)

which has a solution

f̂ (p) = pβ−1 + f1 pβ−2

pβ − λ(i�)−β
. (4.2)

Expanding Eq. (4.2) to a series form, after inverting the Laplace transform term by term [30], we can get

f (t) = Eβ

(
λ(−it/h)β

) + t f1 Eβ,2
(
λ(−it/h)β

)
, (4.3)

where Eμ,ν(·) is the generalized Mittag–Leffler function [3] defined by

Eμ,ν(z) =
∞∑

n=0

zn

�(μn + ν)
.

Then, the wave functions can be written as

ψn(x, t) = [
Eβ

(
λn(−it/h)β

) + t f1 Eβ,2
(
λn(−it/h)β

)]
φn(x), n = 0,1,2, . . . , (4.4)

and the corresponding energy levels are

En(t) = i�
[

Eβ

(
λn(−it/h)β

) + t f1 Eβ,2
(
λn(−it/h)β

)]∗ ∂

∂t

[
Eβ

(
λn(−it/h)β

) + t f1 Eβ,2
(
λn(−it/h)β

)]
. (4.5)

So the general wave function for the particle is given by

ψ(x, t) =
∞∑

n=0

anψn(x, t), (4.6)

with the energy

E(t) =
∞∑

n=0

|an|2 En(t). (4.7)

In a manner similar to that of the case 0 < β < 1, with the help of formula (2.11), the inverse Laplace transform of Eq. (4.2)
can be written as

f (t) = 1

2π i

σ+i∞∫
σ−i∞

pβ−1 + f1 pβ−2

pβ − λ(i�)−β
ept dp = I1 + f1 I2, (4.8)

where

I1 = 1

2π i

σ+i∞∫
pβ−1

pβ − λ(i�)−β
ept dp, I2 = 1

2π i

σ+i∞∫
pβ−2

pβ − λ(i�)−β
ept dp.
σ−i∞ σ−i∞
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The two integrals can be calculated by contour integral method choosing the same contour as mentioned in Section 2 and
the poles of the integrands of I1 and I2 are the same to each other. But we should note that the poles are somewhat
different from those in Section 2. Indeed, taking account of Eqs. (2.12) and (2.13), we can conclude that there is only one
pole both for the integrands of I1 and I2 when 1 < β � 4

3 and the pole is

p0 = �
−1λ1/βe−iπ/2.

There are two poles for them when 4
3 < β < 2 and the poles are

p0 = �
−1λ1/βe−iπ/2 and p1 = �

−1λ1/βei(2π/β−π/2).

After some calculations, we finally get

f (t) = e−iλ1/β t/�

β
− Fβ(ρ, t) + f1

[
i�e−iλ1/β t/�

βλ1/β
−Fβ(ρ, t)

]
, when 1 < β � 4

3
; (4.9)

f (t) = 1

β

[
e−iλ1/β t/� + eλ1/β t sin( 2π

β
)/�e−iλ1/β t cos( 2π

β
)/� − β Fβ(ρ, t)

]
+ f1

βλ1/β

{
i�

[
e−iλ1/β t/� + eλ1/β t sin( 2π

β
)/�e−i[λ1/β t cos( 2π

β
)/�+2π/β]] − βλ1/βFβ(ρ, t)

}
, when

4

3
< β < 2, (4.10)

where Fβ(ρ, t) and ρ have the same forms as we defined in Section 2, and

Fβ(ρ, t) = ρ sin [π(β − 1)]
π

∞∫
0

e−rtrβ−2

r2β − 2ρrβ cos (πβ) + ρ2
dr. (4.11)

Fβ(ρ, t) also has the following two estimation formulas:∣∣Fβ(ρ, t)
∣∣ < |ρ|t1−β�(β − 1)/M; (4.12)∣∣∣∣ ∂

∂t
Fβ(ρ, t)

∣∣∣∣ < |ρ|t−β�(β)/M. (4.13)

Here, the definition of M has been given in Section 2. Note that the above results are based on the assumption that
λ > 0, and if λ < 0, there is only one pole, p0 = �

−1|λ|1/βe(π/β−π/2)i , to be considered to calculated Eq. (4.8). After some
calculations, we obtain

f (t) = β−1e|λ|1/βe(π/β−π/2)i t/� − Fβ(ρ, t) + f1

[
i�e|λ|1/βe(π/β−π/2)i t/�−iπ/β

β|λ|1/β
−Fβ(ρ, t)

]
. (4.14)

Here it should be noticed that with the help of Eqs. (4.9), (4.10), and (4.14), the wave functions (4.4) and (4.6) can easily be
written to be oscillatory terms plus decay ones.

When studying the time limits of the total probability and the energy levels for particles, taking account of Eqs. (4.9),
(4.10), (4.12), (4.13) and the inequality sin 2π

β
< 0 for 1 < β < 2, we get

lim
t→+∞ Pn(t) = 1

β2

[
1 + 2

�

λ
1/β
n

(−Im{ f1}
) + | f1|2

(
�

λ
1/β
n

)2]
, (4.15)

lim
t→+∞ En(t) = λ1/β

β2

[
1 + 2

�

λ
1/β
n

(−Im{ f1}
) + | f1|2

(
�

λ
1/β
n

)2]
, (4.16)

lim
t→+∞ P (t) =

∞∑
n=0

|an|2 lim
t→+∞ Pn(t), lim

t→+∞ E(t) =
∞∑

n=0

|an|2 lim
t→+∞ En(t), (4.17)

where Im{ f1} denotes the imaginary part of f1. Note that if λ < 0 (λn < 0), the time limits of both the total probability and
the energy levels are infinities, which means the potentials release particles and the energy of the system gets larger and
larger as time progresses.

From Eqs. (4.15)–(4.17), we can conclude that as time evolves the total probability and the energy levels go to certain
limiting values but may increase or decrease because of the existence of the terms −Im{ f1} and | f1|2. The increase of the
total probability can be viewed as particles are created (extracted from the potential) and the decrease of that may be
regarded as particles are absorbed by the potential. To distinguish whether particles are created or absorbed, we need to
know whether the limiting value of the total probability is greater or less than one.

Letting f1 = x + iy and replacing �λ
−1/β
n by ϑn , from Eq. (4.15), we can get

lim Pn(t) = 1
2

[
ϑ2

n x2 + (ϑn y − 1)2] � 0. (4.18)

t→+∞ β
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With the help of the above equation, after introducing some notations: xn = ϑ−1
n

√
β2 − (ϑn yn − 1)2, yn = ϑ−1

n − β and
Yn = ϑ−1

n + β , we can conclude that:

(1) If y > Yn , or y < yn , or |x| > xn with yn � y � Yn , there holds limt→+∞ Pn(t) > 1;
(2) If |x| < xn with yn � y � Yn , there holds limt→+∞ Pn(t) < 1. Additionally, if f1 = iϑ−1

n , we have limt→+∞ Pn(t) = 0,
which implies particles are absorbed completely in the end by the potential;

(3) If |x| = xn with yn � y � Yn , there holds limt→+∞ Pn(t) = 1, which means the probability is conservative.

The behavior of P (t) is more complex, but from the above conclusions, we can still know that:

(1) If y > κ1, or y < ζ2, or |x| > χ1 with ζ1 < y < κ2, there holds limt→+∞ P (t) > 1;
(2) If |x| < χ2 with ζ1 < y < κ2, there holds limt→+∞ P (t) < 1. But limt→+∞ P (t) will never be zero, as long as the state

ψ(x, t) is the superposition of more than two different non-degenerate energy eigenstates.

Here, χ1 = sup+∞
n=0{xn}, χ2 = inf+∞

n=0{xn}, κ1 = sup+∞
n=0{Yn}, κ2 = inf+∞

n=0{Yn}, ζ1 = sup+∞
n=0{yn}, and ζ2 = inf+∞

n=0{yn}, with
sup+∞

n=0{·} and inf+∞
n=0{·} denoting the superior limit and the inferior one of an array, respectively.

Considering an identity for Caputo fractional derivatives and integrals [3,21] for 1 < β < 2,

Iβ−1
t Dβ

t y(t) = d

dt
y(t) − dy(t)

dt

∣∣∣∣
t=0

, (4.19)

Eq. (2.1) can be converted into

∂

∂t
ψ(x, t) = (i�)−βHα

(
Iβ−1
t ψ(x, t)

) + ψ ′
t (0), (4.20)

where ψ ′
t (0) = ∂ψ(x, t)/∂t|t=0.

Then in the same way as used in Section 3.1, the time evolution formula for a mechanical quantity F is obtained

d

dt
F = 2 Re

{(
(i�)−βHα

(
Iβ−1
t ψ

) + ψ ′
t (0), Fψ

)} + ∂ F

∂t
. (4.21)

The left side of Eq. (4.20) is also non-local in time, so similar to the case that 0 < β < 1, there are no conservative mechan-
ical quantities of motion for this quantum system.

The time evolution operator U (t,0) of the wave function still satisfies Eqs. (3.11) and (3.12). To obtain the specific
expression of U (t,0), we need a complementary initial condition as

∂

∂t
U (t,0)

∣∣∣∣
t=0

= U1. (4.22)

We can prove that U1 should be equal to f1. In fact,

∂ψ(t)

∂t

∣∣∣∣
t=0

= ∂U (t,0)

∂t

∣∣∣∣
t=0

ψ(0) = U1ψ(0).

Additionally, from Eqs. (4.4) and (4.6), ∂ψ(t)
∂t |t=0 can also be calculated as

∂ψ(t)

∂t

∣∣∣∣
t=0

= f1ψ(0).

So, U1 = f1 holds.
Combining Eqs. (3.11), (3.12) and (4.22), using Laplace transform, U (t,0) can be derived as

U (t,0) = Eβ

(
(−it/h)βHα

) + tU1 Eβ,2
(
(−it/h)βHα

)
. (4.23)

The first, fourth and fifth properties of the time evolution operator for 0 < β < 1 still hold here but the second and third
properties should be changed to

U †(t,0)U (t,0) = U (t,0)U †(t,0) = ∣∣Eβ

(
(−it/h)βHα

) + tU1 Eβ,2
(
(−it/h)βHα

)∣∣2
, (4.24)

lim
t→+∞ U †(t,0)U (t,0) = 1

β2

[
1 + 2

�

H
1/β

α

(−Im{ f1}
) + | f1|2

(
�

H
1/β

α

)2]
. (4.25)

Here, we note that in a manner similar to what we have done in Section 3.2 it is easy to prove the formula of the time
limits of the total probabilities (see Eq. (4.15)) by virtue of Eq. (4.25).
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We can make use of Eq. (4.19) to rewrite Eq. (3.11) as

∂

∂t
U (t,0) = Hα

(i�)β
Iβ−1
t U (t,0) + U1. (4.26)

Then, recalling Eqs. (3.21) and (3.23), the Heisenberg equation for 1 < β < 2 is obtained

d

dt
F H (t) = 1

�β

[
H̄F H (t) + F H (t)H̄†

]
+

(
∂ F

∂t

)
H
, (4.27)

where

H̄ = S + �
β T , S = iβHα

(
Iβ−1
t U †)U−1U , T = U †

1U
−1U .

5. Conclusions

A space–time fractional Schrödinger equation containing Caputo fractional derivative and the quantum Riesz fractional
operator is constructed in this paper. The space–time fractional Schrödinger equation with time-independent potential func-
tion for the order of the time derivative being between zero and two is studied. The equation is divided into a space
equation and a time one and the general solution containing Mittag–Leffler functions is obtained. By use of an another form
of the Mittag–Leffler functions, the wave functions are found composed of oscillatory terms and decay ones and the time
limits of the total probability and the energy levels are discussed. With the help of the properties of fractional operators,
we study the time evolution laws of the space–time fractional quantum system. The time evolution formulas of mechanical
quantities are obtained (see Eqs. (3.4) and (4.21)) and from them we find that there is no conservative mechanical quantities
of motion for the space–time fractional quantum system. A Mittag–Leffler type of time evolution operator of wave functions
and a Heisenberg equation different from the standard quantum mechanics are also given by us (see Eqs. (3.13), (3.23),
(4.23) and (4.27)). All of these results are the generalization of those in the standard quantum mechanics.

On studying the time evolution of the space–time fractional quantum system in the time-independent potential fields, we
find that the time evolution properties of the quantum system not only depend on the order of time fractional derivative, but
also are affected by the sign of the eigenvalue of the space equation. When the eigenvalue of the space equation is positive,
the total probability and the energy levels reach some limiting values as time evolutes and the limiting value of the total
probability may be less or greater than one, which means the potential may absorb or release particles but the absorbing or
releasing behavior becomes weaker enough as time progresses so that the quantum system approaches some steady states
with fixed non-zero particle probability and energy levels. Moreover, the limiting value of the total probability can never be
zero when 0 < β < 1 (β denotes the order of the time fractional derivative, as mentioned before) but may be zero when
1 < β < 2 in some special cases (see the conclusions given in Section 4, on p. 1015 of this paper). Therefore, when the
eigenvalue of the space equation is positive, only for 1 < β < 2, the particles in the space–time fractional quantum system
may be absorbed completely by the potential. When the eigenvalue of the space equation is negative, the time limits of the
total probability and the energy levels are zeros when 0 < β < 1 or infinities when 1 < β < 2, which means the potential
absorbs particles completely when 0 < β < 1 but releases particles all the time when 1 < β < 2 and the quantum system
will never come to a steady state in the latter case.

From the conclusions given before, we know that the basic characteristics of all of the time fractional quantum systems
in the time-independent potential fields is that the probability is not conservative no matter whether the space term is
fractional or not. In other words, the introduction of the time fractional derivative to the Schrödinger equation causes non-
conservation of probability.
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