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Certain semigroups are generated by powers - ( --A)“, for closed operators A 
in Banach space and 0 < a < 1. Properties of extent of the resolvent set and 

size of the resolvent operator of A correspond to properties relating to the 
sectors of holomorphy of the semigroups, and their growth near the origin and 
infinity. In this paper, we deal with semigroups having two different types of 
growth properties. In the first instance, the semigroup grows near the origin 
as ret, 0 < t < 1. We show that such semigroups are fractional-power semi- 
groups of operators A, whose resolvents decay as Y-O, 0 < s < 1, in subsectors 
of the right-hand half-plane. In the second instance, the semigroups are bounded 
near the origin, and admit special estimates on growth at the periphery of their 
sectors of definition. We show that for the corresponding A, the resolvent is 
defined and admits special growth estimates in a region which contains every 
subsector of the right half-plane; and in these subsectors, the resolvent decays 
as Y-I. 

INTRODUCTION 

There are closed operators A in Banach spaces with the property 
that fractional powers -(--A)” generate holomorphic semigroups. 
Some properties of such semigroups are related to properties of A: 
the region of holomorphy of the semigroup and properties of growth 
and convergence within that region, compared to the location of the 
resolvent set and size of the resolvent operator of A. Previous papers 
(i.e., [4, 51) have considered the problem of deriving the properties 
of the semigroup from assumptions about A. In this paper, we 
consider the converse problem of reconstructing the operator A 
from a semigroup having known properties of a fractional-power 
semigroup, establishing a correspondence between the latter properties 
and those of A. 
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In Sect. I, we deal with semigroups holomorphic in certain sectors 
of the plane, and having a slow growth near the origin; that is, growing 
no faster than I+, where r represents distance from the origin and 
0 < s < 1. We show that such growth corresponds to a relatively 
slow decay near infinity-as with Y- l, 0 < t < l-in the resolvent 
of A, which exists in a subsector of the right-hand half-plane. These 
conditions on the growth of the resolvent are weaker than those in 
Kato [4] and Komatsu [5]. In [4], the resolvent is also defined in a 
sector, but the resolvent is assumed to decay as r-l; these assumptions 
lead to semigroups which are bounded near the origin. Komatsu 
retained the condition of decay as r-l, but weakened the condition 
on existence of the resolvent; he assumed merely that the resolvent 
be defined along the positive real ray. 

In Sect. 2, the semigroups are considerably more special. They 
converge in the C, sense at the origin, and admit special estimates 
on their asymptotic growth in their sectors of definition. Correspond- 
ingly, A itself has properties very close to those of a semigroup 
generator. The resolvent set contains every proper subsector of the 
right half-plane, and the resolvent decays almost as the reciprocal 
of distance from the imaginary axis. Here it does not suffice to apply 
the previous methods-of Sect. 1, or Kato-to A in each subsector 
of the half-plane. Beals [1] has shown that A need not have the 
desired properties of semigroup generators, unless the resolvent set 
is asymptotic to the half-plane, in a special sense. Our conditions on 
the fractional-power semigroups correspond to conditions on A in 
line with, but stronger than those of Beals. 

Certain notation will remain constant throughout. We shall deal 
with operators in a fixed Banach space X. For a complex a, arg z will 
denote the value of the argument having -n < arg z < z-. For a real 
y, -(- ) 11 P x r wi re resent that branch which is negative whenever z 
is a negative real. It will be convenient to write 1 arg z 1 = r - y, 
0 < y < 7~. Thus if arg z = &(n - q), then it is simple to see that 
-(-a)’ = / z Iy exp(fi[n - rv]), accordingly. Finally, R+ exp($) 
will represent the ray 

{z = t exp(+) 1 t > O}. 

1 

Let T be a closed, densely defined linear operator in a Banach 
space X. Assume that the resolvent set of T contains a sector of the 
form / arg x I< 7r - 8, as well as a neighborhood of the origin, and 
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that for some k > 0, the resolvent of T satisfies 11(x1 - T)-lIj = 
O(l z I-“) as z -+ 00, in each smaller sector 1 arg x 1 < r - 0 - E. 
For convenience, let us say the resolvent contains the sector 
1 arg(x + 1) < 77 - 19. Suppose f(z) is a function holomorphic 
along and to the left of / arg z j = 7~ - 3 - E, at least for small E, and 
If@4 = 00 z I-“) as z --t co, where m + k > 1. Then the integral 

f(T) = (l/274 @a)(zl - T)-l dz (1.1) 

with r, = (z 1 I arg(z + +)I = rr - 9 - E> oriented toward increasing 
imaginary part, is independent of E, and defines a bounded operator 
in X. In particular, for small enough a > 0 and for complex w close 
enough to the positive real axis, f,(z) = exp(-w( -%)a) satisfies the 
requirements, and we have the resulting operator, exp( -w( - T)a). 

Our two main results are as follows: 

THEOREM 1.1. Let A be a closed, densely dejked operator. Suppose 
there are numbers 6 and b, , rr/2 < 0 < rr and 0 < b, < 1, such that: 

(a) The resolvent set of A contains the sector given by 1 arg z I < 
YT - 8, together with a neighborhood of the origin. 

(b) fn any sector / arg z / < r - ~9 - E, E > 0, we have 
II(zl - A)-1 II = O(l z 1-b) as z -+ 00, for each b < b, . 

(c) (1 - b,)B < 742. 

Then for any jixed a with 1 - b, < a < r/20, we have: 

(i) The farnib (exp( - w( - A)“)] is a holomorphic semigroup in w, 
de$ned for 1 arg w I < (n/2) - ad. 

(ii) Each operator exp( -w(-A)“) is one-to-one, and the union 
of their ranges is dense in X. 

(iii) For each E > 0 and h > (1 - bo)/a, there are positive 
constants C and D, such that in the sector give by 1 arg w 1 < (rr/2) - 
a(6 + E), we have 

I/ exp(-w(--A)Q)j( < C 1 w l-k exp(--D 1 w I). 

THEOREM 1.2. Let {B(w)} b e a holomorphic semigroup in w, with 
numbers v and h, , 0 < 9) < 7712 and 0 < h, < 1, such that: 

(a) B(w) is dejned for I arg w 1 < (n/2) - v. 
(b) Each B(w) is one-to-one, and the union of the ranges B(w)X 

is dense in X. 
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(c) For each E > 0 and k > k, , there are constants C and D, 
such that I/ B(w)l/ < C 1 w I-k exp( -D 1 w I) whenever / arg w / < 
(7r/2) - y - 6. 

Then for any a such that v/n < a < 2q~/77, there exists an operator S, 
satisfying the hypothesis of Theorem 1. I, such that B(w) = exp(-w(-S)a) 
for ) arg w I < (r/2) - v. 

Proof of Theorem 1.1. As previously mentioned, it will be con- 
venient to assume that the resolvent set of A contains the sector 
) arg(z + I)1 < 7~ - 0 (cf. condition 1.1(a).) 

(i) Assume w is complex, 1 arg w I < (7r/2) - a0. Pick E so 
small that a(0 + E) < 7rj2 and 1 arg w 1 < (r/2) - at9 - E, and let 
r, be the angle given by 1 arg(z + *)I = 7r - 6 - E. Then 
/ arg z I > 7~ - (6’ + E) for z E r, , so that 1 arg - (--a)” / > 
n - a(0 + E). Hence 1 arg(--(-@)I > 7r/2, and we may set 
f(z) = exp(-w(-z)a), T = A in (1.1). This defines exp(-w(-A)a) 
as a holomorphic function of w. The semigroup property follows by 
a standard argument from the operator calculus ([2, Lemma 21). 

(ii) (See [2, Lemmas 1, 31.) 

(iii) Given E > 0, we may write 

exp(--w(--A)=) = (l/Z&) 1 exp(--w(--z)Q)(J - A)-‘& (1.2) 
rq, 

for any w satisfying 

1 arg w I < (n/2) - a(0 + c). (1.3) 

Now if k > (1 - 6,,)/ a, we have 1 - ak < b, , so that there is a 
constant C, > 0 such that Il(z1- A)-lII < C1r-(l--ak) for a E rE,s , 
where(say)r = Ia+ 1 /. 

We next wish to estimate / exp(-w(-zz)“)I. For z E r6,s, -(--a)” 
is to the left of the angle R+ exp(fi[r - a6 - a(e/2)]). Consequently, 
there is a D, > 0 such that -(-z)” + D, lies to the left of 
ill+ exp( *i[n - a0 - a(3E/4)]), that is, 1 arg(D, - (-~)a)] > r - 
a0 - (3ac/4), and so for w as in (1.3), 

I =x$4 - w(-49l > (4) + (4). (1.4) 

Moreover, there is a C, such that j D, - (--~)a I > CZra. In view of 
(1.4), for .a E I’t/z , we have 

Re(wD, - w(-~)a) < --I w 1 C,P sin(ac/4) = -C, 1 w 1 P. 
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Therefore 

exp(Re(-w(--z)a)) < exp(-Re eoD,) exp(-Ca I w ( rQ) 

< exp(--l) I w I) exd--C3 I w I ra), 

with D = D, sin a(0 + l ). Equation (1.2) then gives 

11 exp(-w(--A)“)11 < C, exp(--D 1 w I) 6 exp(-C, 1 w 1 ra) rka-l dr, 

and the last integral is C, 1 w jek. Q.E.D. 

Proof of Theorem 1.2. Because B(t) is integrable in real t at zero 
and of exponential decay at infinity, 

R(o) = irn exp(-vt) B(t) dt 
0 

defines a holomorphic function of v for Re e, > --Da, for some 
D, > 0. We shall first extend -R( ZI analytically to the sector defined ) 
by 1 arg et 1 < 7r - y. 

Let 0 < arg z, < rf - y - E; a similar proof goes if 0 > arg u > 
-(VT - rp - E). Let L be the ray lR+ exp(--i[(n/2) - F - (c/2)]), 
oriented out from the origin. If w EL, then 0 < arg VW < (z-/2) - (42). 
In view of condition (c) of the hypothesis, the integra1 

l?(o) = jTs exp( -vw) B(w) dw (1.5) 

is absolutely convergent, and so defines an analytic function of V, 
for 0 < arg w < rr - v - E. Due to the rapid decay of the integrand, 
it is clear that a(~) coincides with R(v) whenever Re ZI > 0. Hence 
we see that R(u) can be continued to the sector 1 arg v 1 < ,r - y - E, 
with E > 0 arbitrary. Thus R(a) extends to 1 arg ec j < ?T - y. 

LEMMA 1.3. Giwen E > 0 and k > k, , in the sector ) arg z, 1 < 
rr-q2--cE, we have 11 R(u)lI < C 1 v jk--l for, some constant C. 

Proof. Again, assume 0 < arg v < 7~ - 9 - E, and define L as 
for (1.5). We may write R(v) = R(V) = JL exp(-wv) B(w) dw. For 
w EL, 0 < arg ww < (r/2) - (e/2) implies 

II W)ll < lrn exp(-I TV I I w I sin(G)) C, I w I? d I w I 

= C,(sin(6/2))‘“-l I v Ik--l. Q.E.D. 
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For small E > 0, let M, be the contour 

RI, =(ojeitherO < [argvl =v---candRew < -D, 

orIargvIa:-------andRev=-D,), (1.6) 

oriented in the direction of increasing imaginary part. Along this 
contour, by Lemma 1.3, I( R(v)11 = O(/ z, jk-‘) as 21 + co, for any K 
with 1 > K > k, . Hence if n is a natural number and p is real, 
p < n - 1, then the integral 

K(p, n) = (l/277;) j-M -(-v)“-” R(o) dv 
E 

is absolutely convergent and independent of E, and defines a bounded 
operator. 

LEMMA 1.4. R(0) is one-to-one. 

Proof. For any x E X and t > 0, 

B(t)x = hrir h-l (+’ B(s)x ds 

= lim h-l (Ita Wx ds - l;, W)x ds) 

= lim !z-~(B(~) - B(t + h)) jorn B(s)x ds 

= --B’(t) R(O)x, 

and the conclusion follows from condition (b). 

In particular, we may speak of R(O)-l. 
Let now (r/297) < p < F/F. Henceforth we take n 

Then 

R(0) K(p, n) = (l/24 lM6 -(-a)~+ R(0) R(o) de, 

> 

Q.E.D. 

(494 + 1. 

= (l/274 j- -(-v)p-“(-v)-~[R(v) - R(O)] dw 
ME 

= qp, fi + 1). 

Hence, for a given x E X, we have K( p, n)x E 9(R(O)-“) iff 
qp, nf 1)x E @R(O)-“-I), and if both are true, then R(0)vnK(p, n)x = 
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R(O)-“-1 K( p, n + 1)x. Th ere ore f we may define the operator S as 
follows: 

x EsqS) iff K(p, n)x E 9(R(O)-“) for large n, 

and 
Sx = R(O)-” K(p, n)x for x E 9(S). 

We shall show that S satisfies the hypothesis of Theorem 1.1. 

LEMMA 1.5. (i) S is closed and densely de$ned. 

(ii) The resolvent set of 5’ contains the sector 1 arg 2: 1 < 7~ - pi, 
along with a neighborhood of the origin. 

(iii) In any smaller sector 1 arg z 1 < n - pq~ - E, we have 
ll(xI - S)-111 = O(l z 1-y as x -+ CO, for any b < 1 - (k,/p). 

Proof. (i) R(O)-” is closed, because it has a bounded inverse. 
Because K(p, n) is bounded, S = R(0)-n K(p, n) is closed. Further, 
as in Lemma 1.4, for x E X and t > 0, 

B(t)x = B(t/n)% 

= (--R(O) B’(t/n)>“x 

= &R(O)n B’(t/n)nx, 

so that K(p, n) B(t)x = &R(O)” K(p, n) B’(t/n)%. It follows B(t)x E 
Q(S). By condition (b), &9(S) is dense. 

(ii) If I arg x I < 7r - pq~, assume 1 arg z 1 < 7r - pp, - E. 
Define the contour ME,sP as in (1.6). As before, the integral 

F(z) = (l/2&)1 (z + (-v)*)-l R(o) dv 
w/s, 

defines a holomorphic function of x. Because f(v) = x + (-v)p 
does not have zeroes to the left of MS/2p , we can show by the usual 
operator argument that F(x) satisfies the resolvent equation. To prove 
that F(z) is the resolvent of S, it then suffices to show that F(0) is 
exactly (0 - S)-l. To this end, since F(0) commutes with R(O), it 
wilA;;ffice to show that K(p, n) F(0) = F(0) K( p, n) = --R(O)“. 

Jw 4 WN = w9 K(P, 4 

= (1/2ri) /Me,sP -(-w)-~ R(o) dw. 
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In the integral, we may change to the contour Re u = --D, , and we 
have 

u/274 J-p;;_ -(-w)-” R(w) dv 

= (1/2ni) /-:I: -(-v)-~ lo= exp(-vt) B(t) dt dv 
0 

= irn (l/2*2) j-:DI”::” (- 1)” v-” exp( -vt) dv B(t) dt 

=- s m t”-‘(l/(n - l)!) B(t) dt, 
0 

and the last is --A(O)“, by repeated integration by parts. The same 
argument applies if a is close enough to the origin-specifically, if 
1 x 1 < D,,P. This establishes (ii). 

(iii) Again, we assume 1 arg z j < rr - & - E. We have 

@I- S)-l = (l/24 JM6,zP (z + (-v)“)-’ R(v) dv. (1.7) 

Suppose 0 < b < 1 - (K,/p). Since k, < ~(1 - b), we may choose 
k such that k, < k < p( 1 - b). By Lemma 1.3, there is a constant C, 
such that [I R(o)/] < C, 1 v ]-(1-k) for v E Mc,sp . Further j z + (-v)” j 
is at least as large as the distance from -(-v)P to the sector 1 arg w / < 
n -pp, - E and the distance from .a to the image {-(-w)P 1 w E M,,,). 
The former distance is at least 1 v lP sin(c/2), the latter at least 
1 x / sin(r/2). Hence 

1 z + (-v)” 1 >, (I v Ip sin(c/2))1-b(l x ] sin(6/2))b. 

Equation (1.7) then yields 

l@I - S)-1 I/ < (1/2m)(sin(r/2))-l h,,, I v I-pob) I z IPb C, I v Ik--l d 1 w I 

,< C, 1 z 1-b llrn 1 w I-(l+p(l-b)-k) d I v I 

= C(E) 1 z I--b. Q.E.D. 

In view of Lemma 1.5, S satisfies the hypothesis of Theorem 1.1, 
where b, = 1 - (k,//), 0 = pq. Here we note that (1 - b,)B = 
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korp < 7dZ as required. Because 1 - I.+, = k,-Jp < I/p < (542pq) = 
(n-/20), the semigroup {exp( - w( - S)l/p)) is defined according to 
Theorem 1. 1, for 1 arg w 1 < (n/2) - (l/p)0 = (r/2) - ‘p, the domain 
of definition of B(w). 

Define the contour r, by 

r, = {z 1 1 arg(z + O)\ = 77 - pv - E) 

for small enough D > 0 (cf. the remarks leading to (1.1)) As in 
Theorem 1.1, for any t > 0, 

exp(--t(-S)l/*) = (1/2ti)/ exp(-t(-z)ll”)(.zI - S)-l dz. (1.8) 
rG 

Defining M,,, as in (1.6), we have 

(id - S)-l = (l/274 h,,, (z + (+“)-I R(v) dv, zer,. (1.9) 

Using (1.9) in (1.8) an d reversing the order of integration, we find 

H(t) = exp(--t(--S)l/p) 
(1.10) 

= (l/274 h,,, [(l/2&) jr, exp(-t(-z)‘l”(z + (-v)*)-l dz] R(o) dv. 

Because -(-ZI)” is to the left of r, when a E iVlc/aP , Cauchy’s 
formula applies to the integral within the integral in (l.lO), and also 
[(-u)p]ll” = --D. Hence (1.10) becomes 

H(t) = (l/274 /ME,,P exp(tv) R(v) dv. 

Then (compare with the proof of Lemma 1.5(ii)) 

H(t) R(O)2 = (l/24 1 exp(tv)(-v)-2 R(v) dv 
*Elm 

= (l/24 sD”_:~ exp(tw)( -v)-” 6 exp(--as) B(s) ds dv 
0 

exp(-(s - t)v)( -v)-” du B(s) ds 

= stp (s - t) B(s) ds = B(t) Jrn z&(u) du 
0 

= B(t) R(0)2. 
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Because R(O)2 has dense range, we conclude exp( -t( -S)l/p) = 
H(t) = B(t) for all t > 0. Finally, since both functions are holo- 
morphic, it follows that B(w) = exp( -w(-S’)l/p) throughout their 
common domain. This completes the proof of Theorem 1.2. 

If we start with A as in Theorem 1. I, then each exp(-w( -A)“) 
satisfies the hypothesis of Theorem 1.2. The construction in 
Theorem 1.2 may be carried out for exp( -w( - A)“) with p = 1 /a so 
that we find S with exp(-w(-A)a) = exp(-w)-SS)“). Then we 
have the expected result: 

THEOREM 1.6. Suppose B(w) = exp( -w( -A)“), the latter deJined 
as in Theorem I. 1. If we apply Theorem 1.2 to B(w) to produce an 
operator S, such that B(w) = exp( -w( -S)a), then S = A. 

Proof. From the proof of Lemma 1.5 (ii), S can be characterized by 

s-1 = (l/274 jM+ (-w)-” R(w) dw, (1.11) 

where R(v) = Jr exp( -4) B(t) dt for Re w > 0, and R(a) extends 
analytically to the sector 1 arg v 1 < 7~ - q~ = n - a0. 

Now if Re ZI > 0, 

WJ) = jam exp( -wt) exp( -t( ---A)“) dt 

= irn exp(--vWW S,,, exp( -t( --z)a)(z1- A)-l dz dt. 

For small enough E, -(---~)a has negative real part for every x E rEi3 , 
so that 

R(w) = (l/hi) j+ jom exp(--vt - (--z)(V) dt &I- A)-1 dz 

zzz (l/24 j (w + (-.z)“)-l(z3 - A)-l dz. 
rq3 

This last integral converges, because as x --+ co, 1 ZJ + (-~)a 1-l = 
O(l z 1-a) and jI(J - A)-l 11 = O(l z I-“) for any b with 1 - a < 
b < b,, . Substituting in (1.1 I), we have 

S-1 

S-1 

= (l/2&) j 
%a/8 

(-w)-“(l/274 jr<,, (w + (-~)a)-l(zI - A)-1 dz dq 

(1.12) 
= (l/24 j 

rq3 
[(l/274 jMea,, (-w)-“(w + (-z)“)-1 dw] (A- A)-1 dz. 
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If 2 E c/2 , then ] arg z 1 > r - 8 - (r/3), and 1 arg(-(-zX)a)l > 
n - a0 - (ae/3), so that -(--~)a is to the left of Ma,,, . Therefore 
Cauchy’s formula applies to the integral within the integral in (1.12), 
and we have (since p = l/a) 

S-l = (1/297i) -c,,, ( -z)-‘(XI - A)-l dz. (1.13) 

The operator on the right is exactly A-l, because it coincides with 
A-l on the ranges of exp(-+-A)“): 

A-lB(w)x = (l/2&) j exp( -w( -z)“) A-l(zl - A)-% dz 
i-F/, 

= ww c,,, exp( -w( -z>a) z-~[A-~ + (~1 - A)-l]x dz 

= (1/27ri) Ire,, z-~(zI - A)-l dz (l/Z+) j exp( -w(--z>“)x dz. 
rqs 

This completes the proof. 
We shall add a number of observations. The proofs are fairly 

straightforward operator and contour integral arguments. 

Observations. 

(a) The operator-valued function 

R(o) = jam e-‘%(t) dt 

= 
I 
r, (v + (-~)a)-l(zl - A)-l dz 

(1.14) 

has played a key role in several arguments. R(v) turns out to be the 
resolvent of an operator T, defined by 

TX = A2(1/27ri) j -(--z)“-2(zl - J-lx dz (1.15) 
l-c 

for exactly those x for which the integral in (1.15) belongs to 9(A2); 
note that the integral is convergent in the norm. We shall write 
T = -(--A)a. Th en -( --A)Q is exactly the smallest closed extension 
of the infinitesimal generator of {B(t) 1 t > 0). In this sense, {B(t)} is 
generated by a fractional power of A. 

(b) Although B(w) = exp(-w(-/lA)a) is defined only for 

SS’=‘/23/4-3 
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1 - b, < a < (7r/20), it is clear that the complex integral in (1.14) 
converges also for (77/26) < a < 1. We may therefore extend the 
definition of -(--A)” to a E [(7r/20), I], and (1.15) still holds with 
T = -(-A)a. 

(c) We have the expected properties of powers. If a, , a2 > 1 - b, 
and a, + aa < 1, then (-A)“?(--/l)@ = (-A)al+@. Further, if 
l>,a,>l-bb, and 1 > a2 > (1 - b,)/a, , then the power 
-((-A)“l)“P of -(--A) al can be defined by the methods above, and 
we find -((--A)“l)“t = -(-A)a@s. 

(d) Finally, if b, = 1, so that -(--A)a is defined for0 < a < 1, 
then 9(( --A)“l) contains 9(( --A)aa) whenever a, < a2 and ( -Qu - 
(-A)% as a, increases to a2 , for any x E Q((--A)@). 

2 

Beals [ 1, 21 has described a class of operators A which, although 
they cannot generate semigroups in the usual sense, nevertheless have 
the property of semigroup generators, that the Abstract Cauchy 
Problem u’(t) = Au(t) is solvable for a dense set of initial conditions 
u,, = u(0). This set is precisely the union of the ranges of operators 
which we may view as exp( --t(--A)a), t > 0, and these semigroups 
play a crucial role in establishing the ACP property of A. It is therefore 
natural to attempt to charactize the semigroups which arise in this 
fashion, as we shall do in this section, under certain strong conditions 
on A. 

As in the previous section, we shall deal with integrals of the form 
f(A) = (l/2&) JJ(x)(xl - A)-l d x, with appropriate conditions on 
f and on (~1 - A)-l, to make the integrals absolutely convergent. 
Moreover, to the right of r will lie a region larger, in a special sense, 
than any proper subsector of the right half-plane, so that f,(z) = 
exp( -w( -z)“) will be applicable for all a, 0 < a < 1. Thus 
(exp(-zu(--A)a)} will be defined for all u, for appropriate ru. 

Once more, the characterization is given in two principal results. 

THEOREM 2.1. Let A be a closed, densely defined linear operator, 
and assume: 

(a) There are numbers p, > 1, C, > 0 such that the resolvent 
set of A contains the region S, = (z 1 Re x > C, ) Im z (llpa}, along 
with a neighborhood of the origin. 

(b) In each sector / arg z 1 < (7r/2) - E, E > 0, we have 
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ll(.zI - A)-1 I[ = O(l 2: I-‘) as x + co. Further, for any positive number 
b < 1, there are constants C > 0 andp < p, such that \l(zI - A)-l I( = 
O(l z lb-l), as x + CXI with Re x > C I Im x /l/P. 

Then for any fixed a, 0 < a < 1, B(w) = exp( -w( --A)“) has the 
following properties: 

(i) {B(w)} is a holomorphic semigroup, defined for / arg w ( < 
(1 - a)(+). 

(ii) For each E > 0, 

SUPill B(w)ll: 0 < I w I < 1, I arg w I < (1 - a)(rf/2) - e} < 03. 

In particular, {B(t): t > 0} is a C,-semigroup. 

(iii) Given any number c, 0 < c < 1, there are positive constants 
k, D, and D, such that 

II B(w)ll d Q I w I--C w-44 I w bin v>‘-““1 

whenever I arg w I = (r/2) - a(rr/2) - y, ~IJ > 0. 

THEOREM 2.2. Suppose {E(w)) is a semigroup with the properties 
(i)-(iii) above, for some particular a E (0, 1). Then there exists an 
operator S satisfying the hypothesis of Theorem 2.1, and a real number r, 
such that 

E(w) G exp(rw) exp(-w(--S)a). 

Proof of Theorem 2.1. (i) Let 0 < b < I, and let p and C be the 
corresponding constants from condition (b). Consider a curve r, 
given by Re x + 6 = C 1 Im x ]lD, oriented in the direction of 
increasing imaginary part. We may assume C > C,, , so that for small 
enough 6 > 0, I’, lies in S,, . As x E l-‘, approaches infinity, we have 
I/(x1 - A)-l 11 = O(l x lb--l), / arg z 1 + (n/2), and arg(-(-zz)a) + 
rr - a(rr/2). Hence we may write 

B(w) = (l/2&) Irb exp(-w(-z)“)(& - A)-l dz 

for 1 arg w I -c (~r/2) - a(n/2), where the integral is independent 
of b. The holomorphic semigroup property follows as in [2]. 



344 ALBERT0 GUZMAN 

(ii) As observed in Sect. 1, the infinitesimal generator of 
(B(t): t > O> has a closure T, defined by 

TX = A2( l/2&) J’, -(-z)” z-~(.zI - A)-% dx 

whenever the right side is meaningful. Moreover, by the methods of 
the previous section, particularly in Lemma 1.5, we can show that 
any complex v lying to the right of the image {-(-z)~: x E F,) is in 
the resolvent set of T, and we have 

(WI- T)-l = (l/24 j (w + (--z)a)-l(zl - A)-l dz. (2.1) 
r!J 

It follows that the resolvent set of T contains all but a bounded 
subset of any sector of the form j arg v / < 7r - a(7r/2) - I-, E > 0. 

Suppose that 1 arg v ] < ?T - avr - E. Then in (2.1), we may 
deform I’,, so that it closes from above and below onto the nonnegative 
real ray (see [4].) Equation (2.1) then becomes 

(wI - T)-1 = + jm e(w2 - 20~ cos mr + ~~~)-l(rl- A)-’ dr, 
0 

and it follows that ll(vI- T)-lI/ < D / e, j--l for large 1 v I, D = D(E). 
Suppose, next, that 7~ - ar + E < 1 arg v 1 < n - a(r/2) - E, 

with v still to the right of (--(-z)? z E F,}. Then the process of 
deforming r, to the real ray involves crossing a singularity of 
(v + (-z)“)-l. However, the singularity is a simple pole, and so by 
the residue theorem, we obtain 

(WI - T)-l = (1/27ri) j (w + (-~)Q)-~(zl - -4-l dz 
i2+exp(*oi) 

- Res[(v + (-N-W - A)-l]Z,+u)l~O , 

or 

(wl - q-1 = s?yz jm ~$2 - 2wra cos UT + rza)-l(rI - A)-l dr 
0 

+ (l/a)(--vp w-“((-w)‘/“I + J-1 (2.2) 

Because 1 arg(-(-v)lla)l < (7~/2) - (t-/a), conditions (a) and (b) 
guarantee that 11 w-‘(-a)lla(A + (--v)‘N)-~ 11 is dominated by 
D(E) I v 1-l. The same is, therefore, true for the entire right side of 
equation (2.2). 
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Finally, if r - an - E < 1 arg v / < q - as- + 4, then equation 
(2.1) guarantees, at least, that ll(w1 - T)-lII = O(l v Iwk) for some 
k > 0. 

In view of the preceding three paragraphs, by the Phragmen-Lindelof 
theorem, we have ll(~1- T)-l /I = O(l o i-i), as ZJ ---t cc in any 
sector 1 arg v I < 7~ - a(vr/2) - E. By a theorem of Hille ([3, 
Theorem 12.8.1]), it follows that T generates a semigroup of class 
H(-(7r/2)(1 - a), (7r/2)(1 - a)) (in Hille’s notation). This semigroup 
must be {B(w)), b ecause T contains the generator of (B(w)); then (ii) 
is true by Hille’s definition. 

(iii) Henceforth, for any number 4 > 1, we shall use the 
familiar notation 4’ = q/(4 - 1). q and q’ are related by 
(l/q) + (l/P’) = 1. 

Let 0 < c < 1. Referring to condition (b), we may take b = ac; 
let p and C be the corresponding constants. We may write 

B(w) = (l/24 / exp(-w(-z)3(zl- A)-l dz. 
rb 

We have Il(z1- A)-l Ij = O(l z I”-‘) as z ---t co along r, . 
Assume 0 Q arg w = (7r/2) - a(a/2) - q; similar reasoning ap- 

plies if arg w is negative. Write r, = r+ u r-, with I’+ = {z E r, : 
Im z >, 01, r- = r, - I’+. Let C, > max(Re(-(-zX)a): z E r+}. If 
z E r+, then 1 arg w[-(-~)a - CJj > (n/2) + E, E depending on 
C, , but independent of z and w. Therefore 

1 exp(w[-(-z)” - Gl)l < exp(--I w I I z IQ sin 4, 

and 

1) (1/271-i) 1 
I-f 

exp(-w(-z)o)(J - A)-l dz I! 

= (l/257) exp(C, Re w) 11 s 
r+ 

exp(-w(-z)” - wC,)(Z~ - A)-1 dz 11 

< exp(C, Re w) C, Irn exp(-1 w 1 rQ sin 6) Y”C-~ dr 
0 

= D, 1 w I--c exp(D, I w I). (2.3) 

Suppose z E r-. We may write arg(-(-z)a) = -= + +/2) + 0, 
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where 1 0 ] = 18(z)] < (7r/2) - E, for some E independent of z. Then 

cos(arg w + arg(-(-z)“)) = cos((~/2) - a(r/2) - v - m + a(77/2) + 0) 

= sin(0 - v) = sin 8 cos 9) - cos 13 sin v 

< sin 0 - cos((n/2) - c) sin v. 

Writing C, = cos(7r/2 - E), we find 

exp(Re(-w(--z)O)) < exp(l w 1 1 x ]“[sin 0 - C, sin ~1). (2.4) 

Now arg z = -n + (n/2) + (0/u) = -(7r/2) + (e/a). Hence 
sin(@) = cos(arg x) = Re x/l z 1 = O(l z /l/p--l) = O(] x j--l/p’) as 
z + co. But as x -+ co, 0 -+ 0’. Hence for large / x I, sin 8 is approx- 
imable by a sin(e/a) = O(l z I- Ilk w ), h ere k = p’. We conclude that 
there is C, such that sin B < C, 1 z I-rlk. Equation (2.4) then yields 

exp(Re(-w(-z)a)) < exp(C, I w I I z la-ilk - C, j w I I z Ia sin p)). 

Because C, I w 1 ta-llk - ?$I?, / w I ta sin y has maximal value, for 
t > 0, of the form C, I w I (sin ~)l-~~, we find 

exp(Re(-w(--z)a)) < exp(C, I w I(sin ~)l-@~) exp(-+C, I w I I x Ia sin F), 

and finally 

// (l/2&) J” 
r- 

exp(-w(--zp)()(zl - A)-’ dz )I 

< C, exp(C, ) w /(sin y)leak) jam exp(-C, I w ) ra sin v) Y*+~ dr 

= C,(l w 1 sin F)-~ exp(C, 1 w [(sin y)l-““). 

Since we may assume ak = up’ > 1 (by taking p, originally, close 
to I), it follows 

IIS I/ *.f < C, 1 w I+ exp(C, 1 w I(sin (p)leaK). 
r- 

We combine this with (2.3), and the proof is complete. 

Proof of Theorem 2.2. Assuming that (E(w)) has the properties 
(i), (ii), (iii), then so does {J!?(W)}, where E(w) = exp(--rw) E(w), for 
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any fixed real r. In addition to (iii), therefore, replacing E(w) if 
necessary by E(w) (with some large r), we may assume 

II WY = O(exp(--St)) as t + co, t real, for some positive 6. (2.5) 

From (ii) and (2.5), we know that the infinitesimal generator T of 
E(w) is a closed, densely defined operator. Further, the resolvent set 
of T contains the right-hand half-plane, and 

(WI - T)-l = jrn exp(--ot) E(t) dt for Re o > 0. 
0 

LEMMA 2.3. Suppose 0 < c < 1. Then there are constants Ml , 
M, , and k, such that whenever 1 arg v / = rr - a(rr/2) - 9 with v > 0 
and 1 v 1 (sin y~))“~ > Ml , then (VI - T)-l is defined, and 

ll(wI - T)-l I/ < &I,(1 w 1 sin p))“-‘. 

Proof. Given c, let k, D, , and D, be the constants arising from 
property (iii). We take Ml = 2ak+1DZ. Assume 0 < arg v < 7r - a(r/2) 
and 1 v 1 (sin v)“” > Ml ; again, the treatment is analogous if arg v is 
negative. 

Let L be the ray arg x = -(n/2) + a(r/2) + (v/2), oriented away 
from the origin, and consider 

R(w) s S, exp(-wz) E(z) dz. (2.6) 

If z EL, arg vz = (r/2) - (q/2), so that 

By (iii), 

I exp(-wz)l = exp(-1 x I I z, I sin(v/2)). 

Since 

II E@)ll < 4 I .Z IP exp(l x I D,(sin q~,)‘--““). 

( w I sin(v/2) > 4 I v I sin v > 2QkD,(sin v)ldak > 2D,(sin(v/2))l-@*, 

the integral in (2.6) is absolutely convergent. Consequently, equation 
(2.6) defines a holomorphic function R(v), for v as stated. Clearly 
R(v) coincides with J’r exp(-vt) E(t) dt = (VI - T)-l if Re v > 0. 
Thus the existence of (VI- T)-l is established. 
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Returning to (2.6), we have seen 

I exp(-4 = exp(-I 27 I I 2, I sin(vP>>, 

II J%)ll G Dl I z P exp(l z I 4kW$W--ak), 
and 

Hence 

D,(sin(q/2))l+k < I- 1 v I sin(cp/2). 

II R@ll G jam DI I r I-’ exp(-$r I v I siW2)) dr 

= M3(l w 1 sin(v/2)>“-l 

= M,(I 0 1 sin QJ)C-~, 

with M, dependent on c, but not upon 1 z, / or IJX Q.E.D. 

From the lemma, it is clear that the resolvent set of T contains all 
but a bounded subset of any sector of the form / arg T.I 1 < 
7r - a(7r/2) - q+J . We shall fix 4p,, so that 7 - a(9r/2) - q+, > 7r/2. 
Replacing T, if necessary, by T - sl (with a corresponding change to 
exp(-$4 E(w)), f or some real S, we may assume that (~1 - T)-l 
is defined for all z, in a sector of the form 

Iarg(vf3 <77-47d2>-~~, some 6 > 0. 

Given 0 < c < 1, define a contour G = G(c) as follows: Let k 
and M, be the corresponding constants in Lemma 2.3; then G is the 
union of the three sets 

(w: Re w = -8, j arg v 1 >, T - a(77/2) - &, 

{v: Re er < 4, I arg et 1 = Z= - a(~r/2) - q0 , and 1 w I(sin q#” < MI}, 

(w: Re z, < 4, 1 arg w ) = m - 4742) - q~, where 0 < cp < v0 

and I z, I(sin 9)“” = MI}. 

We orient G toward increasing imaginary part. 
As in the previous section (see the remarks preceding Lemma 1.5), 

we can define an operator by writing 

S(n, c)x = P( l/274 s, -( -sy v-“(VI - z-)-lx dw. (2.7) 

Here we make n > (l/u) + 1, and S(n, c)x is defined for exactly 
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those x for which the integral in the right side of (2.7) belongs to 
9(Tn). Then S(n, c) will be independent of R and c, and represents a 
closed, densely defined operator S. The same methods show that S 
has a resolvent, given by 

(ZI - q-1 = (l/24 s, (x + (-fp)-l(d - q-1 de, (2.8) 

whenever x is to the right of the image {-( -w)W ZI E G}. Clearly the 
resolvent set contains a neighborhood of the origin. 

LEMMA 2.4. (i) There exist constants p, > 1 and C, > 0, such 
that (xl - S)-l exists for Re z >, C, / Im z Illpo. 

(ii) Given 0 < b < 1, there are constants C and p, C > 0 and 
p,, > p > 1, such that I/(x1 - S)-l Ij = O(l x I”-‘) as x --f 00 with 
Re z > C ( Im z /l/p. 

(iii) In each sector 1 arg z I < (7r/2) - E, E > 0, we have 

~I(zI - S)-1 I/ = O(l z I-‘) as z-+co. 

Proof. (i) Recalling the notation of Lemma 2.3, choose any fixed 
c = co, and let k = k, be the corresponding constant. We may 
assume k, > 1; it then suffices to take p, = k,‘. 

For et approaching infinity along G = G(c,,), we have j arg ~1 1 = 
rr - 47712) - v, where sin ‘p = 0( / z, I-llako). Then 1 arg(-(-r.J)r/“)l = 
(7r/2) - (~/a), and again sin(y/a) = O(l ‘u ]--llako). Therefore 
Re(-(-v)+) = O(/ ZJ Illa / w l-llako) = O(l v J1laP$ It follows that 
some set Re x > C, I Im z I1/Po lies entirely to the right of the image 
{-( --v)lk w E G}. 

(ii) Given b, take c so that c < (b/4a). For k corresponding 
to c, we may assume ak > l/c and k > p,‘. 

Because k’ < p, , by part (i) of the lemma, (~1 - S)-1 exists 
whenever Re z > C, I Im z I1lk’ and is given by 

@I- S)-l = (l/274 s,,,, (z + (-o)~~“)-~(w~- Z-)-l dw. 

If ‘u E G = G(c), then 

jl(wI - T)-l 11 < C& w 1 sin P))+~ < C, 1 w l@-l)/(ak)’ 

Choose p such that 1 < p < k’ and d = p(l - b) < 1 - (2b/3). 
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Take C so large that if Re a > C 1 Im x /l/p, then the distance 
between z and (-(-w)l@: w E G) exceeds Q Re z >, C, [ z \llP, and 
the distance between -(-w)“” and x exceeds Re(-(--w)lla) > 
C,(l z1 Illa)l@‘. Then there is C, such that 

and so 

ll(zI - S)-1 11 < C, 1 z I--dl* Lrn j w I(d-l)P’ 1 w I(c-l)j(ak)’ d 1 ZJ 1. (2.9) 

For the exponents in the integrand, we have 

>+-&zC)>& 

>1--&-&>l-& 

Therefore (1 - d)/ak’ + (1 - c)/(ak)’ > 1, and (2.9) yields 

l/(zl- q-1 I/ < c, 1 z I--d/P = O(l z I”-‘). 

(iii) Here the argument parallels one used in proving 
Theorem 2.1 (ii). For a given E > 0, there is K > 0 such that 

(zl - S)-l = (l/274 JG (z + (-v)““)-~(w~ - T)-l dw (2.10) 

whenever 1 arg x I = (7r/2) -v < (7r/2) - E and I z I > K. Here G is G(c) 
for any fixed c. If z is not on either of the rays IW+ exp(&+r - (r/a)]), 
then we may deform G onto the nonnegative real ray. Then 

(l/24 s, (x + (-~)~/~)-~(vl- T)-l dv (2.11) 

= -c + $!!f!E 6 yw (yw - 2rw cos 5 + ~a)-’ (~1 - T)-l dr, 

where .E represents the sum of the residues of the integrand 
(.~~.ze(---o)l~~)-~ (~1 - T)-l at the finite number of points 

-(-ql” zzz z. If q, is such a point, the residue is 
o,(-v,)ll~(v,J - T)-l = -~x-~v,(v,~ - T)-l. All such points v,, are 
contained in the sector j arg v / < n - u(P/~) - a~. By Hille’s 
theorem ([5, Theorem 12&l]), owing to property (ii) of Theorem 2.1, 
jj v~(v,~ - T)-l /I < K, = KI(e). It follows that /[ Z // is dominated by 
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K,(E) ] x 1-l. The same is true of the integral in the right side of (2.11). 
Combining (2.10) and (2.1 l), we have l\(z.Z - S)-lII = O(\ x 1-l) as 
a --t co, except possibly near the two rays R+ exp(&i[q - (r/u)]). 
The conclusion of (iii) now follows by an application of the Phragmen- 
Lindelof principle. Q.E.D. 

From Lemma 2.4, it is clear that S satisfies the hypothesis of 
Theorem 2.1. Therefore we can define exp( -w( -S)“), 1 arg w j < 
(7r/2) - 442). F rom the proof of Theorem 2.1 (ii), {exp( - w( - S)“)) 
is generated by -(-Sp, where 

(- S)“x = S2( l/24 s, (-z)” z-“(~1 - S)-*x dx (2.12) 

whenever the right side has meaning. By choosing I’, and G appro- 
priately, we find (note equation (2.8)) 

(1/2ti) s, (-z)” x-+1 - S)-l dz 

= W7Ti) s, (- 1 z Q z-7 l/274 j- (z + ( -v)‘/“)-‘(WI - T)-l du dz 
G 

= UP4 J’, UP74 s, (- > z a r2(z + (-o)l/“)-l dz (VI- T)-l dv 

= (l/24 s, ( --er)1-2+l - T)-l dw 

= - T( l/24 j- ( -v)~/‘“(vI - T)-l dv 
G 

= --S--2. 

By virtue of (2.12), we conclude -(-S)” = T.But T generates 
E(w). More precisely, in view of the remarks preceding equation (2.5) 
and following the proof of Lemma 2.3, T generates exp(-rw) E(w), 
for a real Y. It follows exp(-w(-S)a) = exp(-rw) E(w), and the 
proof of Theorem 2.2 is complete. 

Observations similar to those at the end of Section 1 hold true for 
the family of operators -(--A)a, 0 < a < 1. Thus, the operators 
have the expected properties of powers. We also have the result 
corresponding to Theorem 1.6, with an analogous proof. That is, if 
we start with an operator A and define exp(-w(--A)a) as in 
Theorem 2.1, then the process of Theorem 2.2 applied to E(w) = 
exp(-w(--A)a) recovers the operator S = A. 
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