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1 Introduction

A theory T is said to be inconsistent (contradictory) if it has as theorems a
formula and its negation; otherwise, T is consistent (non-contradictory). A
theory T is said to be trivial if every formula of its language is a theorem;
otherwise, T is non-trivial.

A logic is paraconsistent if it can be used as the underlying logic to incon-
sistent but non-trivial theories, which we call paraconsistent theories.

D’Ottaviano [15] discusses that in paraconsistent logic the role of the Prin-
ciple of Non-Contradiction is, in a certain sense, restricted. Although in those
logics the Principle of Non-Contradiction is not necessarily invalid, from a
formula and its negation it is not possible, in general, to deduce any formula.

In 1963, da Costa (see [9,10,11,12]) introduces his hierarchies of logical
calculi for the study of inconsistent but non-trivial theories: the hierarchy
of propositional calculi Cn, 1 ≤ n ≤ ω, the hierarchy of predicate calculi
C∗

n, 1 ≤ n ≤ ω, the hierarchy of predicate calculi with equality C=
n , 1 ≤ n ≤ ω,

and the hierarchy of calculi of descriptions Dn, 1 ≤ n ≤ ω.

In 1976, da Costa and Alves (see [1,13]) introduce a semantics of valua-
tions for the calculi Cn, 1 ≤ n ≤ ω, which generalizes the classical valuation
semantics. By defining the quasi-matrices, they prove the completeness and
the decidability of da Costa’s propositional system C1, and indicate how to
obtain these results for the calculi Cn, 2 ≤ n < ω. [19], based on da Costa and
Alves’ work, proves the completeness and the decidability of the system Cω.
Loparic and Alves [20], solves a problem concerning Alves’ quasi-matrices by
modifying the conditions of Alves’ definition of valuation, what allows them
to prove the completeness and the decidability of the systems Cn, 1 ≤ n < ω.

Marconi [21] introduces a variant of semantical tableaux systems, à la
Beth [4], in order to prove the completeness and decidability of da Costa’s
propositional system C1. He also claims that his method can be expanded for
the systems Cn, 2 ≤ n < ω. The system introduced by Marconi is based on the
same intuitions underlying the definition of quasi-matrices introduced by da
Costa and Alves. In Marconi’s tableaux system the rules for the connectives
&,∨ and ⊃ are the standard ones, and two special rules are added to operate
with the paraconsistent negation.

Alves [1] also introduced the propositional paraconsistent system C1
1, by

replacing the schema of axioms ¬¬A ⊃ A of C1 by the schema ¬¬A ≡ A, in
order to obtain a system stronger than da Costa’s C1. Carnielli and Lima-
Marques [6] introduce a semantical tableaux type approach, à la Smullyan [23],
for Alves’s paraconsistent propositional logic C1

1 and for the paraconsistent
quantificational logic with equality C1=

1 , namely the systems TC1 and TC=
1
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respectively, and show that these systems are complete and decidable.

Buchsbaum and Pequeno [5] introduce a syntactical tableaux type ap-
proach, also à la Smullyan, for da Costa’s C∗

1, the system SC1∗, showing that
SC1∗ is complete.

In a recent work [7,8] we introduce, through Fitch’s [16] method of subor-
dinate proofs, the hierarchy of natural deduction systems NDCn, 1 ≤ n ≤ ω,
and show that it is logically equivalent to da Costa’s corresponding hierar-
chy Cn, 1 ≤ n ≤ ω. We prove a Normalization Theorem and a Subformula
Property for these systems.

In this paper, based on the systems NDCn, 1 ≤ n < ω, and by using
the method of analytical tableaux (see [23,17]), we introduce a hierarchy of
syntactical tableaux systems TNDCn, 1 ≤ n < ω, in which every system
TNDCn is equivalent to da Costa’s corresponding system Cn, 1 ≤ n < ω.
In particular, our TNDC1 is distinct of Marconi’s formulation, of Carnielli
and Lima-Marques’s tableaux system TC1 and of Buchsbaum and Pequeno’s
tableaux formulation SC1.

In the systems TNDCn, 1 ≤ n < ω, we introduce da Costa’s defined “ball”
operator “◦”, the generalized operators “k” and “(k)”, and the negations
“∼k”, for k ≥ 1, as primitive operators, differently to what has been done
in the literature, where these operators are usually defined operators. We
prove a Cut Rule for the systems TNDCn, 1 ≤ n < ω. Then, we prove
that each system of this hierarchy is logically equivalent to the corresponding
paraconsistent system Cn, 1 ≤ n < ω.

Our systems TNDCn, as the other mentioned tableaux systems for da
Costa’s calculi, constitute automated theorem proving systems.

In the system SC1∗ of Buchsbaum and Pequeno we do not have an explicit
rule that determines a priori when the definition of the operator “◦” must be
used or must not be used during the derivations; on account of this it is pos-
sible to occur open branches which must be rebuilt, in a distinct way, from
the mentioned occurrence of the operator “◦”. Also in Carnielli and Lima-
Marques’s systems TC1 and TC=

1 there are not specific rules that determine
a priori when to use the definition of the operator “◦”, what can make nec-
essary to rebuild branches; particularly, in these systems infinite loops may
occur, ’postponing indefinitely’, according to the own authors, the analysis
of formulae that involve the operator of primitive negation and, as a nat-
ural consequence, the operator “◦”. Carnielli and Lima-Marques prove the
decidability of TC1 and TC=

1 , showing how to deal with the! infinite loops.

In our system TNDC1, as well as in every TNDCn, 1 ≤ n < ω, the
branches of the tableaux are univocally and automatically generated and in-
finite loops do not occur. In fact, in the systems TNDCn, 1 ≤ n < ω, we
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do not apply definitions in generating the branches of the tableaux, for we
have specific rules to directly deal with all the operators: the primitive classi-
cal connectives for conjunction, disjunction, implication and strong negations,
the primitive non-classical connectives “ball” and paraconsistent negation; and
the generalized paraconsistent operators “k” and “(k)”, of all degree k, k ≥ 1.

Another peculiarity of our tableaux systems is that, differently to what is
in the literature, we define two conditions for the closure of the branches of
the tableaux of TNDCn, for every n, 1 ≤ n < ω: either they are closed by
the strong negation “∼n”, as usual, or they are closed by the paraconsistent
negation “¬” and some additional conditions.

In the systems TNDCn it was also necessary to deal with specific prob-
lems, concerning relationships between the generalized distinct operators for
negation “∼k” and for the connectives “k” and “(k)”, for any k ≥ 1; and
relationships between different systems of the hierarchy TNDCn, 1 ≤ n < ω.

Finally, we observe that every one of our systems TNDCn, 1 ≤ n < ω, is
introduced from a denumerable (infinite) set of primitive operators, what fi-
nally allows us to capture da Costa’s systems Cn, 1 ≤ n < ω, as paraconsistent
extensions of classical logic.

2 Da Costa’s propositional paraconsistent logics Cn

The language L of da Costa’s [9,12] paraconsistent systems Cn, 1 ≤ n ≤ ω,
has as primitive symbols propositional variables, the connectives ¬,∨, & and
⊃, and the parentheses.

The notions of formula and theorem, as well as the general conventions
and notations, are the standard ones, as in [18].

Let A and B be formulae. The following operators are added, by definition,
to the language L.

Definition 2.1 A◦ =df ¬(A&¬A).

Definition 2.2 Ak =df A◦◦...◦ (“◦” k times, for k ≥ 1).

Definition 2.3 A(k) =df A1&A2& . . .&Ak, for k ≥ 1.

Definition 2.4 ∼k A =df ¬A&A(k), for k ≥ 1.

Definition 2.5 (A ≡ B) =df (A ⊃ B)&(B ⊃ A).

For each Cn, 1 ≤ n < ω, the schemata of axioms and the deduction rule
are the following.

AXIOM 1: A ⊃ (B ⊃ A)

AXIOM 2: (A ⊃ B) ⊃ ((A ⊃ (B ⊃ C)) ⊃ (A ⊃ C)
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AXIOM 3: A&B ⊃ A

AXIOM 4: A&B ⊃ B

AXIOM 5: A ⊃ (B ⊃ A&B)

AXIOM 6: A ⊃ A ∨ B

AXIOM 7: A ⊃ B ∨ A

AXIOM 8: (A ⊃ C) ⊃ ((B ⊃ C) ⊃ (A ∨ B ⊃ C))

AXIOM 9: ¬¬A ⊃ A

AXIOM 10: A ∨ ¬A

AXIOM 11n : B(n) ⊃ ((A ⊃ B) ⊃ ((A ⊃ ¬B) ⊃ ¬A))

AXIOM 12n : A(n)&B(n) ⊃ (A&B)(n)

AXIOM 13n : A(n)&B(n) ⊃ (A ∨ B)(n)

AXIOM 14n : A(n)&B(n) ⊃ (A ⊃ B)(n)

RULE OF MODUS PONENS (MP)

A, A ⊃ B

B

As in every system Cn, 1 ≤ n < ω, the formulae A ⊃ (¬A ⊃ B) and
¬A ⊃ (A ⊃ B) are not valid, da Costa’s systems are paraconsistent systems
latu sensu, that is, from a contradiction it is not possible in general to deduce
any formula.

The following result was proved by Arruda (see [ALV 76]).

Theorem 2.6 (Arruda) The systems Cn, 1 ≤ n < ω are not decidable by
finite matrices.

We indicate [2,3,14,22,15,8] for surveys on da Costa’s paraconsistent sys-
tems and related results and topics.

3 Tableaux systems for Cn, 1 ≤ n < ω

In this section, we introduce analytical tableaux versions, à la Smullyan [23],
for the systems Cn, 1 ≤ n < ω, named TNDCn. We adapt the notion of
tableau sequence presented by van Fraassen [17].

The language L of the systems TNDCn is the language of the logics
Cn, 1 ≤ n < ω, excepting that we consider the symbol “◦” (the ball oper-
ator), the symbols “k” and “(k)” for k ≥ 1, and the negations “∼k” for k ≥ 1,
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as primitive symbols. So, L contains a (infinite) denumerable set of primitive
connectives.

The tableaux method is based on expansion rules, which allow us to analyze
the formulae of L. Essentially, the expansion rules allow us to expand a
sequence of formulae into another sequence of formulae.

Definition 3.1 For every tableaux system TNDCn, 1 ≤ n < ω, a tableau
sequence for a given formula S, or simply a tableau, is a sequence of expressions
A1, A2, . . . , Ak, such that the formula S is put at the origin of the tableau, as
the initial expression A1; and every expression Ai, 1 < i ≤ k, corresponds
to a finite disjunction A1

i or . . . or Am
i , m ≥ 1, where every A

j
i , 1 ≤ j ≤

m, is generated from the preceding expression(s) Aj
p, by applying one of the

expansion rules of the system. We call each A
j
i a disjunct of the expression

Ai.

Definition 3.2 For every system TNDCn, 1 ≤ n < ω, a branch j of a tableau
sequence, 1 ≤ j ≤ m, corresponds to a sequence of expressions As

i , 1 ≤ i ≤ k,
with A1

1 the first expression and A
j
k the last one. The superior index s is equal

to 1(s = 1), for 1 ≤ i ≤ i′, for some i′ ≤ k; s = j, for i′′ ≤ i ≤ k, for some
i′′ > i′; and for i′ < i < i′′, s assumes values between 1 and j.

NOTE. - We observe that the tableau sequence has the structure of a tree,
if we leave out the disjunction, and write the results of applying any rule under
the disjunct to which the rule was applied. Thus, by thinking the disjunction
as indicating a branching, the tableau sequence has the structure of an ordered
dyadic tree à la Smullyan [23].

For simplicity, the expressions of a given tableau branch j will be identified
as of type A

j
i , with 1 ≤ i ≤ k and fixed j, 1 ≤ j ≤ m.

Definition 3.3 A node corresponds to every expression A
j
i of every branch

of a tableau, with 1 ≤ i ≤ k and 1 ≤ j ≤ m.

Let the letters α, β, γ, . . . , ψ, if necessary also with indexes, stand for for-
mulae of L.

EXPANSION RULES 10. - The expansion rules of the tableaux systems
TNDCn, 1 ≤ n < ω, are the following.

a) Rules of Conjunctive Type C:
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α

δ
j
i

δ
j
i+1

α δ
j
i δ

j
i+1 Name of the Rule

A&B A B E&

A(k) Ak A(k−1) E(k), k > 1

¬(Ak) Ak−1 ¬(Ak−1) Ek¬, k ≥ 1, where A◦ is A

¬(A(k)) A ¬A E(k)¬, k ≥ 1

∼n ¬A ¬¬A A(n) E ∼n ¬

∼n (Ak) ¬(Ak) (Ak)(n) Ek ∼n, k ≥ 1

∼n (A ∨ B) ∼n A ∼n B DND ∼n

∼n (A ⊃ B) A ∼n B DNI ∼n

∼n (A(k)) A ¬A E(k) ∼n, k ≥ 1

∼k A ¬A A(k) E ∼k, k < n (i)

b) Rules of Disjunctive Type D:

β

δ
j
i | δ

j+1
i

β δ
j
i δ

j+1
i Name of the rule

A ∨ B A B E∨

A ⊃ B ∼n A B E ⊃

¬(A&B) ¬A ¬B DNC¬, where B is distinct of ¬A (ii)

¬(A ∨ B) ¬(A(n)&B(n)) ¬A&¬B DND¬

¬(A ⊃ B) ¬(A(n)&B(n)) A&¬B DNI¬

∼n (A&B) ∼n A ∼n B DNC ∼n

c) Rules of Special Type S1:
γ

δ
j
i
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γ δ
j
i Name of the rule

¬¬A A E¬¬

¬ ∼k A A E¬ ∼k, k ≥ 1

∼n∼k A A E ∼n∼k, k ≥ 1

∼k A ∼k−1 A R ∼k, k > n

Ak ¬(Ak−1&¬Ak−1) Rk, k ≥ 1, where A◦ is A (iii)

A(1) A1 E(1)

d) Rules of Special Type S2:

ϕ1

...

ϕm

δ
j
i

ϕ1, . . . , ϕm δ
j
i Name of the Rule

{¬A, A1, . . . , Ak} ∼k A I ∼k, k < n

{A1, A2, . . . , Ak} A(k) I(k), k < n (i)

e) Rules of Special Type S3 (iv):
ε

ς
j
i

ε ς
j
i Name of the Rule

A◦◦...◦ Ak E◦ (with “◦” k-times)

¬(Ak−1&¬Ak−1) Ak Ik, k ≥ 1, where A◦ is A

(As)k As+k Is + k, for s, k ≥ 1

A1&A2& . . .&Ak A(k) I ′(k), k ≥ 1 (v)

¬A&A(k) ∼k A I ′ ∼k, k ≥ 1 (v)

(i) This rule must be applied only once, on every branch and for every formula.

(ii) If A is of type (Ck−1&¬(Ck−1)), then B must be distinct of Ck.

(iii) This rule must be applied only when there is no possibility of applying any

I.M.L. D’Ottaviano, M.A. de Castro / Electronic Notes in Theoretical Computer Science 143 (2006) 27–4434



other Rule; it can be applied in subformulas of formulas that occur in the
nodes and, in these cases, it must be applied “from outside to inside”, that
is, from the connective of largest scope to the connective of smallest scope.

(iv) The Rules of Special Type S3 must be immediately applied, in every case,
after applying the first Rule in the initial node of the tableau; they can be
applied to subformulas of formulas that occur in the nodes and, in these
cases, they must be applied “from outside to inside”.

(v) These rules, under conditions (iv), can only be applied to proper subformulas
of formulas that occur in the nodes and, in these cases, they must be applied
“from outside to inside”.

Note 1

• In the application of the Expansion Rules, it is more efficient to give priority
to the Rules of Type C and to the Rules of Special Type.

• We observe that A◦, which corresponds to the formula A with superior index
“0” (numeral 0), coincides with the formula A. This formula is distinct of
the formula A◦ (“A-ball”).

In the Rules of Special Type S2 we use the notation of set in order to
indicate that it is not important the order in which the formulas occur in the
nodes of a branch.

Also, the only rules that can be applied to subformulas, are the Rules of
Special Type S3 and the Rule Rk.

Definition 3.4 For every system TNDCn, 1 ≤ n < ω, a branch A
j
1, . . . , A

j
s

of a tableau is called a closed branch if there exist nodes Aj
r, 1 ≤ r ≤ s,

that correspond either to formulae B and ∼n B, or to formulae B,¬B and
B1, B2, . . . , Bn.

Definition 3.5 Given a formula S, a tableau for S is closed if all its branches
are closed; otherwise, it is said to be open.

Definition 3.6 A set of formulae Γ is said to be closed if, and only if, there
exists a finite subset Γ0 of Γ, such that there exists a closed tableau for the
conjunction of the formulae of Γ0; otherwise, it is said to be open.

In what follows, we use Γ, A as an abbreviation for Γ ∪ {A}.

Definition 3.7 For every tableaux system TNDCn, 1 ≤ n < ω, a formula S

is said to be an analytical consequence of a set Γ of formulae if, and only if,
Γ,∼n S is closed. We also say that Γ, by the Expansion Rules, generates S.

This is denoted by: Γ 	TNDCn
S.
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Definition 3.8 For every tableaux system TNDCn, 1 ≤ n < ω, a formula S

is said to be provable if, and only if, there is a closed tableau for ∼n S, that
is, if {∼n S} is closed.

This is denoted by: 	TNDCn
S.

Example 3.9 Next, we present some examples of proofs in the systems
TNDCn, 1 ≤ n < ω. The rules used are indicated to the right of each step of
the proof; the numbers on the left side are added only to facilitate mentioning
the tableau.

a) 	TNDC1 ((A(2))◦)

1 ∼1 ((A(2))◦)

↓

2 ∼1 ((A(2))1) 1, E◦

↓

3 ¬((A(2))1) 2, E1∼1

↓

4 (((A(2))1))(1) 2, E1∼1

↓

5 A(2) 3, E1¬

↓

6 ¬(A(2)) 3, E1¬

↓

7 A2 5, E(2)

↓

8 A(1) 5, E(2)

↓

9 A1 8, E(1)

↓

10 A 6, E(2)¬

↓

11 ¬A 6, E(2)¬

The tableau is closed by the formulas that occur in the nodes 9, 10 and
11.

b) 	TNDC15 ((A ⊃ B) ⊃ A) ⊃ A
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1 ∼15 (((A ⊃ B) ⊃ A) ⊃ A)

↓

2 ((A ⊃ B) ⊃ A) 1, DNI∼15

↓

3 ∼15 A 1, DNI∼15

↙ ↘

4 ∼15 (A ⊃ B) 2, DNI∼15 5 A 2, DNI∼15

↓

6 A 4, DNI∼15

↓

7 ∼15 B 4, DNI∼15

The tableau is closed by the formulas ∼15 A and A, that occur in the
nodes 3 and 6 of the first branch, and in the nodes 3 and 5 of the second
branch.

c) 	TNDCn
(¬(¬(¬(A&¬A)&¬¬(A&¬A))&¬¬(¬(A&¬A)&¬¬(A&¬A))))s ⊃

(A◦◦◦)s

1 ∼n ((¬(¬(¬(A&¬A)&¬¬(A&¬A))&¬¬(¬(A&¬A)&¬¬(A&¬A))))s ⊃ (A◦◦◦)s)

↓

2 (¬(¬(¬(A&¬A)&¬¬(A&¬A))&¬¬(¬(A&¬A)&¬¬(A&¬A))))s 1, DNI∼n

↓

3 ∼n ((A◦◦◦)s) 1, DNI∼n

↓

4 ((¬(¬(A&¬A)&¬¬(A&¬A))1)s 2, I1

↓

5 (((¬(A&¬A))1)1)s 4, I1

↓

6 (((A1)1)1)s 5, I1

↓

7 ((A1)1)1+s 6, I1+s

↓

8 (A1)2+s 7, I1+(1 + s)

↓

9 A3+s 8, I1+(2 + s)

↓

10 ∼n ((A3)s) 3, E◦

↓

11 ∼n (A3+s) 10, I3+s

The tableau is closed by the formulas that occur in the nodes 9 and 11,
that is, A3+s and ∼n (A3+s).
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4 The Cut Rule for the systems TNDCn

Next, we present a special version of the Cut Rule for the systems
TNDCn, 1 ≤ n < ω.

Theorem 4.1 (CUT RULE [8]) For every system TNDCn, 1 ≤ n < ω,
there exists a closed tableau for a set Γ of formulae if, and only if, for a given
formula S there exist closed tableaux either for Γ ∪ {S} and Γ ∪ {∼n S}, or
for Γ ∪ {S} and Γ ∪ {¬S, S1, S2, . . . , Sn}.

Proof. If there exists a closed tableau for Γ, it is immediate that
there are closed tableaux either for Γ, S and Γ,∼n S, or for Γ, S and
Γ,¬S, S1, S2, . . . , Sn.

Now, suppose that either there exist closed tableaux for Γ, S and Γ,∼n S,
or there exist closed tableaux for Γ, S and Γ,¬S, S1, S2, . . . , Sn. The proof
that there exists a closed tableau for Γ is done by induction on the complexity
of the formula S.

1) Let S be an atomic formula A.

Suppose that there are closed tableaux for Γ, A and Γ,∼n A. In the cases
when either A ∈ Γ or ∼n A ∈ Γ, it is immediate that Γ is closed. Hence, we
have only to analyze the case when A �∈ Γ and ∼n A �∈ Γ. If either Γ, A or
Γ,∼n A is closed only on account of formulae of Γ, then Γ is closed and we
have nothing to prove; the same reasoning is applicable to the case when we
have that Γ, A and Γ,¬A, A1, A2, . . . , An are closed.

1.1) Suppose that there are closed tableaux for Γ, A and for Γ,∼n A. Observe
that from A atomic we can not generate any formula, and from ∼n A we
also can not generate any formula.

If Γ, A is closed then there is a tableau T such that its branches are
closed either by ∼n A, or by ¬A, A1, A2, . . . , An. As Γ,∼n A is also
closed, then there is a closed tableau T’ such that its branches are closed
by A, or by ∼n∼n A, or by ¬ ∼n A and (∼n A)1, (∼n A)2, . . . , (∼n A)n;
that is, by Rules E∼n∼k and E¬ ∼k, the formula A appears in all the
branches of T’.

Therefore, in the tableaux T and T’ the formulae ∼n A,¬A, A1, A2, An

(in T), and A (in T’), respectively, are directly generated, by the Ex-
pansion Rules from Γ, because, neither ∼n A,¬A, A1, A2, An could be
generated from A, nor A could be generated from ∼n A.

Hence, there is a closed tableau for Γ and Γ is closed.

1.2) Suppose that there are closed tableaux for Γ, A and for
Γ,¬A, A1, A2, . . . , An. Observe that it is not possible to generate
any formula from A and from ¬A, A1, A2, . . . , An it is only possible to
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generate ∼k A and A(k), k < n (by Rules I∼k and I(k)).
If Γ, A is closed, then there is a tableau T such that its branches

are closed either by ∼n A, or by ¬A and A1, A2, . . . , An. As
Γ,¬A, A1, A2, . . . , An is also closed, then there is a closed tableau
T’ such that its branches are closed by A; or by ∼n ¬A; or by
¬¬A, (¬A)1, (¬A)2, . . . , (¬A)n; or by ∼n (Ai), for every i, 1 ≤ i ≤ n;
or by ¬(Ai), (Ai)1, (Ai)2, . . . , (Ai)n, for every i, 1 ≤ i ≤ n. So, by Rules
E ∼n ¬, E¬¬, Ek ∼n, E& and Ek¬, the formula A appears in all the
branches of T’.

Therefore, in the tableaux T and T’ the formulae ∼n A or
¬A, A1, A2, . . . , An (in T) and A (in T’), respectively, are directly gener-
ated, by the Expansion Rules, from Γ.

Hence, there exists a closed tableau for Γ and so, Γ is closed.

2) Suppose that the result holds for formulae S of complexity p, p > 0.

3) Let S be a formula of complexity p + 1.

3.1) Let S be of type ¬B, with B of complexity p.
3.1.1) Suppose that Γ, ¬B and Γ,∼n ¬B are closed, considering that ¬B

and ∼n ¬B are not formulae of Γ.
3.1.2) Suppose that Γ,¬B and Γ,¬¬B, (¬B)1, (¬B)2, . . . , (¬B)n are closed,

also considering that ¬B,¬¬B and (¬B)i, for every i, 1 ≤ i ≤ n, are
not formulae of Γ.

3.2) Let S be of type Bk, k ≥ 1.
3.2.1) Suppose that Γ, Bk and Γ,∼n (Bk) are closed.
3.2.2) Suppose that there are closed tableaux

for Γ, Bk and for Γ,¬(Bk), (Bk)1, (Bk)2, . . . ,

(Bk)n, observing that from ¬(Bk), by Rule Ek¬, it is only
possible to generate B and ¬B.

3.3) Let S be of type B(k), with k ≥ 1.
3.3.1) Suppose that Γ, B(k) and Γ,∼n (B(k)) are closed. Observe

that, by Rule E(k), from B(k) it is only possible to generate
B(k−1), B(k−2), . . . , B(1), Bk, Bk−1, . . . , B1; and by Rule E(k) ∼n, from
∼n (B(k)) it is only possible to generate ¬(B(k)), B and ¬B, for every
k.

3.3.2) Suppose that Γ, B(k) and Γ,¬(B(k)), (B(k))1, (B(k))2, . . . , (B(k))n are
closed. Observe that, from ¬(B(k)) by Rule E(k)¬, it is only possible
to generate B and ¬B; and that, from (B(k))i, for 1 ≤ i ≤ k, in fact
it is only possible to generate the formula ¬((B(k))i−1&¬((B(k))i)).

3.4) Let S be of type ∼k B, with k ≥ 1.

3.5) Let S be of type (B&C).
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3.6) Let S be of type (B ∨ C).

3.7) Let S be of type (B ⊃ C).

Hence, by Cases 1-3, we have proved the theorem. �

5 The logical equivalence between the systems of the
hierarchy TNDCn and the corresponding da Costa’s

systems Cn, 1 ≤ n < ω

Now, based on the Cut Rule for TNDCn, 1 ≤ n < ω, we can prove the
equivalence between the systems TNDCn and the corresponding da Costa’s
paraconsistent systems Cn, 1 ≤ n < ω.

Theorem 5.1 ([8]) The systems TNDCn, 1 ≤ n < ω, constitute a hierar-
chy of tableaux systems, such that every system TNDCn is equivalent to da
Costa’s corresponding paraconsistent system Cn, 1 ≤ n < ω.

Proof.

1) If Γ 	Cn
S, then Γ 	TNDCn

S, for every n, 1 ≤ n < ω.

Suppose that Γ 	Cn
S. If S ∈ Γ then, for every n, 1 ≤ n < ω, it is

immediate that Γ 	TNDCn
S. So, let us suppose that S is not in Γ.

1.1) Let S be an axiom schema of Cn, 1 ≤ n < ω.
Let us prove that Γ 	TNDCn

S, that is, we have to prove that Γ,∼n S

is closed in TNDCn, 1 ≤ n < ω.
Here, we only present the proof for Axiom schemata 11n.
Let S be Axiom 11n, that is, S is A(n) ⊃ ((B ⊃ A) ⊃ ((B ⊃ ¬A) ⊃

¬B)). We shall generate a closed tableau, whose initial node, Γ,∼n S,
constitutes the step 1 below.
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1 Γ,∼n (A(n) ⊃ ((B ⊃ A) ⊃ ((B ⊃ ¬A) ⊃ ¬B))

2 Γ, A(n) 1, DNI∼n

3 Γ,∼n (((B ⊃ A) ⊃ ((B ⊃ ¬A) ⊃ ¬B))) 1, DNI∼n

4 Γ, (B ⊃ A) 3, DNI∼n

5 Γ,∼n ((B ⊃ ¬A) ⊃ ¬B) 3, DNI∼n

6 Γ, (B ⊃ ¬A) 5, DNI∼n

7 Γ,∼n ¬B 5, DNI∼n

8 Γ,¬¬B 7, E∼n ¬

9 Γ, B(n) 7, E∼n ¬

10 Γ, B 8, E¬¬

11 Γ, An 2, E(k)

12 Γ, A(n−1) 2, E(k)

13 Γ, An−1 12, E(k)

14 Γ, A(n−2) 12, E(k)

15 Γ, An−2 14, E(k)
...

...

i − 1 Γ, A(1) i − 3 E(k)

i Γ, A1 i − 1 E(1)

↙↘

i + 1 Γ,∼n B 4, E⊃ i + 2 Γ, A 4, E⊃

↙ ↘

i + 3 Γ,∼n B 6, E⊃ i + 4 Γ,¬A 6, E⊃

In this case, the branches of the tableau close by the two dis-
tinct closure conditions: the tableau closes in the first and the sec-
ond branches by the formulae ∼n B and B, occurring on the nodes
10 e (i + 1), 10 and (i + 3), respectively; in the third branch closes
by the formulae An, An−1, . . . , A1, A and ¬A, that occur on the nodes
11, 13, 15, . . . , i, (i + 2) and (i + 4).

1.2) Now, let us consider that the formula S is a consequence of preceding
formulae in the proof, in Cn, 1 ≤ n < ω, by Modus Ponens; that is,
we have that Γ 	Cn

S is a consequence of Γ 	Cn
A and Γ 	Cn

A ⊃ S.
Then, as we have that Γ 	TNDCn

A and Γ 	TNDCn
A ⊃ S, the sets

Γ ∪ {∼n A} and Γ ∪ {∼n (A ⊃ S)} are closed in TNDCn, and so, by
Rule DNI∼n Γ ∪ {∼n A} and Γ ∪ {A,∼n S} are closed. So, Γ,∼n S, A

and Γ,∼n S,∼n A are closed and, by the Cut Rule, Γ,∼n S is closed.
Therefore, Γ generates S in TNDCn, 1 ≤ n < ω, that is, Γ 	TNDCn

S.

2) If Γ 	TNDCn
S, then Γ 	Cn

S.

Suppose that Γ 	TNDCn
S and S is not in Γ.

In order to prove the theorem, let us consider S as a formula generated
from Γ by the expansion rules of TNDCn, 1 ≤ n < ω.

We shall transform every Expansion Rule of TNDCn, 1 ≤ n < ω, into a
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correspondent valid proof in Cn, 1 ≤ n < ω. That is, the rules of conjunctive,
disjunctive and special types will be transformed into the proofs of α 	Cn

(δj
i )&(δj

i+1); β 	Cn
(δj

i ) ∨ (δj
i+1); γ 	Cn

δ
j
i ; ϕ1, . . . , ϕn 	Cn

δ
j
i and ε 	Cn

δ
j
i ,

respectively.

We shall only present the complete proofs relative to some of the Expansion
Rules involving the strong and weak negations, and the operator “k”.

2.1) Let S be of type ¬¬A&(A)(n), generated, in TNDCn, 1 ≤ n < ω, from
∼n ¬A, by Rule E∼n ¬. We have to prove that ∼n ¬A 	Cn

¬¬A&(A)(n).

1. ∼n ¬A,∼n (¬¬A&(A)(n)) 	Cn
∼n (¬¬A&(A)(n)) property of 	Cn

2. ∼n ¬A,∼n (¬¬A&(A)(n)) 	Cn
∼n ¬¬A∨ ∼n ((A)(n)) 1, property of 	Cn

3. ∼n ¬A,∼n (¬¬A&(A)(n)) 	Cn
∼n ¬A property of 	Cn

4. ∼n ¬A,∼n (¬¬A&(A)(n)) 	Cn
¬¬A&(¬A)(n) 3, Definition 2.4

5. ∼n ¬A,∼n (¬¬A&(A)(n)) 	Cn
¬¬A 4, Axiom 3, MP

6. ∼n ¬A,∼n (¬¬A&(A)(n)) 	Cn
∼n ((A)(n)) 2, 5, property of 	Cn

7. ∼n ¬A,∼n (¬¬A&(A)(n)) 	Cn
¬((A)(n))&(((A)(n))(n)) 6, Definition 2.4

8. ∼n ¬A,∼n (¬¬A&(A)(n)) 	Cn
¬((A)(n))) 7, Axiom 3, MP

9. ∼n ¬A,∼n (¬¬A&(A)(n)) 	Cn
¬A 8, (1), Axiom 4, MP

10. ∼n ¬A,∼n (¬¬A&(A)(n)) 	Cn
¬A& ∼n ¬A 9, 3, Axiom 5, MP

11. ∼n ¬A,∼n (¬¬A&(A)(n)) 	Cn
¬A&(¬¬A&(¬A)(n)) 10, Definition 2.4

12. ∼n ¬A,∼n (¬¬A&(A)(n)) 	Cn
(¬A&(¬¬A&(¬A)(n)))

⊃ (¬¬A&(A)(n)) property of 	Cn

13. ∼n ¬A,∼n (¬¬A&(A)(n)) 	Cn
(¬¬A&(A)(n)) 11, 12, MP

14. ∼n ¬A 	Cn
(∼n (¬¬A&(A)(n))) ⊃ (¬¬A&(A)(n))) 13, Deduction Theorem

15. ∼n ¬A 	Cn
(∼n∼n (¬¬A&(A)(n))) ∨ (¬¬A&(A)(n))) 14, property of 	Cn

16. ∼n ¬A 	Cn
(∼n∼n (¬¬A&(A)(n))) ⊃ (¬¬A&(A)(n))) property of 	Cn

17. ∼n ¬A 	Cn
(¬¬A&(A)(n)) ⊃ (¬¬A&(A)(n))) property of 	Cn

18. ∼n ¬A 	Cn
¬¬A&(A)(n) 16, 17, 15, Axiom 8, MP

2.2) Let S be of type ((Ak−1)&¬(Ak−1)), generated, in TNDCn, 1 ≤ n < ω,
from ¬(Ak), by Rule Ek¬, k > 1. We have to prove that ¬(Ak) 	Cn

(Ak−1)&¬(Ak−1).

1. ¬(Ak) 	Cn
¬(Ak) property of 	Cn

2. ¬(Ak) 	Cn
¬(¬((Ak−1)&¬(Ak−1))) 1, Definition 2.2

3. ¬(Ak) 	Cn
(Ak−1)&¬(Ak−1) 2, Axiom 9, MP

2.3) Let S be of type ¬(Ak), generated, from ∼n (Ak), by Rule Ek ∼n (k ≥ 1).
We have to prove that ∼n (An) 	Cn

¬(Ak).
By Definition 2.4 and Axiom 3, the proof is immediate.

2.4) Let S be of type (Ak&A(k−1)), generated, in TNDCn, 1 ≤ n < ω,
from A(k), by Rule E(k), with k > 1. We have to prove that A(k) 	Cn
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Ak&A(k−1).
The proof is immediate, by Definition 2.3.

2.5) Let S be (Ak), generated, in TNDCn, 1 ≤ n < ω, from ¬(Ak−1&¬Ak−1),
by Rule E¬. We have to prove that ¬(Ak−1&¬Ak−1) 	Cn

Ak.
The result is immediate, by Definition 2.2.

�

As every system TNDCn, 1 ≤ n < ω, is equivalent to the corresponding
Cn, 1 ≤ n < ω, the syntactical and semantical results concerning the TNDCn

are immediate. So, the soundness and completeness of our tableaux systems
are immediate.

Besides, the decidability of the systems TNDCn, 1 ≤ n < ω, can also be
proved, from the characteristics of the Expansion Rules of the systems. For
every formula S we have to check, in a finite number of steps, either if ∼n S

is closed, or if ∼n S is not closed; for every tableau for ∼n S, in the case when
∼n S is not closed, we have to generate at least a finite, open and complete
branch.

We intend to develop this proof in a future paper.
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