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In the first part of this paper we introduce order-convergence in partially 
ordered spaces having lattice properties. Lipschitz assumptions are made for 
an operator equation TX = 0, and additional operators are then derived from 
the Lipschitz operators. We show how to solve the operator equation by means 
of these operators, using iterative methods which produce interval sequences, 
and we state some theorems on the inclusion and the existence of a solution of 
the equation as well as on the convergence of the interval sequences. In the second 
part of the paper we show how these theorems can be used to find the solution 
of a real equation, a nonlinear system of equations in R” and an algebraic 
eigenvalue problem. 

INTRODUCTION 

A number of iterative methods which produce a sequence of intervals, 
interval vectors, interval functions, etc. are already known. These interval quan- 
tities enclose generally a solution of a given equation and contract under certain 
conditions to the solution. Similar methods, which use interval arithmetic, have 
lately been developed (see [16, 17, 22-28, 32, 351). 

The inclusion of a solution of an operator equation x = TX using an interval 
sequence was examined by Collatz and Schrijder (see [12, 13, 411). If, for 
instance, an operator T can be expressed as the sum T+ + T- of an isotone 
(monotone nondecreasing) operator T+ and an antitone (monotone non- 
increasing) operator T-, then the iteration scheme 

- 
x~+~ = T+& + T-xl, , 
x k+l = T+x, + T-x, 

will produce such a sequence. From the assumption x < x < x < ff the -O-.-l.. l--- 0 

inclusion 3, < xk+, < xk+i < Zk for k = 1,2,... follows; i.e., every interval is 
included in its predecessor. Alefeld [2] h as shown that in the case of a linear 
system of equations (TX = Ax + b, with x, b E EP and a real (n x n) matrix A) 
the above-mentioned method is identical to the interval method 

E%+J = -qx?J + 6. 
1 
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([x,J denotes an interval vector, 4 the point matrix corresponding to A, and b 
the point vector corresponding to b, and the arithmetic operations are inter- 
preted as interval operations in the sense of [5, 71.) 

As the method is of the form X~+~ = Txk , the generated sequence converges 
only if T possesses a contracting property. Furthermore, the convergence is in 
general linear. Methods of higher order in metric and pseudometric spaces, as, 
e.g., the Newton method, have been examined by Schrijder [40] and several 
other authors. 

We therefore consider here iterative methods in partially ordered spaces 
which produce interval sequences. As a concept of convergence we introduce 
the order-convergence implied by a partial ordering. Instead of completeness 
a certain lattice property is assumed, namely, that to every upper (lower) 
bounded sequence there exists a supremum (infimum). Lipschitz operators 
replace the Frechet derivatives required for the Newton method. According to 
the choice of these Lipschitz operators and under appropriate, easily verifiable 
assumptions, one obtains linear, superlinear, or quadratic convergence of the 
iterative methods. 

I. ABSTRACT THEOREMS 

Let H = (H, <) be a linear partially ordered set over the field of real num- 
bers R, and let 0 denote the null element of H. H+ denotes the positive cone, 
i.e., H+ = (x E H ( 0 < x). An element x E H+ is called positive. If two elements 
x, ZE H satisfy the relation x < 5, then the subset {x E H 1 g < x < a} is 
called an interwal and is denoted by [g, +VJ or, for simplicity, by [x]. U(H) denotes 
the set of all intervals over H. Furthermore we define the radius 

,o[x] = *(is - x) E H+ U-1) 

and the mean value 

&I = S(p + 3) (1.2) 

of any intervai [x] E U(H).- 
Addition in H implies addition in U(H) by the rule 

[g, z] + [y, A = LT + y, 3 + 91-l (1.3) 

1 This type of addition does not in general correspond to the usual complex addition. 
However, in lattices both additions are identical. 
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Multiplication with a constant c c R follows accordingly: 

C[Z, x] = [ES, cx] if c 3 0, 
(1.4) 

= [cx, cg] if c < 0. 

U(H) is a quasilinear space with respect to the above definitions of addition and 
multiplication (see [30]). 

Furthermore, from (1 .l) and (1.3) follows 

LEMMA 1. 1. [Xl, [Yl E u(H), th db] f [Yll = ,‘+I j- P[Yl. 

An interval [x, ~1, with x = X, is called a point interval, which we also denote 
by x. An interval [x] is called a null intervaE if 0 E [xl. 

Let (x&=~ (hereafter denoted (xk>) be an indefinite sequence with 
xk E H V k E N, ‘where N is the set of natural numbers. The sequence {xk} is 
called upper bounded (lower bounded) if an element y E H exists such that 
xk <y (xk >y) VkEN* 

Furthermore, let H be a conditionally complete u-lattice; i.e., a lattice with 
the following property: To every upper (lower) bounded sequence {x,}, a unique 
element x c H (s E H) exists which satisfies the conditions 

Xk < g (Xk > x) VkEN, (1.5) 

y E H with xk < y (xk 2 y) V k E N implies S < y (x 3 y). (l-6) 

% is called the supremum and x the infimum of the sequence, and we write 
z = sup{xk}, g = inf{x,}. 

For future reference we mention (without proof): 

LEMMA 2. Let [xl, [y] E U(H) with [x] n [y] # % . Then [x] n [ y] is an 
intf~~f~t, {x] n [Y] = [sup(~, y), in%% 31, and f[[xl n i ~11 G PM, PKXI f7 
[Yll G PLYI* 

Moreover every element x E H can be expressed in a unique way as the 
difference of two positive elements; i.e., 

x 1 x+ - x- with x+, x- E H+, (1.7) 

where 

x+ = sup@, @) and x- = sup(-x, 0). (13) 

Furthermore, every x E H can be associated with an absolute element j x 1 E H+ 
defined by 

1 x 1 = x+ + x-. (1.9) 
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1 x / can also be expressed as 

I x I = sup@, -4, (1.10) 

and obviously 

Let 5? be a linear space of linear operators, where every element L E 9 maps 
the space H into itself. We introduce a partial ordering in 9 as follows: If two 
operators L, E E f? satisfy the relation L,x < Lx \J x E Hf, then & < i;.z The 
operator P = z - & is then a positive operator; i.e., we have Px E H+ for 
every x E H+. Corresponding to the definition of an interval, the subset (L E 9 1 

& < L < L} is denoted by [L, E] or [LJ, w ic we also call an ifzteraal operator. h’ h 
The set of all linear interval operators is denoted by O(g). The radius and the 
mean value of an interval in U(Q) are defined analogously to (1.1) and (I .2), 
respectively. 

Furthermore, let L! be a lattice. The supremum and infimum of two operators 
L, , L, E 2 is denoted by sup(L, , L,) and inf(L, , L,), respectively. 

An interval operator [L] is called a null interoal operator if D E [L], where D 
denotes the null operator. 

The use of a null interval operator [L] on a null interval [x] is defined as follows: 

[L][x] = [-sup(-L,L) sup(-g, x), sup(4,L) sup(-&, X)]. (1.12) 

In the case whereL = -L and x = -GX, (1.12) simplifies to 

[L][x] = [-Lx,Lq. (1.13) 

If H = Iw”, then we have for (1.12), [L][x] > [L] x [xl, where [L] x [x] 
denotes the product of an interval matrix and an interval vector. (This is con- 
sistent with [7].) In the case where L = -& we have [L][x] = [L] x [WY]. 

2. Convergence 

We now introduce an order-convergence in the space H. For this purpose 
we need some definitions and basic concepts: 

DEFINITION 1. The sequence {rk} is called isotom (antitone), and denoted by 
-h) f (kk>b ), if rk < TB+~ (rk 2 Tk+J V/Z E IQ. 

DEFINITION 2. The sequence {rk} ,I (or (r,}L) is called isotone convergent 
(antitone convergent) to the limit r̂  E H, and denoted by (rkj ,X i ({rIc} L r^), if 
sup{r,) = r̂  (inf{r,} = f). 

s For convenience we also denote this relation by <. 
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DEFINITION 3. The sequence {rk> is called order-convergent to the limit 
+ E H, and denoted by o-lim,,, {rk} = r̂ , if two sequences {rk} and {fk} exist in H 
such that 

!-k < rk < rk VkEN, (2-l) 

id f f, {ykj I r .̂ (2.2) 

We now state 

LEMMA 3. Let {xk}, {ya} be two order-convergent sequences in H with 
o-lim k+m(xk) = 4, o-limk,&) = 3, and Zet (cL} be a convergent sequence in R 
with lim,,, ck = c^. Then: 

for every indefinite subsequence (xk,}: o,$~{x,~} = A!‘, (2.3) 

oj$$xk + yk) = f + 9, 

oi@{ckxk} = 6, (2.5) 

x,EH+VkEN ~$EH+, P-6) 

(2.7) 

The statements of this lemma follow immediately from (1.3) (1.4) and 
Definition 3. Thus, the requirements on the concept of convergence are satisfied 
(see [13]). 

Let {[xJ} be an interval sequence in O(H). This sequence can be associated 
elementwise with the sequence (pR) = (p[&]j (see (I. 1)) in H+. 

DEFINITION 4. The interval sequence {[xk]} is called order-convergent to 
the interval limit [x] = [x, SF] E O(H), denoted by o-limk+m([Xk]} = [xl, if 
o-lim,,,{x,} = x and o-limk,,{%k} = 5. 

DEFINITION 5. The interval sequence {[xJ} is called monotone if [xk+r] C 
[xg] V k E: N. 

LEMMA 4. If  { [x,J} is a monotone interval sequence, then we have 

([xk]} is order-convergent, 

{Plcb. 

(2.8) 

(2.9) 

The proof of Lemma 4 is left to the reader. 
We will denote a monotone interval sequence by {[x&L . 
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DEFINITION 6. The interval sequence {[xJ}‘q is called point-convergent if 
o-limk,m(pk} = 0. 

DEFINITION 7. The interval sequence {[x,J}L is called linear point-con- 
vergent if there exists a positive operator CE 2, independent of k, with 
o-limk+,{Ckx} = 0 Vx c H+, such that pk+l < Cp, Vk E N. 

LEMMA 5. A linear point-convergent interval sequence {[xJ> is point-con- 

vergent. 

This follows immediately from (2.7) since 

0-C , ,%x+1 d c,, < c’p,-, < “’ < c”‘p, , 

and according to Definition 7 we have o-lim,,,(C’cp,} = 0. 

DEFINITION 8. A point-convergent interval sequence ([xk]}L is called 
superlinear point-convergent if there exists a sequence of positive operators {C,} 
in 2 with o-limk+-m{Ckx} = @ ‘0’~ E H+, such that fk+r < Ckpk Vk E N. 

For order-convergence of higher order we need a definition of a multiplication 
0 between positive elements in H+ which satisfies the following conditions: 

u,vEH+ 3 uov = vouch?-, (2.10) 

(u 0 v) 0 w = u 0 (v 0 w), u, vu, w E Hf, (2.11) 

u1 < u2 A Vl < v2 a u1 0 v1 < u2 0 v2 ) u1 , v1 , u2 , vB E H+. (2.12) 

Furthermore pp = pp-l 0 p, p E H+, p = 2, 3 ,.... 

DEFINITION 9. A point-convergent interval sequence {[x& is called point- 

convergent of order p if there exists a positive operator C E 2, independent of k, 
such that pk+l < Cp,p Vk E N. 

Because H is a linear partially ordered space with order-convergence as the 
concept of convergence, we are able to introduce a pseudometric convergence in 
H using Definition 10 below (see also [13]) and a pseudometric convergence 
derived from (1.9). The pseudometric distance 

d(x,y) = IX-YIEH+, x,y~H, (2.13) 

satisfies all requirements of a pseudometric. 

DEFINITION IO. The sequence {xk} is cahed pseudomtric convHge& to the 
limit 2 E H if o-lim,,,{d(x, , a)} = 0. 

LEMMA 6. Tke sequence {xk> is pseudometric convergent ij and only if it is 
order-convergent. 
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Proof. (1) Let {xk} b e p d seu ometric convergent. With dk = 1 xk - 4 1 we 
have, from Definition 10, o-limk,,{dk) = 0. It follows from (1.11) that 4 - dk < 

x,d4+d,, and therefore we obtain from Lemma 3 that o-limk+m{xk} = 4. 

(2) Let {xk} be order-convergent. Then we have from (2.1) that x, - 2 < 
xlc - k < 8 - 2. This inequality remains valid if we add a negative element 
to the left side and a positive element to the right side. We then obtain 
-(LQ - 2) + (& - r) 1~ < xk - f < (%k - 2) - (xrc - 2). It follows then from 
(1.11) that dk = 1 xk - P / < yk - xl,, and so we obtain from Lemma 3 that 
o-limk+o, d, = 0. 

3. Equations in H 

Let there be given an interval [x0] C H and an operator T which maps [x0] 
into H. We want to find a solution x* E [x,,] of the equation 

TX = 0. (3.1) 

Let the operator T satisfy: 

ASSUMPTION I. To every interval [x] C [x0] there exists an [I,] = [L,L] E 
U(e) and ane E [L] with the following properties: 

&(x1 - x2) < TX, - TX, f e(x, - x2) for all x1 , xa E [x] with x1 3 x2, (3.2) 

A = t-r exists, and can be decomposed as A = A+ - A-, 
where A+ and A- are positive operators. (3.3) 

The linear operators L, E, andl, and therefore also A, are in general dependent 
on the interval [x]. Condition (3.2) is in fact just a generalized Lipschitz con- 
dition with respect to the given partial ordering. The Lipschitz operators L andE 
replace the usual FrCchet derivatives in the Newton method. 

Furthermore Iet the following positive operators be defined: 

j A 1 = A’ + A-, P==-&. (3.4) 

Every L E [L] can be associated with a linear operator 

R(L) = I - AL, (3.5) 

where A is the operator defined in (3.3) and I is the identity operator. With 

i? = I - A+& + A-L, 

B = I - A+L + A-L, 
(3.6) 
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we obtain the inclusion 

B < R(L) < i7 for all L f3 [L]. (3.7) 

This folIows immediately from & < L ,( L. Thus we have for all x E Hf, 

Rx = x - A+Lx + A-Lx < x - A+Lx -j- A-Lx = Rx, 

and similarly Rx 3 &x. 
The difference of the operators R and B can be expressed as the product of 

two positive operators, namely, 

R-&=(A++A-)(L-Q=IAIP. (3.8) 

As R(L) = n, it follows from (3.7) that 

&<D<R, (3.9) 

which implies that [& R] is a null interval operator and that 

R = sup(-&, iz) (3.10) 

is a positive operator. 
Using the operators & and i? defined in (3.6), we can derive a Lipschitz 

condition for the operator I - AT corresponding to the Lipschitz condition for 
the operator T. To this end we introduce: 

LEMMA 7. Let [x] C [x,,], and let the operator T satisfy Assumption I. Then 
the operator 

S=I-AAT (3.11) 

maps the interval [x] into H, and S satisfies the condition 

&(x1 - x2) ,( sx, - sx, ,< R(x, - x2) for all xl , x2 E [x] with x1 3 x2 . 

(3.12) 

Proof. For x1 , x2 E [x] with x1 > x2 , (3.2) implies the inclusions 

--d+L(x, - x2) ,< -A+(Tx, - TX,) Q -A’-&, - x,), 

A-&(x, - x2) < A-(Tx, - TX,) < A-i-(x, - x2). 

Adding these inequalities and then adding the term x1 - xg to the result, we 
obtain x, - x2 - A%(x, - q,) f  A-L(x, - x2) < x1 - x2 - A TX, + ATx, < 
x1 - x2 - 4+&(.x, - xp) + A-z(x, - x2). Using the notation of (3.6) and (3.11) 
we arrive then at (3.12). 

To obtain an inclusion for XX, - SX, in the case when x1 , x2 E [x] are chosen 
arbitrarily, we need: 
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LEMMA 8. Let [x] C [x0], and let the operator T satisfy Assumption I. Then 

f OY x1 , x2 E [x] with the decomposition x1 - x2 = (x1 - x2)+ - (x1 - x,)-, the 

operator S defined by (3.11) satisfies the condition 

&x1 - x2)-‘- - a(, - x2)- < sx, - sx, < R(x, - x‘J+ - qx, - x2)-. 

(3.13) 

Proof. Let xi , x2 E [x] C [x0]. If we put u = inf(x, , xs), then, according to 
the lattice property x < u < X, we have u E [x]. We now write Sjr, - Sx, = 
(Sx, - Su) - (SX, - Su). Since x1 3 u and xs 3 U, we can apply inequality 
(3.12) to both terms. We thus obtain 

&(x1 - u) - R(x* - u) < sx, - sx, < R(xl - u) - &, - u). 

Furthermore, we have x1 - u = xi - inf(x, , x2) = x1 + sup(--xi , -xs) = 
sup(0, xi - x2) = (xi - x,)+, and similarly xs - u = x1 - u - (x1 - xs) = 
(x1 - x2) k - (x1 - x2) = (x1 - x2)-. Th is concludes the proof of (3.13). 

LEMMA 9. Let E = p[L]. Then the operators ii, &, and R, de$ned in (3.6) 
and (3.10) aye related by 

R=-&=R. (3.14) 

Proof. 

i? + & = (I - AZ + A-L) + (I - A+L + A-Q 

= 21- (A+ - A-)L - (A” - A-)& 

= 21- A(L + &) = 21- t-1(24 = 0. 

Further, we obtain from (3.8) and (3.14) 

R = 4 j A j P, (3.15) 

and from (3.13), (3.14), and (1.11) we obtain 

ISx,-Sx,/ < R1x,-xx,j. (3.16) 

In order to obtain methods with a higher speed of convergence, we replace 
Assumption I with the stronger 

ASSUMPTION II. To every interval [x] L [x0] there exists an [L] = [L,z] E 
U(Q) with the following properties: 

&(x - 2)‘. - z(x - a)- < TX - Tz < z(x - a)+ -&(x - S)- (3.17) 
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for x E [x] and f = ,u[x], 

A = z-l exists, i, = p[L], and can be decomposed as 

A = A+ - iz-, where A+ and A- are positive operators. 
(3.18) 

In a derivation similar to that of (3.16) we obtain from Assumption II the 
inequality 

j Sx - SZ j < R j x - f  1 for x E [xl, 1 = ~[x], (3.19) 

where R is given by (3.15). 
For every x E [x,,] we have hitherto had Sx E H, where S is defined in (3.1 I). 

Now we will assume that S is also defined for a point interval F == [x, X] C [x0]. 
SF, however, is not necessarily a point interval, but S of course has the property 
Sx E SF. For practical use we can in this way include the rounding errors. 

4. Iterative Methods 

Let v be a mapping which maps every interval [XX] E O(H) into an element 
2 E [xl, and let the operator T satisfy Assumption I (or II). 

With the initial interval [x0] the iteration scheme 

hc+J = L%% + [&I KGI - $11 n hl, k = 0, I , 2 )...) (4.1) 

will, according to Lemma 2, produce a monotone interval sequence 

[x0] 2 [XJ 2 [x2] 2 .-.. (4.2) 

Here S, = I - A,T, 3, = p)[xJ, and & is a point interval. The meaning of 
Sk&, is explained in Section 3. The linear operators A,, defined by (3.3) as well 
as the null interval operators [R,] = [& , a,] are associated with the intervals 
[xk]. [RJ[xJ - &] is defined by (1.12), since [sk] - jZk is a null interval, and 
by (3.10) R& = sup(-& , a,). 

THEOREM 1 (Principle of inclusion). If there exists a solution x* of equation 

(3.1), then 

x* E [x0] * x* E [x,J VkEN. 

Proof. We will prove that x* E [x,,] implies x* E [xi]. If we put xr = x*, 
x2 = so ) s = so ) & = & ) and W = & in (3.13), then we obtain 

&(x* - $)+ - &(x* - zoo)- < s,x* - S& < @x* - q+ - I?“(X” - .qJ-. 
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Now Ssx* = x*, so from (1.9) and (3.10) we obtain S&-, - RO 1 x* - R, 1 < 
x* < S,,.?,, + R, 1 x* - 5s I. Because 1 x* - 4 I = sup(x* - f, , &, - x*) < 
sup(~,, - 3i;, , Z,, - gs) and SJ& < S$s < $$$ , we have from (1.12) x* E 
[S& + [R,][[x,] - $J], and therefore x* E [xi]. By continuing this process 
we easily obtain an inductive proof of Theorem 1. 

COROLLARY TO THEOREM 1. If the iteration (4.1) terminates for some k 
because the intersection is empty, then no solution of Eq. (3.1) can be contained 

in [x,]. 

Choosing ~[x] = ~[x], the iteration scheme (4.1) simplifies to 

[xli+J = [&& + [&cl [-A 3 ~dl n hcl, k = 0, 1, 2 )..., (4.3) 

where plc = p[x,]. 
If we put A, = A,, for all K E N, then we obtain S, = S,, , [Rk] = [R,], 

and the iteration scheme (4.3) simplifies to 

h+J = [S&c + RI [-pa 9 plcll n 1%1~ k = 0, 1) 2 ,.... (4.4) 

This iteration corresponds to the simplified Newton iteration (see [13]). 
The following theorem says something about the convergence of the interval 

sequence (4.2) defined by (4.3). 

THEOREM 2. Let the iteration scheme (4.3) satisfy 

(1) P[&c&l < E v k E No .3 

We assume that there exists at least one solution x* E [x0] of Eq. (3.1) and a linear 
operator C E 2, independent of k, which satis$es the following conditions: 

(2) R, < CVkEN,,, 

(3) (I - C)-l exists and is positiwe. 

For the interval sequence deJned by (4.3) we the-n have 

and 

o$&{hl> = PI with x* E [x] (4.5) 

p[x] < (I - C)-%. (4.6) 

Proof. Since x* E [x,,], it follows from Theorem 1 that the interval sequence 
([xk]} is indefinite, and furthermore, because it is monotone, we can use Lemma 4, 

3 iv, = N u (0). 
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and so prove (4.5). From (4.3), using Lemmas 1 and 2 as well as (I .12) and 
assumptions 1 and 2 of Theorem 2, it follows that 

Applying Lemma 3 and the fact that o-lim,,, pk = p[.z’] = p, we obtain 

p d ‘5 + CP * (I - qp G E, 

from which, according to assumption 3 of Theorem 2, (4.6) follows. 

COROLLARY. If we replace assumption 1 in Theorem 2 by 

(la) p[S&] < elc Vk E N, with o-lim,,,{+} = 0, 

then (4.5) and (4.6) sharpen to 

(4.7) 

and so p[~] = 0. 

Thus from Theorem 1 it follows that x* = ?c and consequently the uniqueness 
of the solution x* in [x0] of Eq. (3.1). The practical significance of assumption la 
is that the accuracy of the calculation increases with decreasing iteration error. 

As the condition of convergence for the general iteration scheme (4.1) turns 
out to be less favorable when ~[x] # ~[x], we will confine ourselves to the 
iteration scheme (4.3) (or (4.4)). 

In order to be able to say something about the speed of convergence we 
introduce: 

DEFINITION I 1. The iteration scheme (4.3) (or (4.4)) converges linearly 
(super&early or with order p) if the interval sequence (4.2) under assumption I 
of Theorem 2 with E = 0 is linearly (superlinearly or with order p) point con- 
vergent. 

By choosing ck in assumption la in the corollary to Theorem 2 so that the 
speed of convergence (as in the case E = 0) is not changed, we see that Defini- 
tion 11 is also meaningful for E 3 0. 

THEOREM 3. If there exists an operator C E 2, independent of k, such that 

(1) R, < CVkE N,, 

(2) o-limk+,(Ckx} = 0 Vx E H+, 

then the iteration scheme (4.3) (OY (4.4)) will be at least linearly conve?gent. 
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Proof. From (4.3) (or (4.4)) with E = 0, and in consideration of assumption 1 
of Theorem 3, we obtain pk+r < Cp, Vk E N, . Thus, according to assumption 2 
of Theorem 3 and Definition 7, we have linear point convergence. 

COROLLARY 1. If  assumption 1 of Theorem 3 is replaced by 

(la) o-lim,,,{R,x} = 0 Vx E H+, 

then, according to Definitions 8 and 1 I, the iteration scheme (4.3) will be at least 

superlinearly convergent. 

COROLLARY 2. If there exists an operator C E 2, independent of k, such that 

(lb) Rkpk < Cplc” Vk E N, , p > 2, and o-lim,,,{p,} = 0, 

then, according to Definitions 9 and 1 I, the iteration scheme (4.3) will be at least 
convergent of order p. 

Remark. For the simplified iteration scheme (4.4) assumption 1 of Theorem 3 
is satisfied with C = R, . 

II. APPLICATIONS 

In the following we show some examples of how the abstract analysis of Part I 
can be applied to concrete problems. 

5. Equations with One Unknown 

Let H = R with the usual partial ordering <. The lattice properties (1 S), 
(1.6) are trivially satisfied. Let there be given an interval [x,,] and a real-valued 
function f(x), defined for all x E [x0], which in every [x] C [x0] satisfies the 
Lipschitz condition 

for xi , x2 E [x] with x, > x, . 

(5.1) 

With TX = f (x), condition (3.2) of A ssumption I is fultilled. With E = 
p[L] = $(L + L), one obtains 

A=2_ 
L-IL 

and R,E-L 
g-r (5.2) 
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Assumptions 2 and 3 of Theorem 2 (or assumptions 1 and 2 of Theorem 3) are 
satisfied if 

Lo&, > 0.4 (5.3) 

It is readily seen that (5.3) implies R, < R, = C < 1 k’k E N. Thus condition 
(5.3) guarantees linear convergence of the iteration scheme (4.3) (or (4.4)). 

If f(x) is continuously differentiable in [x0] and we put 

(5.4) 

then (5.3) is equivalent to 

If’(X>I 3 a > 0 vx E [x0]. (5.5) 

Also, assumption la of Corollary 1 to Theorem 4 is then satisfied, i.e., the 
iteration scheme (4.3) is superlinearly convergent. 

This statement is not quite obvious. As Figs. 1 and 2 illustrate, (5.5) is not 
sufkient for convergence of the conventional Newton method. 

FIGURE I 

FIGURE 2 

We now assume that f(x) is twice continuously differentiable in [x,,] and let 

(5.6) 

4 The index 0 means that &, and L, are associated with the interval [x0]. The same 
holds for R, and fiO . 



ITERATIVE INTERVAL METHODS 15 

For TX = f(x) and with 

L = f’(s) - $Pf, L =f’(@ + i&p, 

(2 = 4(x + x), p = HZ - x)), 

condition (3.17) of Assumption II is satisfied and we obtain 

From (5.5) and the condition 

PO < WI30 

(5.7) 

(5.8) 

69) 

it follows that 

Assumption lb of Corollary 2 to Theorem 4 is then satisfied for p = 2, and 
so the iteration scheme (4.3) has quadratic convergence. 

6. Nonlinear Systems of Equations 

Let H = VP, and let x E IP denote a vector with ith component ~9). Then 

x1 < x2 9 xp < x2’ for i = l(l)n 

defines a partial ordering in BP. The vector x+ E Rn, according to (1.8) contains 
all nonnegative components of x (the negative components of x are replaced by 
zeros) and similarly -x- E UP contains all nonpositive components (the positive 
components are replaced by zeros). We also have j x 1 ci) = / x(~) ( for i = I( l)n, 
and the lattice properties (1.5), (1.6) are obviously satisfied. 

Let there be given an interval [x0] (interval vector) and an n-dimensional 
vector function f(x) with components fi (i = l(l)n) which maps every x E [x0] 
into H. We assume thatf(x) satisfies the following Lipschitz condition: For two 
vectors xi , x2 E [x] C [x0] with 

hd = 
X1 

(m) 
x2 formfj and .l(i) >, xz(j) (j = l(1) n) 

we have for i = l(1) n: (6.1) 

&(xlj’ - x!‘) <ffi(Xl) -fi(x2) < &j(Xlj’ - xf’). 

The operator T, with TX = f(x) and the (n x n) matrices & = {iii}, L = {&}, 
then satisfies condition (3.2) of Assumption I. The matrices A, A+, A-, l?, 
and R are given by (3.3) and (3.6), or (3.15) ifz = +(a + E). Thus A+ contains 

409/73/I-2 
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all nonnegative coefficients of A and zeros elsewhere while -A- contains all 
negative coefficients of A and zeros elsewhere. Thus the coefficients of j A 1 are 
the absolute values of the coefficients of A. 

If [L] = [&, E] denotes the interval matrix with bounds L and E, and similarly 
[R] = [&, x], then 

[R] = f - ifz[L]. (6.2) 

That is, [I?] is the interval matrix computed from (6.2) by means of the interval 
operations discussed in [5, 71. Condition (4.3) of Assumption I is satisfied for 
all l, , provided L-l exists for all L E [L,]. 

Let a(R) denote the spectral radius of the matrix R. The following theorem 
gives some information regarding the assumptions under which condition (3.3) 
is satisfied. 

THEOREM 4. Let A, = (&, + &))-I exist, and let 

o(RJ < 1. (6.3) 

Then every matrix L E [L,] is regular. 

Proof. Assume Theorem 4 were false. Then there would exist a matrix 
L’ E[L,,] and a vector z # 0 with A,L’z = 0. From (3.5), (3.7), and (3.14) 
the inclusion for A,L’ follows: 

I - RR, ,< A,L’ < I + R,, . 

From these inequalities and from the equation with x above, we obtain by 
decomposition of z = z+- - z- (by (1.7)) 

z+ - R,.z+ < A&z+ = A,L’z- < z- + R+-, 

and analogously 

z--R,,z-<z++R,,z+. 

Thus by (1.9) we have 

-4, I .a I < .z < R, 12 I, 

and because of ( 1.11) we have 

By repeated use of this inequality we obtain 
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As R,k -+ 0 for 12 -+ CO, where 0 is the null matrix, this inequality can only be 
satisfied if, in contradiction to the assumption, z = 0. 

Also the uniqueness of a solution off(x) = 0 in [x,,] follows from the assump- 
tions of Theorem 4, since to every pair X, , xs E [x0] there exists a regular 
matrix L(x, , x.J E [L] with the property 

Furthermore, condition (6.3) of Theorem 4 is crucial for the convergence of 
the simplified iteration scheme (4.4) since for a(R,) < 1 with R, positive we have 

(I - R&l = f’ ROT > 0, 
T=O 

so condition 3 of Theorem 2 is then satisfied. 
Assumption (6.3), however, is not sufficient to prove convergence of the 

iteration scheme (4.3), because a(R,) < 1 does not necessarily imply R, < 
C = R, . Therefore the following theorem of convergence requires a sharper 
condition: 

THEOREM 5. Let there exist a solution x* E [x0] of the equation f(x) = 0, and 
let E, = &(&, + &) be nonsingular, and 

a(R,) < 3 . (6.4) 

Then the iteration scheme (4.3) is at least linearly convergent. 

Proof From the existence of a solution it follows, just as in the proof of 
Theorem 2, that the interval sequence (4.2) is indefinite. Furthermore, with 
(6.4) the assumptions of Theorem 4, and therefore also Assumption I, are 
satisfied. 

From (3.15) we have for all k E No 

R,=~IA,I(~,--L,)~~IA,/(~~---L,). 

With A, = e;i and B, = A,@, - Lo) we find 

A, = (I+ B,YA, , 

from which we obtain 

R, < I(1 + f&)-l I Ro - 

Since /B,~~~Ao~j~,-~o~~-<Ao/~~(i;o-~o)=Ro and a(R,)<+, 
then u(I B, 1) < 4 also, and thus 
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With C = (I - RO)-1RO and u(C) < 1 the assumptions of Theorem 3 are 
satisfied, and so Theorem 5 is proved. 

COROLLARY 1. I f  the functional matrix off ( ) x exists and is continuous in [x0], 
then, under the assumptions of Theorem 5, the convergence will be at least superlinear. 

To see this we observe that with 

I!!’ tc min afi 1% = max afi 
-23 XE[X,J axcj, ’ I2 ( 1 xe[qJ axcj, ’ ( 1 

(6.5) 

(3.2) is satisfied, and 

o&l{(Ll, - &) x} = 0 vx E (W”)+ and oilimp, = 0. (6.6) f 

Similar to the proof of Theorem 5 we can estimate R, as follows: 

and so 

R, = Q I A, I (L, - L,) d &(I - &J-l I A,, I (-h - L,), (6.7) 

ok4iz(Rtix,3f) = 0 Vx E (FP)’ and oilirn pk == 0. -3 

COROLLARY 2. If we assume that f  (x) is twice continuously d$j%rentiable, and 
if we put 

mi($ I 
azf, 

= x~$j ax(j) a,(h) ’ i,j, h = l(1) n, (6.8) 

then, with 

(6.9) 

Assumption (3.17) is satisfied. If, furthe-r, we make the assumptions of Theorem 5, 
then Assumption (3.18) with A, = xil, where E, denotes the functional matrix of 
f(x) for x = L?~ , is also satisfied. 
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Let M, = {m$)} denote the (rz x rz) matrix with elements from (6.8), let 
(x, y) denote the vector inner product of the vectors X, y E R”, and let (pl, , Mipx) 
f A& , pk) for i = 1( I)n, K E N, (Ai is the spectral radius of the positive sym- 
metric matrix n/r,). With pr2 = {(P$)~}, 

and C = &(I- R&l 1 A, [ Q, (6.7) then implies 

R kPk < cPk2 QkENO (6.10) 

as the condition for quadratic convergence (see Definition 9). If the assumptions 
of Theorem 5 are satisfied for the matrices& andi;, defined by (6.9) for k = 0 

and the matrix R, derived from these, then, according to Theorem 4, the 
matrices A, Q k E N, exist and the iteration scheme (4.3) is by virtue of (6.10) at 
least quadratically convergent. 

Remark 1. In the case [S&, + [R,][[x,,] - &]] C [x0], we have S,,[x,] = 

b%x I x cz hl> c bd A ccording to the Brower fixed-point theorem, the existence 
of a solution x* E [x,,] follows from the continuity of A’,, . 

Remark 2. The simplified iteration scheme (4.4) is in general sufficient for 
practical use. In contrast to (4.1) (or (4.3)), there is the advantage here that not 
only is the condition for convergence (6.3) weaker, but, most important, there 
is considerably less computational work since the matrices& and& are computed 
from (6.1) just once. The same holds for A, and R, . 

If pk or pr/Zk after k steps does not decrease further, the iteration is terminated. 
The domain of rounding errors has then been reached, and pr is, according to 
Theorem 1, an exact error bound. Thus, in contrast to most other methods, we 
obtain an exact error estimation without using bounds for the inverse functional 
matrix and the second derivatives. Very often a(R,) < 1. Practical experience 
has shown that in this case the number of steps required by the iteration for the 
simplified scheme (4.4) is hardly greater than that for a superlinearly or qua- 
dratically convergent method. 

Hitherto it has been common for similar interval methods to compute the 
interval matrix [R] by (6.2). Nevertheless, if & = -i? then this is superfluous. 
For the computation of -J[L] we only require an arithmetic by which, de- 
pending upon whether (-au) is positive or negative, we can perform the 
multiplication (-ai& (or (-a&J with p u ward rounding. The same is true 
for the addition of T and -JL]. 
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7. The Algebraic Eigenvalue Problem 

Let there be given the eigenvalue problem 

(G - AI) 5 = 0, 

cc, 1) - 1 = 0, 
(7.1) 

with a real (TZ x TZ) matrix G and a vector 1 E R”, with respect to which the 
eigenvector 5 is normalized. ((f, 2) d enotes the vector inner product of f and 1.) 
Let h denote a real eigenvalue. With x = (f) and the operator T defined by 

(G--)8 
Tx = ((& E) - 1 1 (7.2) 

we can interpret (7.1) as a nonlinear system of equations in lJP1; i.e., (7.1) is 
actually just a special case of the problem of Section 6. 

Assuming we have an initial interval [xc,] = (f$$, where [&,I contains a real 
eigenvalue /\* and [&,] the corresponding eigenvector I*, the iteration scheme 
(4.3) (or (4.4)) will lead to an improvement of the interval limits of [h,,] and 
[&,I. With the (n + 1) x (TZ + 1) matrices 

,/--XI -f 

- ( 

4 

1’ 1 0 ’ 
r;= G-M 

! I’ ) 0 ) (7.3) 

(3.2) of Assumption I will be satisfied. (I’ denotes the transposed vector of 1.) 
We achieve a substantial improvement of the iteration for enclosing an 

eigenpair of (7.1), however, if we put 

L= G--XI 
- ( 

-4 
I’ ) 

G-AI -( 

0 ’ 
L= ( I’- o). (7.4) 

Condition (3.17) of Assumption II is then satisfied since 

i 
(G-iI)t-(G--I)& = G-AI -cf t-e 

(E’, t - f) 1 t 1’ 0) L - x) * 

Estimating h from above and below, we can verify the inclusion (3.17). If E 
denotes the (n + 1) x (n + 1) matrix 

I 0 
E= o o, ( ) 

with I as the nth-order identity matrix. It follows then from (7.4) that 

L - & = (A - iI) . E = 2p[h] . E 
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and that 

We now assume that the assumptions of Theorem 4 are satisfied and hence 
all E, are nonsingular. 

By (3.15) we obtain for R the expression 

R = p[h] (2: i) with ] A / = CA,, ::I) 
a21 

The inequality 

(or < 4) 

with 
(74 

will then be a sufficient criterion for convergence of the simplified iteration 
scheme (4.4) (or the general scheme (4.3)). 

Consequently, the convergence depends on the limits of the eigenvalues but 
not on those of the eigenvectors. Since by virtue of the normalization it is often 
possible to give rough bounds on the eigenvector (for example, the eigenvector 
corresponding to the largest eigenvalue of a nonnegative matrix), the iterative 
method (4.3) (or (4.4)) is also able to determine the eigenvector provided that 
an inclusion of the eigenvalue is known. Further, the process automatically 
provides an error estimate for the eigenvector. 

If the interval [&,I contains more than one eigenvalue, or if there exists a 
multiple eigenvalue such that (7.1) h as no unique solution, then (7.6) cannot be 
satisfied, since this, because of the guaranteed convergence of the interval 
sequence, would lead to a contradiction. 

The method described here can be extended to include complex eigenvalues 
and eigenvectors. This is due to the fact that a complex eigenvalue problem can 
always be reformulated as a nonlinear system of equations in the real Euclidean 
space. A detailed description of such a method can be found in [26]. 
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