
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Journal of Combinatorial Theory, Series A 113 (2006) 1501–1515

www.elsevier.com/locate/jcta

Combinatorial interpretations
of the q-Faulhaber and q-Salié coefficients

Victor J.W. Guo a, Martin Rubey b, Jiang Zeng a,1

a Institut Camille Jordan, Université Claude Bernard (Lyon I), F-69622 Villeurbanne Cedex, France
b Institut für Statistik und Decision Support, Universität Wien, A-1010 Wien, Austria

Received 14 June 2005

Available online 24 March 2006

Dedicated to Xavier Viennot on the occasion of his sixtieth birthday

Abstract

Recently, Guo and Zeng discovered two families of polynomials featuring in a q-analogue of Faulhaber’s
formula for the sums of powers and a q-analogue of Gessel–Viennot’s formula involving Salié’s coefficients
for the alternating sums of powers. In this paper, we show that these are polynomials with symmetric,
nonnegative integral coefficients by refining Gessel–Viennot’s combinatorial interpretations.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In the early seventeenth century, Faulhaber [2] considered the sums of powers Sm,n =∑n
k=1 km and provided formulas for the coefficients fm,k (0 � m � 8) in

S2m+1,n = 1

2

m∑
k=1

fm,k

(
n(n + 1)

)k+1
. (1)
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In 1989, Gessel and Viennot [4] studied the alternating sums Tm,n = ∑n
k=1(−1)n−kkm and

showed that there exist integers sm,k such that

T2m,n = 1

2

m∑
k=1

sm,k

(
n(n + 1)

)k
. (2)

Furthermore, they proved that, up to some factors, the Faulhaber coefficients fm,k and the Salié
coefficients sm,k count certain families of nonintersecting lattice paths. There is a huge literature
on this subject. Faulhaber’s work, including more generally r-fold sums of powers, was nicely
exposed by Knuth [6]. For the study of polynomial relations between sums of powers functions,
see Beardon [1].

Recall that a natural q-analogue of the nonnegative integer n is given by [n] = 1−qn

1−q
and the

corresponding q-factorial is [n]! = ∏n
k=1[k]. Recently, Guo and Zeng [5], continuing work of

Schlosser [8], Warnaar [9] and Garrett and Hummel [3], have found interesting q-analogues of
(1) and (2). More precisely, for m,n ∈ N, setting

Sm,n(q) =
n∑

k=1

[2k]
[2] [k]m−1q

m+1
2 (n−k), (3)

Tm,n(q) =
n∑

k=1

(−1)n−k[k]mq
m
2 (n−k), (4)

they proved the following results:

Theorem 1.1. There exist polynomials Pm,k , Qm,k , Gm,k and Hm,k in Z[q] such that

S2m+1,n(q) =
m∑

k=0

(−qn
)m−k [k]!

[m + 1]!Pm,m−k(q)
([n][n + 1])k+1

[2] , (5)

S2m,n(q) = (
1 − qn+1/2) m∑

k=1

(−qn
)m−k (1 − q1/2)m−kQm,m−k(q

1/2)∏m−k
i=0 (1 − qm−i+1/2)

([n][n + 1])k
[2] , (6)

T2m,n(q) =
m∑

k=1

(−qn
)m−k Gm,m−k(q)∏m−k

i=0 (1 + qm−i )

([n][n + 1])k
, (7)

T2m−1,n(q) = (−1)m+nHm,m−1
(
q1/2) q(m−1/2)n

(1 + q1/2)m
∏m−1

i=0 (1 + qm−i−1/2)

+ 1 − qn+1/2

1 − q1/2

m∑
k=1

(−qn
)m−k Hm,m−k(q

1/2)([n][n + 1])k−1

(1 + q1/2)m−k+1
∏m−k

i=0 (1 + qm−i−1/2)
. (8)

Comparing with (3) and (4), we have

fm,k = (−1)m−k k!
(m + 1)!Pm,m−k(1),

sm,k = (−1)m−k2k−mGm,m−k(1),

but the numbers corresponding to Qm,k(1) and Hm,k(1) do not seem to be studied in the litera-
ture. The first values of Pm,k , Qm,k , Gm,k and Hm,k are given in Tables 1–4, respectively.
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Table 1
Values of Pm,k(q) for 0 � m � 5

k \ m 0 1 2 3 4 5

0 1 1 1 1 1 1
1 1 2(q + 1) 3q2 + 4q + 3 2(q + 1)(2q2 + q + 2)

2 2(q + 1) (q + 1)(5q2 + 8q + 5) (q + 1)(9q4 + 19q3 + 29q2 + 19q + 9)

3 (q + 1)(5q2 + 8q + 5) 2(q + 1)2(q2 + q + 1)(7q2 + 11q + 7)

4 2(q + 1)2(q2 + q + 1)(7q2 + 11q + 7)

Table 2
Values of Qm,k(q) for 1 � m � 4

k \ m 1 2 3 4

0 1 1 1 1
1 1 2q2 + q + 2 3q4 + 2q3 + 4q2 + 2q + 3
2 2q2 + q + 2 (q2 + q + 1)(5q4 + q3 + 9q2 + q + 5)

3 (q2 + q + 1)(5q4 + q3 + 9q2 + q + 5)

Table 3
Values of Gm,k(q) for 1 � m � 5

k \ m 1 2 3 4 5

0 1 1 1 1 1
1 2 3(q + 1) 4(q2 + q + 1) 5(q + 1)(q2 + 1)

2 6(q + 1) 2(q + 1)(5q2 + 7q + 5) 5(q + 1)(3q4 + 4q3 + 8q2 + 4q + 3)

3 4(q + 1)(5q2 + 7q + 5) 5(q + 1)2(7q4 + 14q3 + 20q2 + 14q + 7)

4 10(q + 1)2(7q4 + 14q3 + 20q2 + 14q + 7)

Table 4
Values of Hm,k(q) for 1 � m � 4

k \ m 1 2 3 4

0 1 1 1 1
1 2 3q2 + 2q + 3 4q4 + 3q3 + 4q2 + 3q + 4
2 2(3q2 + 2q + 3) 10q6 + 15q5 + 30q4 + 26q3 + 30q2 + 15q + 10
3 2(10q6 + 15q5 + 30q4 + 26q3 + 30q2 + 15q + 10)

We say that a polynomial f (x) = a0 +a1x +· · ·+anx
n of degree n has symmetric coefficients

if ai = an−i for 0 � i � n. The tables above suggest that the coefficients of the polynomials Pm,k ,
Qm,k , Gm,k and Hm,k are nonnegative and symmetric. The aim of this paper is to prove this fact
by showing that the coefficients count certain families of nonintersecting lattice paths.

2. Inverses of matrices

Recall that the nth complete symmetric functions in r variables x1, x2, . . . , xr has the follow-
ing generating function:∑

hn(x1, . . . , xr )z
n = 1

(1 − x1z)(1 − x2z) · · · (1 − xrz)
.

n�0



1504 V.J.W. Guo et al. / Journal of Combinatorial Theory, Series A 113 (2006) 1501–1515
For r, s � 0, let hn({1}r , {q}s) denote the nth complete symmetric functions in r + s variables,
of which r are specialized to 1 and the others to q , i.e.,∑

n�0

hn

({1}r , {q}s)zn = 1

(1 − z)r (1 − qz)s
. (9)

By convention, hn({1}r , {q}s) = 0 if r < 0 or s < 0. For convenience, we also write hn({1, q}r )
instead of hn({1}r , {q}r ). We need the following result.

Lemma 2.1. For (a, b) ∈ {(0,1), (1,0), (1,1)}, we have

∑
m�0

∑
k�0

hm−2k

({1}k+a, {q}k+b
)( ql

[l]2

)k

zm

= [l]2

[2l]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[l+1]
[l]−[l+1]z − q[l−1]

[l]−q[l−1]z if (a, b) = (1,1),

1
[l]−[l+1]z + ql

[l]−q[l−1]z if (a, b) = (1,0),

ql

[l]−[l+1]z + 1
[l]−q[l−1]z if (a, b) = (0,1).

(10)

Proof. Using the definition (9) of the complete symmetric functions we have

∑
m�0

∑
k�0

hm−2k

({1}k+a, {q}k+b
)
xkzm =

∑
k�0

xkz2k

(1 − z)k+a(1 − qz)k+b

= 1

(1 − z)a−1(1 − qz)b−1

1

(1 − z)(1 − qz) − xz2
.

Setting x = ql/[l]2 a little calculation shows that the denominator of the second fraction factor-
izes:

1

(1 − z)(1 − qz) − xz2
= [l]2

([l] − qz[l − 1])([l] − z[l + 1]) .

The result then follows from the standard partial fraction decomposition. �
The following lemma might be interesting per se. When q = 1 it reduces to simple applica-

tions of the binomial theorem.

Lemma 2.2. For k,m � 1, set

ck,m(q) := h2m−k

({
1, q2}k−m+1) + qh2m−k−1

({
1, q2}k−m+1)

,

gk,m(q) := h2m−k

({1}k−m+1, {q}k−m
) + h2m−k

({1}k−m, {q}k−m+1),
dk,m(q) := gk,m

(
q2) + qgk−1,m−1

(
q2).

Let Xn = [n][n+1]
qn . For m, l � 1, we have

Xm+1
l − Xm+1

l−1 =
∑

hm−2k

({1, q}k+1)[2l][l]2(m−k)q−l(m−k+1), (11)

k
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1 − ql+1/2

(1 − q1/2)ql/2
Xm

l − 1 − ql−1/2

(1 − q1/2)q(l−1)/2
Xm

l−1

=
∑

k

cm,m−k

(
q1/2)[2l][l]2(m−k−1/2)q−l(m−k+1/2), (12)

Xm
l + Xm

l−1 =
∑

k

gm,m−k(q)[l]2(m−k)q−l(m−k), (13)

1 − ql+1/2

(1 − q1/2)ql/2
Xm−1

l + 1 − ql−1/2

(1 − q1/2)q(l−1)/2
Xm−1

l−1

=
∑

k

dm,m−k

(
q1/2)[l]2(m−k−1/2)q−l(m−k−1/2). (14)

Proof. The proof rests on the previous lemma.

• Equating the coefficients of (10) in the case (a, b) = (1,1) yields that∑
k

hm−2k

({1, q}k+1)qlk[l]−2k

= [l]
[2l]

(
[l + 1]

( [l + 1]
[l]

)m

− q[l − 1]
(

q[l − 1]
[l]

)m)
.

Multiplying this expression with [2l] [l]2m

ql(m+1) we obtain (11).

• Since cm,m−k(q
1/2) = hm−2k({1, q}k+1) + q1/2hm−1−2k({1, q}k+1), Eq. (12) follows di-

rectly from the previous calculation.
• As gm,m−k(q) = hm−2k({1}k+1, {q}k) + hm−2k({1}k, {q}k+1), applying Lemma 2.1 with

(a, b) = (1,0), (0,1), we get∑
m�0

∑
k�0

(
hm−2k

({1}k+1, {q}k) + hm−2k

({1}k, {q}k+1))qlk[l]−2kzm

= [l]2

[2l]
(

1 + ql

[l] − [l + 1]z + 1 + ql

[l] − q[l − 1]z
)

.

Multiplying the coefficient of zm of this expression with [l]2mq−lm we obtain (13).
• Since dm,m−k(q

1/2) = gm,m−k(q) + q1/2gm−1,m−k−1(q), Eq. (14) follows directly from the
previous calculation. �

The following is the main result of this section.

Theorem 2.3. The inverses of the lower triangular matrices(
h2m−k

({1, q}k−m+1))
0�k,m�n

,
(
ck,m(q)

)
1�k,m�n

,
(
gk,m(q)

)
1�k,m�n

,(
dk,m(q)

)
1�k,m�n

are respectively the lower triangular matrices(
(−1)k−m [m]!

[k + 1]!Pk,k−m(q)

)
, (15)
0�k,m�n
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(
(−1)k−m (1 − q)k−m+1Qk,k−m(q)∏k−m

i=0 (1 − q2k−2i+1)

)
1�k,m�n

, (16)

(
(−1)k−m Gk,k−m(q)∏k−m

i=0 (1 + qk−i )

)
1�k,m�n

, (17)

(
(−1)k−m Hk,k−m(q)

(1 + q)k−m+1
∏k−m

i=0 (1 + q2k−2i−1)

)
1�k,m�n

. (18)

Proof. Recall that Xn = [n][n+1]
qn .

• Summing Eq. (11) over l from 1 to n and applying Eq. (3), we obtain

Xm+1
n = [2]

�m/2�∑
k=0

hm−2k

({1, q}k+1)S2m−2k+1,n(q)q−n(m−k+1). (19)

Plugging (5) in Eq. (19), the right-hand side becomes

�m/2�∑
k=0

m−k∑
l=0

hm−2k

({1, q}k+1)(−1)m−k−l [l]!
[m − k + 1]!Pm−k,m−k−l(q)Xl+1

n .

Comparing the coefficients of Xl+1
n we see that (h2m−k({1, q}k−m+1))0�k,m�n and (15) are

indeed inverses.
• Summing Eq. (12) over l from 1 to n and applying Eq. (3), we obtain

1 − qn+1/2

(1 − q1/2)qn/2
Xm

n = [2]
�m/2�∑
k=0

cm,m−k

(
q1/2)S2m−2k,n(q)q−n(m−k+1/2). (20)

Substituting (6) into (20) and dividing both sides by 1−qn+1/2

(1−q1/2)qn/2 , we get

Xm
n =

�m/2�∑
k=0

m−k∑
l=1

cm,m−k

(
q1/2)(−1)m−k−l

(1 − q1/2)m−k−lQm−k,m−k−l

(
q1/2

)
∏m−k−l

i=0 (1 − qm−k−i+1/2)
Xl

n.

Comparing the coefficients of Xl
n, we see that (ck,m(q))1�k,m�n and (16) are indeed in-

verses.
• Equation (13) may be written as

(−1)n−lXm
l − (−1)n−l+1Xm

l−1 = (−1)n−l

�m/2�∑
k=0

gm,m−k(q)
(1 − ql)2m−2k

(1 − q)2m−2k
q−l(m−k).

(21)

Summing Eq. (21) over l from 1 to n and applying Eq. (4), we obtain

Xm
n =

�m/2�∑
k=0

gm,m−k(q)T2m−2k,n(q)q−n(m−k). (22)
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Substituting (7) into (22), the right-hand side becomes

�m/2�∑
k=0

m−k∑
l=1

gm,m−k(q)(−1)m−k−l Gm−k,m−k−l (q)∏m−k−l
i=0 (1 + qm−k−i )

Xl
n. (23)

Comparing the coefficients of Xl
n, we see that (gk,m(q))1�k,m�n and (17) are inverse to each

other.
• Equation (14) may be written as

(−1)n−l 1 − ql+1/2

(1 − q1/2)ql/2
Xm−1

l − (−1)n−l+1 1 − ql−1/2

(1 − q1/2)q(l−1)/2
Xm−1

l−1

= (−1)n−l
∑

k

dm,m−k

(
q1/2)[l]2(m−k−1/2)q−l(m−k−1/2). (24)

Summing Eq. (24) over l from 1 to n and applying Eq. (4), we obtain

1 − qn+1/2

(1 − q1/2)qn/2
Xm−1

n =
∑

k

dm,m−k

(
q1/2)T2m−2k−1,n(q)q−n(m−k−1/2), m � 2.

(25)

Substituting (8) into (25) yields

1 − qn+1/2

(1 − q1/2)qn/2

(
Xm−1

n −
∑

k

m−k∑
l=1

(−1)m−k−ldm,m−k(q
1/2)Hm−k,m−k−l (q

1/2)Xl−1
n

(1 + q1/2)m−k−l+1
∏m−k−l

i=0 (1 + qm−k−i−1/2)

)

= (−1)n
∑

k

(−1)m−kdm,m−k(q
1/2)Hm−k,m−k−1(q

1/2)

(1 + q1/2)m−k
∏m−k−1

i=0 (1 + qm−k−i−1/2)
. (26)

We now show that the right-hand side of (26) must vanish. Suppose 0 < q < 1. Denote the
left-hand side of (26) by Ln. If there exists an n ∈ N such that Ln = 0 we are done. Suppose
Ln �= 0 for all n � 1, then Ln is a rational function in t = qn/2 and can be written as

Ln = t sf (t) with t = qn/2,

where s is an integer and f (t) a rational function with f (0) �= 0. Since f (qn/2) �= 0, the
right-hand side of (26) implies that

f
(
qn/2)f (

q(n+1)/2) < 0, ∀n � 1.

Taking the limit as n → ∞ we get (f (0))2 � 0, which is impossible. Hence Ln = 0 and (26)
reduces to

Xm−1
n =

∑
k

dm,m−k

(
q1/2)m−k∑

l=1

(−1)m−k−lHm−k,m−k−l (q
1/2)Xl−1

n

(1 + q1/2)m−k−l+1
∏m−k−l

i=0 (1 + qm−k−i−1/2)
. (27)

Comparing the coefficients of Xl−1
n on both sides of (27), we see that (dk,m(q))1�k,m�n

and (18) are indeed inverses. �
The following easily verified result has been given by Gessel and Viennot [4].



1508 V.J.W. Guo et al. / Journal of Combinatorial Theory, Series A 113 (2006) 1501–1515
Lemma 2.4. Let (Ai,j )0�i,j�m be an invertible lower triangular matrix, and let (Bi,j ) =
(Ai,j )

−1. Then we have Bn,n = A−1
n,n and

Bn,k = (−1)n−k

Ak,kAk+1,k+1 · · ·An,n

det
0�i,j�n−k−1

(Ak+i+1,k+j ),

where 0 � n � m and 0 � k � n − 1.

Using the above lemma we derive immediately from Theorem 2.3 the following determinant
formulas:

Pm,k(q) = det
0�i,j�k−1

(
hm−k−i+2j−1

({1, q}i−j+2)), (28)

Qm,k(q) = det
0�i,j�k−1

(
cm−k+i+1,m−k+j (q)

)
, (29)

Gm,k(q) = det
0�i,j�k−1

(
gm−k+i+1,m−k+j (q)

)
, (30)

Hm,k(q) = det
0�i,j�k−1

(
dm−k+i+1,m−k+j (q)

)
, (31)

for k � 1.

3. Combinatorial interpretations

A lattice path or path s0 → sn is a sequence of points (s0, s1, . . . , sn) in the plane Z
2 such

that si − si−1 = (1,0), (0,1) for all i = 1, . . . , n. Let us assign a weight to each step (si , si+1) of
s0 → sn. We define the weight N(s0 → sn) of the path s0 → sn to be the product of the weights
of its steps. Let s0 = (a, b) and sn = (c, d) such that a � c and b � d . If we weight each vertical
step with x-coordinate i by xi and all horizontal steps by 1, then

N(s0 → sn) = hd−b(xa, xa+1, . . . , xc). (32)

Now consider two sequences of lattice points u := (u1, u2, . . . , un) and v := (v1, v2, . . . , vn)

such that for i < j and k < l any lattice path between ui and vl has a common point with any
lattice path between uj and vk . Set

N(u,v) :=
∑

N(u1 → v1) · · ·N(un → vn),

where the sum is over all families of nonintersecting paths (u1 → v1, . . . , un → vn).
The following remarkable result can be found in Gessel and Viennot [4]. For historical re-

marks see also Krattenthaler [7].

Theorem 3.1 (Lindström–Gessel–Viennot). We have

N(u,v) = det
1�i,j�n

(
N(uj → vi)

)
.

We are now ready to exhibit the combinatorial interpretation of the q-Faulhaber coefficients.

Theorem 3.2. Let u = (u0, . . . , uk−1) and v = (v0, . . . , vk−1), where ui = (2i,−2i) and vi =
(2i + 3,m − k − i − 1) for 0 � i � k − 1.
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(i) The polynomial Pm,k(q) is the sum of the weights of k-nonintersecting paths from u to v,
where a vertical step with an even x-coordinate has weight q , and all the other steps have
weight 1.

(ii) The polynomial Qm,k(q) is the sum of the weights of k-nonintersecting paths from u to v,
where the weight of the individual steps is the same as before with the exception that q is
replaced with q2 and the vertical step starting from any uj has weight q2 + q instead of q2.

Proof. For (i), by means of (32) we have

N(uj → vi) = hm−k−i+2j−1
({1, q}i−j+2).

The result then follows from (28) and Theorem 3.1.
For (ii), assume that u′

j = (2j + 1,−2j) and u′′
j = (2j,1 − 2j). The first step of a lattice path

from uj to vi is either uj → u′
j or uj → u′′

j . As N(uj → u′
j ) = 1, N(uj → u′′

j ) = q2 + q and
hn(x1, . . . , xr−1) + xrhn−1(x1, . . . , xr ) = hn(x1, . . . , xr ), we have

N(uj → vi) = N
(
uj → u′

j

)
N

(
u′

j → vi

) + N
(
uj → u′′

j

)
N

(
u′′

j → vi

)
= N

(
u′

j → vi

) + (
q2 + q

)
N

(
u′′

j → vi

)
= hm−k−i+2j−1

({1}i−j+2,
{
q2}i−j+1)

+ (
q2 + q

)
hm−k−i+2j−2

({
1, q2}i−j+2)

= hm−k−i+2j−1
({

1, q2}i−j+2) + qhm−k−i+2j−2
({

1, q2}i−j+2)
.

The result then follows from (29) and Theorem 3.1. �
Corollary 3.3. The polynomials Pm,k(q) and Qm,k(q) have symmetric coefficients.

Proof. A combinatorial way to see the symmetry of the coefficients of Pm,k(q) is as follows:
Modifying the weights in Theorem 3.2(i) such that vertical steps with an odd x-coordinate have
weight q and all the others have weight 1 does not change the entries of the determinant in (28).

Now consider any given family of paths with weight qw , when vertical steps with even x-
coordinate have weight q . After the modification of the weights it will have weight qmax−w ,
where max is the total number of vertical steps in such a family of paths, which implies the
claim.

For the polynomials Qm,k , we use the following alternative weight: vertical steps with odd
x-coordinate have weight q2, vertical steps with starting point uj have weight 1 + q and all the
others have weight 1. �

When k = m − 1, there is only one lattice path from u0 = (0,0) to v0 = (3,0), which has
weight 1. This establishes the following result:

Corollary 3.4. For m � 2, we have Pm,m−1(q) = Pm,m−2(q) and Qm,m−1(q) = Qm,m−2(q).

For the combinatorial interpretation of the q-Salié coefficients, we need an auxiliary lemma:

Lemma 3.5. Let (Ai,j )1�i,j�n and (Bi,j )1�i,j�n be two matrices. Then

det
1�i,j�n

(Ai,j + Bi,j ) =
∑

det
1�i,j�n

(
D

(I)
ij

)
,

I⊆{1,...,n}
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where

D
(I)
ij =

{
Ai,j , if j ∈ I ,

Bi,j , otherwise.

Theorem 3.6. Let u = (u0, . . . , uk−1) and v = (v0, . . . , vk−1), where ui = (2i,−2i) and vi =
(2i + 2,m − k − i − 1) for 0 � i � k − 1.

(i) The polynomial Gm,k(q) is the sum of the weights of k-nonintersecting lattice paths L from
u to v with the weight of L being∑

I⊆{0,1,...,k−1}
wI (L),

where wI is defined as follows: for each i ∈ I , vertical steps with x-coordinate 2i − 1 have
weight q , and for any integer i /∈ I , vertical steps with x-coordinate 2i have weight q . All
other steps have weight 1.

(ii) The polynomial Hm,k(q) is the sum of the weights of k-nonintersecting lattice paths L from
u to v, with the weight of L being∑

I⊆{0,1,...,k−1}
w̄I (L),

where w̄I is the same as wI —replacing q with q2—with the exception of vertical steps
starting from one of the points ui , which have an additional weight q . More precisely, if the
weight of such a step would be 1, it has weight 1 + q , if its weight would be q2, it has weight
q2 + q .

Proof. (i) We apply Lemma 3.5 to det0�i,j�k−1(gm−k+i+1,m−k+j (q)), where

gm−k+i+1,m−k+j (q) = hm−k−i+2j−1
({1}i−j+2, {q}i−j+1)

+ hm−k−i+2j−1
({1}i−j+1, {q}i−j+2).

Suppose that j ∈ I and 0 � i � k − 1. Then we have to show that hm−k−i+2j−1({1}i−j+2,

{q}i−j+1) is the sum of the weights of lattice paths from uj to vi , where the vertical steps have
the weight given in the claim. To this end, note that hm−k−i+2j−1({1}i−j+2, {q}i−j+1) counts
lattice paths from uj to vi , when steps on i − j + 1 given vertical lines have weight q , those
steps on the remaining i − j + 2 vertical lines have weight 1.

By the construction in the claim, steps on exactly one of the vertical lines with x-coordinates
2r − 1 and 2r have weight q . Since j ∈ I , steps on the vertical line with x-coordinate 2j , i.e.,
with the x-coordinate of uj , have weight 1.

Similarly, if j /∈ I we can verify that there are exactly i − j + 2 vertical lines between uj and
vi with steps thereon having weight q .

(ii) In the same way, we can show that for j ∈ I and 0 � i � k − 1,

hm−k−i+2j−1
({1}i−j+2,

{
q2}i−j+1) + qhm−k−i+2j−2

({1}i−j+2,
{
q2}i−j+1)

is the sum of weights of lattice paths from uj to vi , where the vertical steps have the weight given
in the claim. Meanwhile, for j /∈ I and 0 � i � k − 1,

hm−k−i+2j−1
({1}i−j+1,

{
q2}i−j+2) + qhm−k−i+2j−2

({1}i−j+1,
{
q2}i−j+2)

is the sum of weights of lattice paths from uj to vi . �
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Fig. 1. An example for Theorem 3.6, where I = {1,2}, wI (L) = q8 and w̄I (L) = q14(q + q2)(q + 1)2.

As an illustration of the underlying configurations in Theorem 3.6, we give an example in
Fig. 1 for m = 7 and k = 4.

Corollary 3.7. The polynomials Gm,k(q) and Hm,k(q) have symmetric coefficients.

Proof. A combinatorial way to see the symmetry of the coefficients of Gm,k(q) is as follows:
Modifying wI such that for each i ∈ I , vertical steps with x-coordinate 2i have weight q , and
for any integer i /∈ I , vertical steps with x-coordinate 2i − 1 have weight 1 does not change the
entries of the determinant in (30).

Now consider any given family of paths with weight qw provided by Theorem 3.6(i). After
the modification of the weights it will have weight qmax−w , where max is the total number of
vertical steps in such a family of paths, which implies the claim.

We omit the proof of the symmetry of the coefficients of Hm,k(q). �
Corollary 3.8. Let u = (u0, . . . , uk−1) and v = (v0, . . . , vk−1), where ui = (2i,−2i) and vi =
(2i + 2,m − k − i − 1) for 0 � i � k − 1.

(i) The polynomial Gm,k(q) is the sum of the weights of k-nonintersecting lattice paths L from
u to v with the weight of L being

qσ2k(L)

k−1∏
i=0

(
qσ2i−1(L) + qσ2i (L)

)
,

where σj denotes the number of vertical steps with x-coordinate j .
(ii) The polynomial Hm,k(q) is the sum of the weights of k-nonintersecting lattice paths L from

u to v with the weight of L being

(1 + q)f (L)q2σ2k(L)
k−1∏(

q2σ2i−1(L) + q2σ2i (L)−fi(L)
)
,

i=0
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where σj is as in (i) and f (respectively fi ) denotes the number of vertical steps starting
from u (respectively ui ).

Proof. (i) By the definition of wI , for 0 � i � k − 1, if i ∈ I , then vertical steps on the line
with x-coordinates 2i − 1 have weight q and vertical steps on the line with x-coordinates 2i

have weight 1; and if i /∈ I , the case is just contrary. Note that steps on the vertical line with
x-coordinates 2k always have weight q and steps on the vertical line with x-coordinates 2k − 1
always have weight 1. This implies that

∑
I⊆{0,1,...,k−1}

wI (L) = qσ2k(L)
k−1∏
i=0

(
qσ2i−1(L) + qσ2i (L)

)
.

(ii) Notice that for 0 � i � k − 1, we have fi(L) = 1 if L contains a vertical step starting from
the point ui , and fi(L) = 0 otherwise. Similarly to (i), we have

∑
I⊆{0,1,...,k−1}

w̄I (L) = q2σ2k(L)

k−1∏
i=0

(
q2σ2i−1(L)(1 + q)fi(L) + q2σ2i (L)−2fi (L)

(
q2 + q

)fi(L))

= (1 + q)f (L)q2σ2k(L)
k−1∏
i=0

(
q2σ2i−1(L) + q2σ2i (L)−fi(L)

)
.

This completes the proof. �
The computation of G4,2(q) is illustrated in Fig. 2, while the value of H4,2(q) as given in

Table 4 is the sum of values in Table 5.

Remark. Since

det
1�i,j�n

(Ai,j + Bi,j ) =
∑

I⊆{1,...,n}
det

1�i,j�n

(
C

(I)
ij

)
,

where

C
(I)
ij =

{
Ai,j , if i ∈ I ,

Bi,j , otherwise,

we may also define wI in Theorem 3.6(i) as follows: for each i ∈ I , vertical steps with x-
coordinate 2i +3 have weight q , and for any integer i /∈ I , vertical steps with x-coordinate 2i +2
have weight q . All other steps have weight 1. In this case, for each i ∈ I and 0 � j � k−1, we can
show that hm−k−i+2j−1({1}i−j+2, {q}i−j+1) is the sum of the weights of lattice paths from uj

to vi . Moreover, there holds

∑
I⊆{0,1,...,k−1}

wI (L) = qσ0(L)
k∏

i=1

(
qσ2i (L) + qσ2i+1(L)

)
.

Similarly, we may define w̄I in Theorem 3.6(ii) as follows: for each i ∈ I , a vertical step
toward the point vi has weight q + 1, vertical steps with x-coordinate 2i + 3 have weight q2. For
any integer i /∈ I , a vertical step toward the point vi has weight q2 + q , and vertical steps with
x-coordinate 2i + 2 not toward vi have weight q2. All other steps have weight 1. In this case, we
have
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Fig. 2. An illustration for G4,2(q) = 10q3 + 24q2 + 24q + 10.

Table 5
Values of

∑
I⊆{0,1} w̄I (L) corresponding to Fig. 2

(1 + q)3(1 + q3) 2q2(1 + q)2 (1 + q)4 2q(1 + q)2

2(1 + q)(1 + q3) q2(1 + q)4 2q3(1 + q)2 2q2(1 + q)(1 + q3)

2(1 + q)2 2(1 + q2) 2(1 + q2) 2q2(1 + q)2

2q2(1 + q2) 2q2(1 + q2) 2q4(1 + q)2 2q4(1 + q2)

2q4(1 + q2)
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∑
I⊆{0,1,...,k−1}

w̄I (L) = (1 + q)f̄ (L)q2σ0(L)
k∏

i=1

(
q2σ2i (L)−f̄i−1(L) + q2σ2i+1(L)

)
,

where f̄ (respectively f̄i ) denotes the number of vertical steps ending in v (respectively vi ).

When k = m − 1, there is only one lattice path from u0 = (0,0) to v0 = (2,0), which has
weight 1. This establishes the following result.

Corollary 3.9. For m � 2, we have Gm,m−1(q) = 2Gm,m−2(q) and Hm,m−1(q) = 2Hm,m−2(q).

4. Open problems

We would like to point out three directions of possible further research: It appears that the
polynomials Pm,k and Gm,k are log-concave. However, we have not pursued this question further.
Note that the polynomials Qm,k and Hm,k are not even unimodal.

Guo and Zeng gave in [5] even finer q-analogues of the polynomials considered here, replac-
ing (3) and (4) by

Sm,n,r (q) =
n∑

k=1

[2rk]
[2r] [k]m−1q

m+2r−1
2 (n−k),

Tm,n,r (q) =
n∑

k=1

(−1)n−k [(2r − 1)k]
[2r − 1] [k]m−1q

m
2 (n−k),

where r � 1. Although the coefficients of the corresponding polynomials Pm,k,r ,Qm,k,r ,Gm,k,r

and Hm,k,r are not positive anymore, one might hope for a refinement of Theorem 2.3.
Finally, we should point out that Gessel and Viennot [4] also presented nice generating func-

tions for the coefficients fm,k and sm,k , namely

∑
m,k

sm,kt
k x2n

(2n)! = cosh
√

1 + 4t x
2

cosh x
2

,

∑
m,k

fm,kt
k x2n+1

(2n + 1)! = cosh
√

1 + 4t x
2 − cosh x

2

t sinh x
2

.

It would be interesting to find the corresponding refinements of the above formulae.

5. Epilogue

One may wonder how these results were discovered. The truth is, that at first “only” for-
mula (5) was known. Using this formula, Table 1 was computed. Then, in analogy to [4], the
matrix(

(−1)k−m [m]!
[k + 1]!Pk,k−m(q)

)
0�k,m�n

was inverted and, since we were looking for a lattice path interpretation, the entry in row i and
column j of the inverse matrix had to be the weighted number of lattice paths from uj to vi . This
given, it was easy to find the correct weights. Finally, we read the proof given in [4] backwards,
its first line corresponding to our Lemma 2.2.
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