Combinatorial interpretations of the q-Faulhaber and q-Salié coefficients

Victor J.W. Guo ${ }^{\text {a }}$, Martin Rubey ${ }^{\text {b }}$, Jiang Zeng ${ }^{\text {a, }}{ }^{1}$
${ }^{\text {a }}$ Institut Camille Jordan, Université Claude Bernard (Lyon I), F-69622 Villeurbanne Cedex, France
${ }^{\mathrm{b}}$ Institut für Statistik und Decision Support, Universität Wien, A-1010 Wien, Austria

Received 14 June 2005
Available online 24 March 2006
Dedicated to Xavier Viennot on the occasion of his sixtieth birthday

Abstract

Recently, Guo and Zeng discovered two families of polynomials featuring in a q-analogue of Faulhaber's formula for the sums of powers and a q-analogue of Gessel-Viennot's formula involving Salié's coefficients for the alternating sums of powers. In this paper, we show that these are polynomials with symmetric, nonnegative integral coefficients by refining Gessel-Viennot's combinatorial interpretations.

© 2006 Elsevier Inc. All rights reserved.
Keywords: q-Faulhaber coefficients; q-Salié coefficients; Complete symmetric functions; Lattice paths

1. Introduction

In the early seventeenth century, Faulhaber [2] considered the sums of powers $S_{m, n}=$ $\sum_{k=1}^{n} k^{m}$ and provided formulas for the coefficients $f_{m, k}(0 \leqslant m \leqslant 8)$ in

$$
\begin{equation*}
S_{2 m+1, n}=\frac{1}{2} \sum_{k=1}^{m} f_{m, k}(n(n+1))^{k+1} \tag{1}
\end{equation*}
$$

[^0]In 1989, Gessel and Viennot [4] studied the alternating sums $T_{m, n}=\sum_{k=1}^{n}(-1)^{n-k} k^{m}$ and showed that there exist integers $s_{m, k}$ such that

$$
\begin{equation*}
T_{2 m, n}=\frac{1}{2} \sum_{k=1}^{m} s_{m, k}(n(n+1))^{k} \tag{2}
\end{equation*}
$$

Furthermore, they proved that, up to some factors, the Faulhaber coefficients $f_{m, k}$ and the Salié coefficients $s_{m, k}$ count certain families of nonintersecting lattice paths. There is a huge literature on this subject. Faulhaber's work, including more generally r-fold sums of powers, was nicely exposed by Knuth [6]. For the study of polynomial relations between sums of powers functions, see Beardon [1].

Recall that a natural q-analogue of the nonnegative integer n is given by $[n]=\frac{1-q^{n}}{1-q}$ and the corresponding q-factorial is $[n]!=\prod_{k=1}^{n}[k]$. Recently, Guo and Zeng [5], continuing work of Schlosser [8], Warnaar [9] and Garrett and Hummel [3], have found interesting q-analogues of (1) and (2). More precisely, for $m, n \in \mathbb{N}$, setting

$$
\begin{align*}
& S_{m, n}(q)=\sum_{k=1}^{n} \frac{[2 k]}{[2]}[k]^{m-1} q^{\frac{m+1}{2}(n-k)}, \tag{3}\\
& T_{m, n}(q)=\sum_{k=1}^{n}(-1)^{n-k}[k]^{m} q^{\frac{m}{2}(n-k)}, \tag{4}
\end{align*}
$$

they proved the following results:
Theorem 1.1. There exist polynomials $P_{m, k}, Q_{m, k}, G_{m, k}$ and $H_{m, k}$ in $\mathbb{Z}[q]$ such that

$$
\begin{align*}
S_{2 m+1, n}(q)= & \sum_{k=0}^{m}\left(-q^{n}\right)^{m-k} \frac{[k]!}{[m+1]!} P_{m, m-k}(q) \frac{([n][n+1])^{k+1}}{[2]}, \tag{5}\\
S_{2 m, n}(q)= & \left(1-q^{n+1 / 2}\right) \sum_{k=1}^{m}\left(-q^{n}\right)^{m-k} \frac{\left(1-q^{1 / 2}\right)^{m-k} Q_{m, m-k}\left(q^{1 / 2}\right)}{\prod_{i=0}^{m-k}\left(1-q^{m-i+1 / 2}\right)} \frac{([n][n+1])^{k}}{[2]}, \tag{6}\\
T_{2 m, n}(q)= & \sum_{k=1}^{m}\left(-q^{n}\right)^{m-k} \frac{G_{m, m-k}(q)}{\prod_{i=0}^{m-k}\left(1+q^{m-i}\right)}([n][n+1])^{k}, \tag{7}\\
T_{2 m-1, n}(q)= & (-1)^{m+n} H_{m, m-1}\left(q^{1 / 2}\right) \frac{q^{(m-1 / 2) n}}{\left(1+q^{1 / 2}\right)^{m} \prod_{i=0}^{m-1}\left(1+q^{m-i-1 / 2}\right)} \\
& +\frac{1-q^{n+1 / 2}}{1-q^{1 / 2}} \sum_{k=1}^{m}\left(-q^{n}\right)^{m-k} \frac{H_{m, m-k}\left(q^{1 / 2}\right)([n][n+1])^{k-1}}{\left(1+q^{1 / 2}\right)^{m-k+1} \prod_{i=0}^{m-k}\left(1+q^{m-i-1 / 2}\right)} . \tag{8}
\end{align*}
$$

Comparing with (3) and (4), we have

$$
\begin{aligned}
& f_{m, k}=(-1)^{m-k} \frac{k!}{(m+1)!} P_{m, m-k}(1), \\
& s_{m, k}=(-1)^{m-k} 2^{k-m} G_{m, m-k}(1),
\end{aligned}
$$

but the numbers corresponding to $Q_{m, k}(1)$ and $H_{m, k}(1)$ do not seem to be studied in the literature. The first values of $P_{m, k}, Q_{m, k}, G_{m, k}$ and $H_{m, k}$ are given in Tables 1-4, respectively.

Table 1
Values of $P_{m, k}(q)$ for $0 \leqslant m \leqslant 5$

$k \backslash m$	0	1	2	3	4	5
0	1	1	1	1	1	1
1			1	$2(q+1)$	$3 q^{2}+4 q+3$	$2(q+1)\left(2 q^{2}+q+2\right)$
2				$2(q+1)$	$(q+1)\left(5 q^{2}+8 q+5\right)$	$(q+1)\left(9 q^{4}+19 q^{3}+29 q^{2}+19 q+9\right)$
3					$(q+1)\left(5 q^{2}+8 q+5\right)$	$2(q+1)^{2}\left(q^{2}+q+1\right)\left(7 q^{2}+11 q+7\right)$
4						$2(q+1)^{2}\left(q^{2}+q+1\right)\left(7 q^{2}+11 q+7\right)$

Table 2
Values of $Q_{m, k}(q)$ for $1 \leqslant m \leqslant 4$

$k \backslash m$	1	2	3	4
0	1	1	1	1
1		1	$2 q^{2}+q+2$	$3 q^{4}+2 q^{3}+4 q^{2}+2 q+3$
2			$2 q^{2}+q+2$	$\left(q^{2}+q+1\right)\left(5 q^{4}+q^{3}+9 q^{2}+q+5\right)$
3			$\left(q^{2}+q+1\right)\left(5 q^{4}+q^{3}+9 q^{2}+q+5\right)$	

Table 3
Values of $G_{m, k}(q)$ for $1 \leqslant m \leqslant 5$

$k \backslash m$	1	2	3	4	5
0	1	1	1	1	1
1		2	$3(q+1)$	$4\left(q^{2}+q+1\right)$	$5(q+1)\left(q^{2}+1\right)$
2			$6(q+1)$	$2(q+1)\left(5 q^{2}+7 q+5\right)$	$5(q+1)\left(3 q^{4}+4 q^{3}+8 q^{2}+4 q+3\right)$
3				$4(q+1)\left(5 q^{2}+7 q+5\right)$	$5(q+1)^{2}\left(7 q^{4}+14 q^{3}+20 q^{2}+14 q+7\right)$
4					$10(q+1)^{2}\left(7 q^{4}+14 q^{3}+20 q^{2}+14 q+7\right)$

Table 4
Values of $H_{m, k}(q)$ for $1 \leqslant m \leqslant 4$

$k \backslash m$	1	2	3	4
0	1	1	1	1
1		2	$3 q^{2}+2 q+3$	$4 q^{4}+3 q^{3}+4 q^{2}+3 q+4$
2			$2\left(3 q^{2}+2 q+3\right)$	$10 q^{6}+15 q^{5}+30 q^{4}+26 q^{3}+30 q^{2}+15 q+10$
3			$2\left(10 q^{6}+15 q^{5}+30 q^{4}+26 q^{3}+30 q^{2}+15 q+10\right)$	

We say that a polynomial $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ of degree n has symmetric coefficients if $a_{i}=a_{n-i}$ for $0 \leqslant i \leqslant n$. The tables above suggest that the coefficients of the polynomials $P_{m, k}$, $Q_{m, k}, G_{m, k}$ and $H_{m, k}$ are nonnegative and symmetric. The aim of this paper is to prove this fact by showing that the coefficients count certain families of nonintersecting lattice paths.

2. Inverses of matrices

Recall that the nth complete symmetric functions in r variables $x_{1}, x_{2}, \ldots, x_{r}$ has the following generating function:

$$
\sum_{n \geqslant 0} h_{n}\left(x_{1}, \ldots, x_{r}\right) z^{n}=\frac{1}{\left(1-x_{1} z\right)\left(1-x_{2} z\right) \cdots\left(1-x_{r} z\right)} .
$$

For $r, s \geqslant 0$, let $h_{n}\left(\{1\}^{r},\{q\}^{s}\right)$ denote the nth complete symmetric functions in $r+s$ variables, of which r are specialized to 1 and the others to q, i.e.,

$$
\begin{equation*}
\sum_{n \geqslant 0} h_{n}\left(\{1\}^{r},\{q\}^{s}\right) z^{n}=\frac{1}{(1-z)^{r}(1-q z)^{s}} . \tag{9}
\end{equation*}
$$

By convention, $h_{n}\left(\{1\}^{r},\{q\}^{s}\right)=0$ if $r<0$ or $s<0$. For convenience, we also write $h_{n}\left(\{1, q\}^{r}\right)$ instead of $h_{n}\left(\{1\}^{r},\{q\}^{r}\right)$. We need the following result.

Lemma 2.1. For $(a, b) \in\{(0,1),(1,0),(1,1)\}$, we have

$$
\begin{align*}
& \sum_{m \geqslant 0} \sum_{k \geqslant 0} h_{m-2 k}\left(\{1\}^{k+a},\{q\}^{k+b}\right)\left(\frac{q^{l}}{[l]^{2}}\right)^{k} z^{m} \\
& \quad=\frac{[l]^{2}}{[2 l]} \begin{cases}\frac{[l+1]}{[l]-[l+1] z}-\frac{q[l-1]}{[l]-q[l-1] z} & \text { if }(a, b)=(1,1), \\
\frac{1}{[l]-[l+1] z}+\frac{q^{l}}{[l]-q[l-1] z} & \text { if }(a, b)=(1,0), \\
\frac{q^{l}}{[l]-[l+1] z}+\frac{1}{[l]-q[l-1] z} & \text { if }(a, b)=(0,1) .\end{cases} \tag{10}
\end{align*}
$$

Proof. Using the definition (9) of the complete symmetric functions we have

$$
\begin{aligned}
\sum_{m \geqslant 0} \sum_{k \geqslant 0} h_{m-2 k}\left(\{1\}^{k+a},\{q\}^{k+b}\right) x^{k} z^{m} & =\sum_{k \geqslant 0} \frac{x^{k} z^{2 k}}{(1-z)^{k+a}(1-q z)^{k+b}} \\
& =\frac{1}{(1-z)^{a-1}(1-q z)^{b-1}} \frac{1}{(1-z)(1-q z)-x z^{2}}
\end{aligned}
$$

Setting $x=q^{l} /[l]^{2}$ a little calculation shows that the denominator of the second fraction factorizes:

$$
\frac{1}{(1-z)(1-q z)-x z^{2}}=\frac{[l]^{2}}{([l]-q z[l-1])([l]-z[l+1])} .
$$

The result then follows from the standard partial fraction decomposition.
The following lemma might be interesting per se. When $q=1$ it reduces to simple applications of the binomial theorem.

Lemma 2.2. For $k, m \geqslant 1$, set

$$
\begin{aligned}
& c_{k, m}(q):=h_{2 m-k}\left(\left\{1, q^{2}\right\}^{k-m+1}\right)+q h_{2 m-k-1}\left(\left\{1, q^{2}\right\}^{k-m+1}\right), \\
& g_{k, m}(q):=h_{2 m-k}\left(\{1\}^{k-m+1},\{q\}^{k-m}\right)+h_{2 m-k}\left(\{1\}^{k-m},\{q\}^{k-m+1}\right), \\
& d_{k, m}(q):=g_{k, m}\left(q^{2}\right)+q g_{k-1, m-1}\left(q^{2}\right) .
\end{aligned}
$$

Let $X_{n}=\frac{[n][n+1]}{q^{n}}$. For $m, l \geqslant 1$, we have

$$
\begin{equation*}
X_{l}^{m+1}-X_{l-1}^{m+1}=\sum_{k} h_{m-2 k}\left(\{1, q\}^{k+1}\right)[2 l][l]^{2(m-k)} q^{-l(m-k+1)}, \tag{11}
\end{equation*}
$$

$$
\begin{align*}
& \frac{1-q^{l+1 / 2}}{\left(1-q^{1 / 2}\right) q^{l / 2}} X_{l}^{m}-\frac{1-q^{l-1 / 2}}{\left(1-q^{1 / 2}\right) q^{(l-1) / 2}} X_{l-1}^{m} \\
& \quad=\sum_{k} c_{m, m-k}\left(q^{1 / 2}\right)[2 l][l]^{2(m-k-1 / 2)} q^{-l(m-k+1 / 2)} \tag{12}\\
& X_{l}^{m}+X_{l-1}^{m}=\sum_{k} g_{m, m-k}(q)[l]^{2(m-k)} q^{-l(m-k)} \tag{13}\\
& \frac{1-q^{l+1 / 2}}{\left(1-q^{1 / 2}\right) q^{l / 2}} X_{l}^{m-1}+\frac{1-q^{l-1 / 2}}{\left(1-q^{1 / 2}\right) q^{(l-1) / 2}} X_{l-1}^{m-1} \\
& \quad=\sum_{k} d_{m, m-k}\left(q^{1 / 2}\right)[l]^{2(m-k-1 / 2)} q^{-l(m-k-1 / 2)} \tag{14}
\end{align*}
$$

Proof. The proof rests on the previous lemma.

- Equating the coefficients of (10) in the case $(a, b)=(1,1)$ yields that

$$
\begin{aligned}
& \sum_{k} h_{m-2 k}\left(\{1, q\}^{k+1}\right) q^{l k}[l]^{-2 k} \\
& \quad=\frac{[l]}{[2 l]}\left([l+1]\left(\frac{[l+1]}{[l]}\right)^{m}-q[l-1]\left(\frac{q[l-1]}{[l]}\right)^{m}\right) .
\end{aligned}
$$

Multiplying this expression with $[2 l] \frac{[l]^{2 m}}{q^{l(m+1)}}$ we obtain (11).

- Since $c_{m, m-k}\left(q^{1 / 2}\right)=h_{m-2 k}\left(\{1, q\}^{k+1}\right)+q^{1 / 2} h_{m-1-2 k}\left(\{1, q\}^{k+1}\right)$, Eq. (12) follows directly from the previous calculation.
- As $g_{m, m-k}(q)=h_{m-2 k}\left(\{1\}^{k+1},\{q\}^{k}\right)+h_{m-2 k}\left(\{1\}^{k},\{q\}^{k+1}\right)$, applying Lemma 2.1 with $(a, b)=(1,0),(0,1)$, we get

$$
\begin{aligned}
& \sum_{m \geqslant 0} \sum_{k \geqslant 0}\left(h_{m-2 k}\left(\{1\}^{k+1},\{q\}^{k}\right)+h_{m-2 k}\left(\{1\}^{k},\{q\}^{k+1}\right)\right) q^{l k}[l]^{-2 k} z^{m} \\
& \quad=\frac{[l]^{2}}{[2 l]}\left(\frac{1+q^{l}}{[l]-[l+1] z}+\frac{1+q^{l}}{[l]-q[l-1] z}\right) .
\end{aligned}
$$

Multiplying the coefficient of z^{m} of this expression with $[l]^{2 m} q^{-l m}$ we obtain (13).

- Since $d_{m, m-k}\left(q^{1 / 2}\right)=g_{m, m-k}(q)+q^{1 / 2} g_{m-1, m-k-1}(q)$, Eq. (14) follows directly from the previous calculation.

The following is the main result of this section.
Theorem 2.3. The inverses of the lower triangular matrices

$$
\begin{aligned}
& \left(h_{2 m-k}\left(\{1, q\}^{k-m+1}\right)\right)_{0 \leqslant k, m \leqslant n}, \quad\left(c_{k, m}(q)\right)_{1 \leqslant k, m \leqslant n}, \quad\left(g_{k, m}(q)\right)_{1 \leqslant k, m \leqslant n}, \\
& \left(d_{k, m}(q)\right)_{1 \leqslant k, m \leqslant n}
\end{aligned}
$$

are respectively the lower triangular matrices

$$
\begin{equation*}
\left((-1)^{k-m} \frac{[m]!}{[k+1]!} P_{k, k-m}(q)\right)_{0 \leqslant k, m \leqslant n} \tag{15}
\end{equation*}
$$

$$
\begin{align*}
& \left((-1)^{k-m} \frac{(1-q)^{k-m+1} Q_{k, k-m}(q)}{\prod_{i=0}^{k-m}\left(1-q^{2 k-2 i+1}\right)}\right)_{1 \leqslant k, m \leqslant n}, \tag{16}\\
& \left((-1)^{k-m} \frac{G_{k, k-m}(q)}{\prod_{i=0}^{k-m}\left(1+q^{k-i}\right)}\right)_{1 \leqslant k, m \leqslant n}, \tag{17}\\
& \left((-1)^{k-m} \frac{H_{k, k-m}(q)}{(1+q)^{k-m+1} \prod_{i=0}^{k-m}\left(1+q^{2 k-2 i-1}\right)}\right)_{1 \leqslant k, m \leqslant n} . \tag{18}
\end{align*}
$$

Proof. Recall that $X_{n}=\frac{[n][n+1]}{q^{n}}$.

- Summing Eq. (11) over l from 1 to n and applying Eq. (3), we obtain

$$
\begin{equation*}
X_{n}^{m+1}=[2] \sum_{k=0}^{\lfloor m / 2\rfloor} h_{m-2 k}\left(\{1, q\}^{k+1}\right) S_{2 m-2 k+1, n}(q) q^{-n(m-k+1)} . \tag{19}
\end{equation*}
$$

Plugging (5) in Eq. (19), the right-hand side becomes

$$
\sum_{k=0}^{\lfloor m / 2\rfloor} \sum_{l=0}^{m-k} h_{m-2 k}\left(\{1, q\}^{k+1}\right)(-1)^{m-k-l} \frac{[l]!}{[m-k+1]!} P_{m-k, m-k-l}(q) X_{n}^{l+1}
$$

Comparing the coefficients of X_{n}^{l+1} we see that $\left(h_{2 m-k}\left(\{1, q\}^{k-m+1}\right)\right)_{0 \leqslant k, m \leqslant n}$ and (15) are indeed inverses.

- Summing Eq. (12) over l from 1 to n and applying Eq. (3), we obtain

$$
\begin{equation*}
\frac{1-q^{n+1 / 2}}{\left(1-q^{1 / 2}\right) q^{n / 2}} X_{n}^{m}=[2] \sum_{k=0}^{\lfloor m / 2\rfloor} c_{m, m-k}\left(q^{1 / 2}\right) S_{2 m-2 k, n}(q) q^{-n(m-k+1 / 2)} \tag{20}
\end{equation*}
$$

Substituting (6) into (20) and dividing both sides by $\frac{1-q^{n+1 / 2}}{\left(1-q^{1 / 2}\right) q^{n / 2}}$, we get

$$
X_{n}^{m}=\sum_{k=0}^{\lfloor m / 2\rfloor} \sum_{l=1}^{m-k} c_{m, m-k}\left(q^{1 / 2}\right)(-1)^{m-k-l} \frac{\left(1-q^{1 / 2}\right)^{m-k-l} Q_{m-k, m-k-l}\left(q^{1 / 2}\right)}{\prod_{i=0}^{m-k-l}\left(1-q^{m-k-i+1 / 2}\right)} X_{n}^{l} .
$$

Comparing the coefficients of X_{n}^{l}, we see that $\left(c_{k, m}(q)\right)_{1 \leqslant k, m \leqslant n}$ and (16) are indeed inverses.

- Equation (13) may be written as

$$
\begin{equation*}
(-1)^{n-l} X_{l}^{m}-(-1)^{n-l+1} X_{l-1}^{m}=(-1)^{n-l} \sum_{k=0}^{\lfloor m / 2\rfloor} g_{m, m-k}(q) \frac{\left(1-q^{l}\right)^{2 m-2 k}}{(1-q)^{2 m-2 k}} q^{-l(m-k)} \tag{21}
\end{equation*}
$$

Summing Eq. (21) over l from 1 to n and applying Eq. (4), we obtain

$$
\begin{equation*}
X_{n}^{m}=\sum_{k=0}^{\lfloor m / 2\rfloor} g_{m, m-k}(q) T_{2 m-2 k, n}(q) q^{-n(m-k)} \tag{22}
\end{equation*}
$$

Substituting (7) into (22), the right-hand side becomes

$$
\begin{equation*}
\sum_{k=0}^{\lfloor m / 2\rfloor} \sum_{l=1}^{m-k} g_{m, m-k}(q)(-1)^{m-k-l} \frac{G_{m-k, m-k-l}(q)}{\prod_{i=0}^{m-k-l}\left(1+q^{m-k-i}\right)} X_{n}^{l} \tag{23}
\end{equation*}
$$

Comparing the coefficients of X_{n}^{l}, we see that $\left(g_{k, m}(q)\right)_{1 \leqslant k, m \leqslant n}$ and (17) are inverse to each other.

- Equation (14) may be written as

$$
\begin{align*}
& (-1)^{n-l} \frac{1-q^{l+1 / 2}}{\left(1-q^{1 / 2}\right) q^{l / 2}} X_{l}^{m-1}-(-1)^{n-l+1} \frac{1-q^{l-1 / 2}}{\left(1-q^{1 / 2}\right) q^{(l-1) / 2}} X_{l-1}^{m-1} \\
& \quad=(-1)^{n-l} \sum_{k} d_{m, m-k}\left(q^{1 / 2}\right)[l]^{2(m-k-1 / 2)} q^{-l(m-k-1 / 2)} . \tag{24}
\end{align*}
$$

Summing Eq. (24) over l from 1 to n and applying Eq. (4), we obtain

$$
\begin{equation*}
\frac{1-q^{n+1 / 2}}{\left(1-q^{1 / 2}\right) q^{n / 2}} X_{n}^{m-1}=\sum_{k} d_{m, m-k}\left(q^{1 / 2}\right) T_{2 m-2 k-1, n}(q) q^{-n(m-k-1 / 2)}, \quad m \geqslant 2 \tag{25}
\end{equation*}
$$

Substituting (8) into (25) yields

$$
\begin{align*}
& \frac{1-q^{n+1 / 2}}{\left(1-q^{1 / 2}\right) q^{n / 2}}\left(X_{n}^{m-1}-\sum_{k} \sum_{l=1}^{m-k} \frac{(-1)^{m-k-l} d_{m, m-k}\left(q^{1 / 2}\right) H_{m-k, m-k-l}\left(q^{1 / 2}\right) X_{n}^{l-1}}{\left(1+q^{1 / 2}\right)^{m-k-l+1} \prod_{i=0}^{m-k-l}\left(1+q^{m-k-i-1 / 2}\right)}\right) \\
& \quad=(-1)^{n} \sum_{k} \frac{(-1)^{m-k} d_{m, m-k}\left(q^{1 / 2}\right) H_{m-k, m-k-1}\left(q^{1 / 2}\right)}{\left(1+q^{1 / 2}\right)^{m-k} \prod_{i=0}^{m-k-1}\left(1+q^{m-k-i-1 / 2}\right)} . \tag{26}
\end{align*}
$$

We now show that the right-hand side of (26) must vanish. Suppose $0<q<1$. Denote the left-hand side of (26) by L_{n}. If there exists an $n \in \mathbb{N}$ such that $L_{n}=0$ we are done. Suppose $L_{n} \neq 0$ for all $n \geqslant 1$, then L_{n} is a rational function in $t=q^{n / 2}$ and can be written as

$$
L_{n}=t^{s} f(t) \quad \text { with } t=q^{n / 2}
$$

where s is an integer and $f(t)$ a rational function with $f(0) \neq 0$. Since $f\left(q^{n / 2}\right) \neq 0$, the right-hand side of (26) implies that

$$
f\left(q^{n / 2}\right) f\left(q^{(n+1) / 2}\right)<0, \quad \forall n \geqslant 1 .
$$

Taking the limit as $n \rightarrow \infty$ we get $(f(0))^{2} \leqslant 0$, which is impossible. Hence $L_{n}=0$ and (26) reduces to

$$
\begin{equation*}
X_{n}^{m-1}=\sum_{k} d_{m, m-k}\left(q^{1 / 2}\right) \sum_{l=1}^{m-k} \frac{(-1)^{m-k-l} H_{m-k, m-k-l}\left(q^{1 / 2}\right) X_{n}^{l-1}}{\left(1+q^{1 / 2}\right)^{m-k-l+1} \prod_{i=0}^{m-k-l}\left(1+q^{m-k-i-1 / 2}\right)} \tag{27}
\end{equation*}
$$

Comparing the coefficients of X_{n}^{l-1} on both sides of (27), we see that $\left(d_{k, m}(q)\right)_{1 \leqslant k, m \leqslant n}$ and (18) are indeed inverses.

The following easily verified result has been given by Gessel and Viennot [4].

Lemma 2.4. Let $\left(A_{i, j}\right)_{0 \leqslant i, j \leqslant m}$ be an invertible lower triangular matrix, and let $\left(B_{i, j}\right)=$ $\left(A_{i, j}\right)^{-1}$. Then we have $B_{n, n}=A_{n, n}^{-1}$ and

$$
B_{n, k}=\frac{(-1)^{n-k}}{A_{k, k} A_{k+1, k+1} \cdots A_{n, n}} \operatorname{det}_{0 \leqslant i, j \leqslant n-k-1}\left(A_{k+i+1, k+j}\right),
$$

where $0 \leqslant n \leqslant m$ and $0 \leqslant k \leqslant n-1$.
Using the above lemma we derive immediately from Theorem 2.3 the following determinant formulas:

$$
\begin{align*}
& P_{m, k}(q)=\operatorname{det}_{0 \leqslant i, j \leqslant k-1}\left(h_{m-k-i+2 j-1}\left(\{1, q\}^{i-j+2}\right)\right), \tag{28}\\
& Q_{m, k}(q)=\operatorname{det}_{0 \leqslant i, j \leqslant k-1}\left(c_{m-k+i+1, m-k+j}(q)\right), \tag{29}\\
& G_{m, k}(q)=\operatorname{det}_{0 \leqslant i, j \leqslant k-1}\left(g_{m-k+i+1, m-k+j}(q)\right), \tag{30}\\
& H_{m, k}(q)=\operatorname{det}_{0 \leqslant i, j \leqslant k-1}\left(d_{m-k+i+1, m-k+j}(q)\right), \tag{31}
\end{align*}
$$

for $k \geqslant 1$.

3. Combinatorial interpretations

A lattice path or path $s_{0} \rightarrow s_{n}$ is a sequence of points $\left(s_{0}, s_{1}, \ldots, s_{n}\right)$ in the plane \mathbb{Z}^{2} such that $s_{i}-s_{i-1}=(1,0),(0,1)$ for all $i=1, \ldots, n$. Let us assign a weight to each step $\left(s_{i}, s_{i+1}\right)$ of $s_{0} \rightarrow s_{n}$. We define the weight $N\left(s_{0} \rightarrow s_{n}\right)$ of the path $s_{0} \rightarrow s_{n}$ to be the product of the weights of its steps. Let $s_{0}=(a, b)$ and $s_{n}=(c, d)$ such that $a \leqslant c$ and $b \leqslant d$. If we weight each vertical step with x-coordinate i by x_{i} and all horizontal steps by 1 , then

$$
\begin{equation*}
N\left(s_{0} \rightarrow s_{n}\right)=h_{d-b}\left(x_{a}, x_{a+1}, \ldots, x_{c}\right) . \tag{32}
\end{equation*}
$$

Now consider two sequences of lattice points $\mathbf{u}:=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and $\mathbf{v}:=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ such that for $i<j$ and $k<l$ any lattice path between u_{i} and v_{l} has a common point with any lattice path between u_{j} and v_{k}. Set

$$
N(\mathbf{u}, \mathbf{v}):=\sum N\left(u_{1} \rightarrow v_{1}\right) \cdots N\left(u_{n} \rightarrow v_{n}\right)
$$

where the sum is over all families of nonintersecting paths ($u_{1} \rightarrow v_{1}, \ldots, u_{n} \rightarrow v_{n}$).
The following remarkable result can be found in Gessel and Viennot [4]. For historical remarks see also Krattenthaler [7].

Theorem 3.1 (Lindström-Gessel-Viennot). We have

$$
N(\mathbf{u}, \mathbf{v})=\operatorname{det}_{1 \leqslant i, j \leqslant n}\left(N\left(u_{j} \rightarrow v_{i}\right)\right) .
$$

We are now ready to exhibit the combinatorial interpretation of the q-Faulhaber coefficients.
Theorem 3.2. Let $\mathbf{u}=\left(u_{0}, \ldots, u_{k-1}\right)$ and $\mathbf{v}=\left(v_{0}, \ldots, v_{k-1}\right)$, where $u_{i}=(2 i,-2 i)$ and $v_{i}=$ $(2 i+3, m-k-i-1)$ for $0 \leqslant i \leqslant k-1$.
(i) The polynomial $P_{m, k}(q)$ is the sum of the weights of k-nonintersecting paths from \mathbf{u} to \mathbf{v}, where a vertical step with an even x-coordinate has weight q, and all the other steps have weight 1.
(ii) The polynomial $Q_{m, k}(q)$ is the sum of the weights of k-nonintersecting paths from \mathbf{u} to \mathbf{v}, where the weight of the individual steps is the same as before with the exception that q is replaced with q^{2} and the vertical step starting from any u_{j} has weight $q^{2}+q$ instead of q^{2}.

Proof. For (i), by means of (32) we have

$$
N\left(u_{j} \rightarrow v_{i}\right)=h_{m-k-i+2 j-1}\left(\{1, q\}^{i-j+2}\right) .
$$

The result then follows from (28) and Theorem 3.1.
For (ii), assume that $u_{j}^{\prime}=(2 j+1,-2 j)$ and $u_{j}^{\prime \prime}=(2 j, 1-2 j)$. The first step of a lattice path from u_{j} to v_{i} is either $u_{j} \rightarrow u_{j}^{\prime}$ or $u_{j} \rightarrow u_{j}^{\prime \prime}$. As $N\left(u_{j} \rightarrow u_{j}^{\prime}\right)=1, N\left(u_{j} \rightarrow u_{j}^{\prime \prime}\right)=q^{2}+q$ and $h_{n}\left(x_{1}, \ldots, x_{r-1}\right)+x_{r} h_{n-1}\left(x_{1}, \ldots, x_{r}\right)=h_{n}\left(x_{1}, \ldots, x_{r}\right)$, we have

$$
\begin{aligned}
N\left(u_{j} \rightarrow v_{i}\right)= & N\left(u_{j} \rightarrow u_{j}^{\prime}\right) N\left(u_{j}^{\prime} \rightarrow v_{i}\right)+N\left(u_{j} \rightarrow u_{j}^{\prime \prime}\right) N\left(u_{j}^{\prime \prime} \rightarrow v_{i}\right) \\
= & N\left(u_{j}^{\prime} \rightarrow v_{i}\right)+\left(q^{2}+q\right) N\left(u_{j}^{\prime \prime} \rightarrow v_{i}\right) \\
= & h_{m-k-i+2 j-1}\left(\{1\}^{i-j+2},\left\{q^{2}\right\}^{i-j+1}\right) \\
& +\left(q^{2}+q\right) h_{m-k-i+2 j-2}\left(\left\{1, q^{2}\right\}^{i-j+2}\right) \\
= & h_{m-k-i+2 j-1}\left(\left\{1, q^{2}\right\}^{i-j+2}\right)+q h_{m-k-i+2 j-2}\left(\left\{1, q^{2}\right\}^{i-j+2}\right) .
\end{aligned}
$$

The result then follows from (29) and Theorem 3.1.
Corollary 3.3. The polynomials $P_{m, k}(q)$ and $Q_{m, k}(q)$ have symmetric coefficients.
Proof. A combinatorial way to see the symmetry of the coefficients of $P_{m, k}(q)$ is as follows: Modifying the weights in Theorem 3.2(i) such that vertical steps with an odd x-coordinate have weight q and all the others have weight 1 does not change the entries of the determinant in (28).

Now consider any given family of paths with weight q^{w}, when vertical steps with even x coordinate have weight q. After the modification of the weights it will have weight $q^{\max -w}$, where max is the total number of vertical steps in such a family of paths, which implies the claim.

For the polynomials $Q_{m, k}$, we use the following alternative weight: vertical steps with odd x-coordinate have weight q^{2}, vertical steps with starting point u_{j} have weight $1+q$ and all the others have weight 1.

When $k=m-1$, there is only one lattice path from $u_{0}=(0,0)$ to $v_{0}=(3,0)$, which has weight 1 . This establishes the following result:

Corollary 3.4. For $m \geqslant 2$, we have $P_{m, m-1}(q)=P_{m, m-2}(q)$ and $Q_{m, m-1}(q)=Q_{m, m-2}(q)$.
For the combinatorial interpretation of the q-Salié coefficients, we need an auxiliary lemma:
Lemma 3.5. Let $\left(A_{i, j}\right)_{1 \leqslant i, j \leqslant n}$ and $\left(B_{i, j}\right)_{1 \leqslant i, j \leqslant n}$ be two matrices. Then

$$
\operatorname{det}_{1 \leqslant i, j \leqslant n}\left(A_{i, j}+B_{i, j}\right)=\sum_{I \subseteq\{1, \ldots, n\}} \operatorname{det}_{1 \leqslant i, j \leqslant n}\left(D_{i j}^{(I)}\right),
$$

where

$$
D_{i j}^{(I)}= \begin{cases}A_{i, j}, & \text { if } j \in I \\ B_{i, j}, & \text { otherwise } .\end{cases}
$$

Theorem 3.6. Let $\mathbf{u}=\left(u_{0}, \ldots, u_{k-1}\right)$ and $\mathbf{v}=\left(v_{0}, \ldots, v_{k-1}\right)$, where $u_{i}=(2 i,-2 i)$ and $v_{i}=$ $(2 i+2, m-k-i-1)$ for $0 \leqslant i \leqslant k-1$.
(i) The polynomial $G_{m, k}(q)$ is the sum of the weights of k-nonintersecting lattice paths \mathbf{L} from \mathbf{u} to \mathbf{v} with the weight of \mathbf{L} being

$$
\sum_{I \subseteq\{0,1, \ldots, k-1\}} w_{I}(\mathbf{L})
$$

where w_{I} is defined as follows: for each $i \in I$, vertical steps with x-coordinate $2 i-1$ have weight q, and for any integer $i \notin I$, vertical steps with x-coordinate $2 i$ have weight q. All other steps have weight 1 .
(ii) The polynomial $H_{m, k}(q)$ is the sum of the weights of k-nonintersecting lattice paths \mathbf{L} from \mathbf{u} to \mathbf{v}, with the weight of \mathbf{L} being

$$
\sum_{I \subseteq\{0,1, \ldots, k-1\}} \bar{w}_{I}(\mathbf{L})
$$

where \bar{w}_{I} is the same as w_{I}-replacing q with q^{2}-with the exception of vertical steps starting from one of the points u_{i}, which have an additional weight q. More precisely, if the weight of such a step would be 1 , it has weight $1+q$, if its weight would be q^{2}, it has weight $q^{2}+q$.

Proof. (i) We apply Lemma 3.5 to $\operatorname{det}_{0 \leqslant i, j \leqslant k-1}\left(g_{m-k+i+1, m-k+j}(q)\right)$, where

$$
\begin{aligned}
g_{m-k+i+1, m-k+j}(q)= & h_{m-k-i+2 j-1}\left(\{1\}^{i-j+2},\{q\}^{i-j+1}\right) \\
& +h_{m-k-i+2 j-1}\left(\{1\}^{i-j+1},\{q\}^{i-j+2}\right) .
\end{aligned}
$$

Suppose that $j \in I$ and $0 \leqslant i \leqslant k-1$. Then we have to show that $h_{m-k-i+2 j-1}\left(\{1\}^{i-j+2}\right.$, $\{q\}^{i-j+1}$) is the sum of the weights of lattice paths from u_{j} to v_{i}, where the vertical steps have the weight given in the claim. To this end, note that $h_{m-k-i+2 j-1}\left(\{1\}^{i-j+2},\{q\}^{i-j+1}\right)$ counts lattice paths from u_{j} to v_{i}, when steps on $i-j+1$ given vertical lines have weight q, those steps on the remaining $i-j+2$ vertical lines have weight 1 .

By the construction in the claim, steps on exactly one of the vertical lines with x-coordinates $2 r-1$ and $2 r$ have weight q. Since $j \in I$, steps on the vertical line with x-coordinate $2 j$, i.e., with the x-coordinate of u_{j}, have weight 1 .

Similarly, if $j \notin I$ we can verify that there are exactly $i-j+2$ vertical lines between u_{j} and v_{i} with steps thereon having weight q.
(ii) In the same way, we can show that for $j \in I$ and $0 \leqslant i \leqslant k-1$,

$$
h_{m-k-i+2 j-1}\left(\{1\}^{i-j+2},\left\{q^{2}\right\}^{i-j+1}\right)+q h_{m-k-i+2 j-2}\left(\{1\}^{i-j+2},\left\{q^{2}\right\}^{i-j+1}\right)
$$

is the sum of weights of lattice paths from u_{j} to v_{i}, where the vertical steps have the weight given in the claim. Meanwhile, for $j \notin I$ and $0 \leqslant i \leqslant k-1$,

$$
h_{m-k-i+2 j-1}\left(\{1\}^{i-j+1},\left\{q^{2}\right\}^{i-j+2}\right)+q h_{m-k-i+2 j-2}\left(\{1\}^{i-j+1},\left\{q^{2}\right\}^{i-j+2}\right)
$$

is the sum of weights of lattice paths from u_{j} to v_{i}.

Fig. 1. An example for Theorem 3.6, where $I=\{1,2\}, w_{I}(\mathbf{L})=q^{8}$ and $\bar{w}_{I}(\mathbf{L})=q^{14}\left(q+q^{2}\right)(q+1)^{2}$.
As an illustration of the underlying configurations in Theorem 3.6, we give an example in Fig. 1 for $m=7$ and $k=4$.

Corollary 3.7. The polynomials $G_{m, k}(q)$ and $H_{m, k}(q)$ have symmetric coefficients.
Proof. A combinatorial way to see the symmetry of the coefficients of $G_{m, k}(q)$ is as follows: Modifying w_{I} such that for each $i \in I$, vertical steps with x-coordinate $2 i$ have weight q, and for any integer $i \notin I$, vertical steps with x-coordinate $2 i-1$ have weight 1 does not change the entries of the determinant in (30).

Now consider any given family of paths with weight q^{w} provided by Theorem 3.6(i). After the modification of the weights it will have weight $q^{\max -w}$, where max is the total number of vertical steps in such a family of paths, which implies the claim.

We omit the proof of the symmetry of the coefficients of $H_{m, k}(q)$.
Corollary 3.8. Let $\mathbf{u}=\left(u_{0}, \ldots, u_{k-1}\right)$ and $\mathbf{v}=\left(v_{0}, \ldots, v_{k-1}\right)$, where $u_{i}=(2 i,-2 i)$ and $v_{i}=$ $(2 i+2, m-k-i-1)$ for $0 \leqslant i \leqslant k-1$.
(i) The polynomial $G_{m, k}(q)$ is the sum of the weights of k-nonintersecting lattice paths \mathbf{L} from \mathbf{u} to \mathbf{v} with the weight of \mathbf{L} being

$$
q^{\sigma_{2 k}(\mathbf{L})} \prod_{i=0}^{k-1}\left(q^{\sigma_{2 i-1}(\mathbf{L})}+q^{\sigma_{2 i}(\mathbf{L})}\right)
$$

where σ_{j} denotes the number of vertical steps with x-coordinate j.
(ii) The polynomial $H_{m, k}(q)$ is the sum of the weights of k-nonintersecting lattice paths \mathbf{L} from \mathbf{u} to \mathbf{v} with the weight of \mathbf{L} being

$$
(1+q)^{f(\mathbf{L})} q^{2 \sigma_{2 k}(\mathbf{L})} \prod_{i=0}^{k-1}\left(q^{2 \sigma_{2 i-1}(\mathbf{L})}+q^{2 \sigma_{2 i}(\mathbf{L})-f_{i}(\mathbf{L})}\right)
$$

where σ_{j} is as in (i) and f (respectively f_{i}) denotes the number of vertical steps starting from \mathbf{u} (respectively u_{i}).

Proof. (i) By the definition of w_{I}, for $0 \leqslant i \leqslant k-1$, if $i \in I$, then vertical steps on the line with x-coordinates $2 i-1$ have weight q and vertical steps on the line with x-coordinates $2 i$ have weight 1 ; and if $i \notin I$, the case is just contrary. Note that steps on the vertical line with x-coordinates $2 k$ always have weight q and steps on the vertical line with x-coordinates $2 k-1$ always have weight 1 . This implies that

$$
\sum_{I \subseteq\{0,1, \ldots ., k-1\}} w_{I}(\mathbf{L})=q^{\sigma_{2 k}(\mathbf{L})} \prod_{i=0}^{k-1}\left(q^{\sigma_{2 i-1}(\mathbf{L})}+q^{\sigma_{2 i}(\mathbf{L})}\right)
$$

(ii) Notice that for $0 \leqslant i \leqslant k-1$, we have $f_{i}(\mathbf{L})=1$ if \mathbf{L} contains a vertical step starting from the point u_{i}, and $f_{i}(\mathbf{L})=0$ otherwise. Similarly to (i), we have

$$
\begin{aligned}
\sum_{I \subseteq\{0,1, \ldots, k-1\}} \bar{w}_{I}(\mathbf{L}) & =q^{2 \sigma_{2 k}(\mathbf{L})} \prod_{i=0}^{k-1}\left(q^{2 \sigma_{2 i-1}(\mathbf{L})}(1+q)^{f_{i}(\mathbf{L})}+q^{2 \sigma_{2 i}(\mathbf{L})-2 f_{i}(\mathbf{L})}\left(q^{2}+q\right)^{f_{i}(\mathbf{L})}\right) \\
& =(1+q)^{f(\mathbf{L})} q^{2 \sigma_{2 k}(\mathbf{L})} \prod_{i=0}^{k-1}\left(q^{2 \sigma_{2 i-1}(\mathbf{L})}+q^{2 \sigma_{2 i}(\mathbf{L})-f_{i}(\mathbf{L})}\right)
\end{aligned}
$$

This completes the proof.
The computation of $G_{4,2}(q)$ is illustrated in Fig. 2, while the value of $H_{4,2}(q)$ as given in Table 4 is the sum of values in Table 5.

Remark. Since

$$
\operatorname{det}_{1 \leqslant i, j \leqslant n}\left(A_{i, j}+B_{i, j}\right)=\sum_{I \subseteq\{1, \ldots, n\}} \operatorname{det}_{1 \leqslant i, j \leqslant n}\left(C_{i j}^{(I)}\right),
$$

where

$$
C_{i j}^{(I)}= \begin{cases}A_{i, j}, & \text { if } i \in I, \\ B_{i, j}, & \text { otherwise },\end{cases}
$$

we may also define w_{I} in Theorem 3.6(i) as follows: for each $i \in I$, vertical steps with x coordinate $2 i+3$ have weight q, and for any integer $i \notin I$, vertical steps with x-coordinate $2 i+2$ have weight q. All other steps have weight 1 . In this case, for each $i \in I$ and $0 \leqslant j \leqslant k-1$, we can show that $h_{m-k-i+2 j-1}\left(\{1\}^{i-j+2},\{q\}^{i-j+1}\right)$ is the sum of the weights of lattice paths from u_{j} to v_{i}. Moreover, there holds

$$
\sum_{I \subseteq\{0,1, \ldots, k-1\}} w_{I}(\mathbf{L})=q^{\sigma_{0}(\mathbf{L})} \prod_{i=1}^{k}\left(q^{\sigma_{2 i}(\mathbf{L})}+q^{\sigma_{2 i+1}(\mathbf{L})}\right)
$$

Similarly, we may define \bar{w}_{I} in Theorem 3.6(ii) as follows: for each $i \in I$, a vertical step toward the point v_{i} has weight $q+1$, vertical steps with x-coordinate $2 i+3$ have weight q^{2}. For any integer $i \notin I$, a vertical step toward the point v_{i} has weight $q^{2}+q$, and vertical steps with x-coordinate $2 i+2$ not toward v_{i} have weight q^{2}. All other steps have weight 1 . In this case, we have

Fig. 2. An illustration for $G_{4,2}(q)=10 q^{3}+24 q^{2}+24 q+10$.

Table 5
Values of $\sum_{I \subseteq\{0,1\}} \bar{w}_{I}(\mathbf{L})$ corresponding to Fig. 2

$(1+q)^{3}\left(1+q^{3}\right)$	$2 q^{2}(1+q)^{2}$	$(1+q)^{4}$	$2 q(1+q)^{2}$
$2(1+q)\left(1+q^{3}\right)$	$q^{2}(1+q)^{4}$	$2 q^{3}(1+q)^{2}$	$2 q^{2}(1+q)\left(1+q^{3}\right)$
$2(1+q)^{2}$	$2\left(1+q^{2}\right)$	$2\left(1+q^{2}\right)$	$2 q^{2}(1+q)^{2}$
$2 q^{2}\left(1+q^{2}\right)$	$2 q^{2}\left(1+q^{2}\right)$	$2 q^{4}(1+q)^{2}$	$2 q^{4}\left(1+q^{2}\right)$
$2 q^{4}\left(1+q^{2}\right)$			

$$
\sum_{I \subseteq\{0,1, \ldots, k-1\}} \bar{w}_{I}(\mathbf{L})=(1+q)^{\bar{f}(\mathbf{L})} q^{2 \sigma_{0}(\mathbf{L})} \prod_{i=1}^{k}\left(q^{2 \sigma_{2 i}(\mathbf{L})-\bar{f}_{i-1}(\mathbf{L})}+q^{2 \sigma_{2 i+1}(\mathbf{L})}\right)
$$

where \bar{f} (respectively \bar{f}_{i}) denotes the number of vertical steps ending in \mathbf{v} (respectively v_{i}).
When $k=m-1$, there is only one lattice path from $u_{0}=(0,0)$ to $v_{0}=(2,0)$, which has weight 1 . This establishes the following result.

Corollary 3.9. For $m \geqslant 2$, we have $G_{m, m-1}(q)=2 G_{m, m-2}(q)$ and $H_{m, m-1}(q)=2 H_{m, m-2}(q)$.

4. Open problems

We would like to point out three directions of possible further research: It appears that the polynomials $P_{m, k}$ and $G_{m, k}$ are log-concave. However, we have not pursued this question further. Note that the polynomials $Q_{m, k}$ and $H_{m, k}$ are not even unimodal.

Guo and Zeng gave in [5] even finer q-analogues of the polynomials considered here, replacing (3) and (4) by

$$
\begin{aligned}
& S_{m, n, r}(q)=\sum_{k=1}^{n} \frac{[2 r k]}{[2 r]}[k]^{m-1} q^{\frac{m+2 r-1}{2}(n-k)}, \\
& T_{m, n, r}(q)=\sum_{k=1}^{n}(-1)^{n-k} \frac{[(2 r-1) k]}{[2 r-1]}[k]^{m-1} q^{\frac{m}{2}(n-k)}
\end{aligned}
$$

where $r \geqslant 1$. Although the coefficients of the corresponding polynomials $P_{m, k, r}, Q_{m, k, r}, G_{m, k, r}$ and $H_{m, k, r}$ are not positive anymore, one might hope for a refinement of Theorem 2.3.

Finally, we should point out that Gessel and Viennot [4] also presented nice generating functions for the coefficients $f_{m, k}$ and $s_{m, k}$, namely

$$
\begin{aligned}
& \sum_{m, k} s_{m, k} t^{k} \frac{x^{2 n}}{(2 n)!}=\frac{\cosh \sqrt{1+4 t} \frac{x}{2}}{\cosh \frac{x}{2}}, \\
& \sum_{m, k} f_{m, k} t^{k} \frac{x^{2 n+1}}{(2 n+1)!}=\frac{\cosh \sqrt{1+4 t} \frac{x}{2}-\cosh \frac{x}{2}}{t \sinh \frac{x}{2}} .
\end{aligned}
$$

It would be interesting to find the corresponding refinements of the above formulae.

5. Epilogue

One may wonder how these results were discovered. The truth is, that at first "only" formula (5) was known. Using this formula, Table 1 was computed. Then, in analogy to [4], the matrix

$$
\left((-1)^{k-m} \frac{[m]!}{[k+1]!} P_{k, k-m}(q)\right)_{0 \leqslant k, m \leqslant n}
$$

was inverted and, since we were looking for a lattice path interpretation, the entry in row i and column j of the inverse matrix had to be the weighted number of lattice paths from u_{j} to v_{i}. This given, it was easy to find the correct weights. Finally, we read the proof given in [4] backwards, its first line corresponding to our Lemma 2.2.

References

[1] A.F. Beardon, Sums of powers of integers, Amer. Math. Monthly 103 (1996) 201-213.
[2] J. Faulhaber, Darinnen die miraculosische Inventiones zu den höchsten Cossen weiters continuirt und profitiert werden, Academia Algebræ, 1631.
[3] K.C. Garrett, K. Hummel, A combinatorial proof of the sum of q-cubes, Electron. J. Combin. 11 (2004) \#R9.
[4] I.M. Gessel, X.G. Viennot, Determinants, paths, and plane partitions, preprint, 1989.
[5] V.J.W. Guo, J. Zeng, A q-analogue of Faulhaber's formula for sums of powers, Electron. J. Combin. 11 (2) (20042006) \#R19.
[6] D.E. Knuth, Johann Faulhaber and sums of powers, Math. Comput. 61 (1993) 277-294.
[7] C. Krattenthaler, Advanced determinant calculus: A complement, Linear Algebra Appl. 411 (2005) 68-166.
[8] M. Schlosser, q-Analogues of the sums of consecutive integers, squares, cubes, quarts and quints, Electron. J. Combin. 11 (2004) \#R71.
[9] S.O. Warnaar, On the q-analogue of the sum of cubes, Electron. J. Combin. 11 (2004) \#R13.

[^0]: E-mail addresses: guo@ math.univ-lyon1.fr (V.J.W. Guo), martin.rubey@univie.ac.at (M. Rubey), zeng@math.univ-lyon1.fr (J. Zeng).

 URLs: http://math.univ-lyon1.fr/~guo (V.J.W. Guo), http://www.mat.univie.ac.at/~rubey (M. Rubey), http://math.univ-lyon1.fr/~zeng (J. Zeng).
 ${ }^{1}$ The author was supported by EC's IHRP Programme, within Research Training Network "Algebraic Combinatorics in Europe," grant HPRN-CT-2001-00272.

