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We consider an Abelian N = 4 super Yang–Mills theory coupled to background N = 4 conformal
supergravity fields. At the classical level, this coupling is invariant under global SU(1,1) transformation
of the complex (“dilaton–axion”) supergravity scalar combined with an on-shell N = 4 vector–vector
duality. We compute the divergent part of the corresponding quantum effective action found by
integrating over the super Yang–Mills fields and demonstrate its SU(1,1) invariance. This divergent
part related to the conformal anomaly is one-loop exact and should be given by the N = 4 conformal
supergravity action containing the Weyl tensor squared term. This allows us to determine the full non-
linear form of the bosonic part of the N = 4 conformal supergravity action which has manifest SU(1,1)

invariance.
© 2012 Elsevier B.V. Open access under CC BY license.
1. Introduction

The N = 4 conformal supergravity (CSG) as formulated in [1]
should have global SU(1,1) or SL(2, R) symmetry acting on the
singlet complex scalar (described by a 4-derivative analog of the
SU(1,1)/U (1) coset sigma model).2 While the complete N = 4 su-
perconformal transformation laws were written down in [1], the
full non-linear action of such N = 4 conformal supergravity was
not explicitly constructed so far. The aim of this Letter is to find
the full bosonic part of such action.

This manifest SU(1,1) symmetry is in general broken if one
couples the N = 4 CSG to N = 4 super Yang–Mills (SYM) theory
[2,3]. It is, however, preserved in a weaker “on-shell” form in the
case when the N = 4 SYM theory is Abelian: the resulting equa-
tions of motion are invariant under the SU(1,1) acting not only on
the complex scalar but also on the Abelian SYM vector via vector–
vector duality transformation.3 This symmetry is then inherited by
the equations of motion of the N = 4 Poincaré supergravity [5] as
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1 Also at Lebedev Institute, Moscow.
2 To make this symmetry linearly realized one may introduce also a spurious local

U (1) symmetry.
3 This on-shell symmetry can be promoted to a manifest symmetry of the ac-

tion (at the expense of manifest Lorentz symmetry) if one uses a phase-space type
formulation where one doubles the number of vectors, see, e.g., [4].
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it can be obtained [2] from a system of 6 Abelian vector multiplets
coupled to the N = 4 conformal supergravity multiplet.4

As was found in [7,8], the SU(1,1) invariant N = 4 CSG of [1]
has non-zero beta-function or conformal anomaly and is thus in-
consistent at the quantum level unless it is coupled to four N = 4
vector multiplets (see [9] for a review). This conclusion was con-
firmed in [10] on the basis of analysis of the local SU(4) chiral
anomaly (which is in the same multiplet with trace anomaly).

At the same time, it was suggested in [7,8] that there might
exist an alternative version of N = 4 CSG without the SU(1,1)

invariance in which a non-minimal coupling of the singlet scalar
to the square of the Weyl tensor may be present. For a particular
value of such coupling the resulting “non-minimal” N = 4 CSG can
be made UV finite by itself, i.e. without adding extra N = 4 vector
multiplets [7].5 Curiously, a similar type of “non-minimal” N = 4
conformal supergravity seems to emerge [11] in the twistor-string
[12] context.

The coupling between N = 4 SYM and N = 4 CSG multi-
plets appears also in the context of the AdS/CFT correspondence

4 This can be done by partial gauge fixing and solving for some of the CSG fields
that in the absence of the pure CSG action play a role of auxiliary fields [2,3]. Po-
tential importance of superconformal formulation of N = 4 Poincaré supergravity
was recently emphasised in [6].

5 It is not clear, however, how this conjecture can be reconciled with the SU(4)

anomaly cancellation study [10] which does not seem to be sensitive to such non-
minimal terms. That suggests a potential problem with realization of supersymme-
try which should be requiring that all superconformal anomalies should belong to
one supermultiplet.
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[13–15]: the N = 4 SYM path integral with the CSG fields as
external “sources” may be interpreted as a generating functional
for correlators of particular 1/2 BPS operators (dimension 2 chi-
ral primary operator and its supersymmetry descendants, i.e. the
fields of the stress tensor multiplet dual to N = 8, d = 5 super-
gravity fields). After integrating over the quantum SYM fields, the
conformal supergravity action should then be the coefficient of
the logarithmic divergence in the resulting effective action. In that
limited sense the N = 4 CSG may be interpreted as an “induced”
theory.6

Since the superconformal anomaly should be 1-loop exact, the
result for the logarithmic divergence should be given just by the
1-loop contribution.7 This also means that the divergent term is
not sensitive to the non-Abelian structure of the SYM theory, i.e.
it is sufficient to consider just one Abelian N = 4 vector multiplet
coupled to the external N = 4 CSG multiplet and do the Gaussian
integral over the N = 4 vector multiplet fields.

As the full non-linear form of the coupling between the N = 4
SYM and CSG multiplets is known [2,3], and since the one-loop
logarithmic divergence of the N = 4 vector multiplet fields is de-
termined by a relevant Seeley coefficient of the corresponding 2nd-
order matrix differential operator (with coefficients depending on
the external CSG fields) it should thus be straightforward to recon-
struct the full non-linear form of the resulting N = 4 CSG action
using the standard algorithm [16], i.e. one should get [14]

Γ∞ = −(ln ZN=4 SYM)∞ = kIN=4 CSG, k = − N2

4(4π)2
lnΛ,

(1.1)

IN=4 CSG =
∫

d4x
√

gLN=4 CSG =
∫

d4x
√

g
(
C2 + · · ·), (1.2)

where N is the number of N = 4 vector multiplets, Λ is a UV cut-
off. Here IN=4 CSG should be the CSG action as it starts with the
Weyl tensor squared C2 term (up to total derivative Euler density
term): since IN=4 CSG should inherit all the symmetries of N = 4
conformal supergravity by construction8 and contains the C2 term
it must represent the complete non-linear action of N = 4 confor-
mal supergravity.

In particular, since the coupling between an Abelian N = 4 SYM
and N = 4 CSG multiplets preserves the scalar SU(1,1) symmetry
combined with a duality rotation of the N = 4 SYM vector [2]
and since the latter is integrated over in the path integral, the
resulting “induced” CSG action should have manifest (off-shell)
SU(1,1) symmetry.9 This was already demonstrated in [19] in the
subsector of the standard SL(2, R) invariant scalar–vector coupling
(e−σ Fmn Fmn − iCFmn F �

mn). Here we will demonstrate this for the
full N = 4 vector–CSG coupling case, thus determining the full

6 The full SYM effective action in CSG background contains of course also a fi-
nite non-local part, see [14]. While the divergent part will preserve all the classi-
cal superconformal symmetries, the finite non-local part will contain non-invariant
anomalous terms.

7 It is thus the same at weak and at strong SYM coupling and can be also found
by evaluating the d = 5 supergravity action on the solution of the corresponding
Dirichlet problem (from the cutoff-dependent part of the resulting expression [14]).

8 The invariance of the divergent part can be seen explicitly if one uses, e.g.,

dimensional regularization. Let Γreg = 1
n−4 Γdiv + Γfin be the regularized effective

action. Then under a superconformal transformation δΓreg = (n − 4)A, so that
δΓdiv = 0 and δΓfin = A (see, e.g., [17] for details).

9 This follows, e.g., from the fact that the vector–vector duality may be performed
as a change of variables in the path integral (in full analogy with 2d scalar–scalar
or T-duality). More precisely, while the logarithmically divergent part of the path
integral should be invariant its finite part may contain a local term not invariant
under the SU(1,1), similarly to what happens in the 2d case where the dilaton
shifts under the T-duality (see [18] and references there).
SU(1,1) invariant form of the bosonic part of the N = 4 CSG ac-
tion.

This computation is of interest as the complete non-linear form
of the N = 4 CSG action was not explicitly given before. The terms
in the CSG action which are quadratic in the non-metric fields (but
non-linear in the metric) can be reconstructed [7,9] by requiring
the Weyl symmetry and reparametrization invariance, but higher-
order terms are hard to determine directly.10 The non-linear terms
of N = 4 CSG action should of course reduce to the corresponding
terms in the full N = 2 CSG action which was found in [1]; this
provides a non-trivial check.

As the “induced” CSG action we find below is manifestly
SU(1,1) invariant, an apparent absence of an alternative to the
SU(1,1) invariant coupling [2] between the Abelian N = 4 SYM
and N = 4 CSG multiplets appears to rule out the possibility of
some SU(1,1) non-invariant “non-minimal” conformal supergrav-
ity model.

We shall start in Section 2 with a review of the Lagrangian of
an Abelian N = 4 vector multiplet coupled to (bosonic part of)
N = 4 conformal supergravity background. In Section 3 we shall
compute the UV divergent part of the effective action found by
integrating over the vector multiplet fields and show that the re-
sulting SU(1,1) invariant expression has the expected structure of
the N = 4 CSG action. A short summary will be given in Section 4.

2. N = 4 Abelian vector multiplet coupled to external N = 4
conformal supergravity

Let us start with a review of the action [2] for an Abelian N = 4
vector multiplet in a background of N = 4 conformal supergravity.
We shall denote the vector multiplet fields as A = {Am,ϕi j,ψi}.
In what follows m,n, r, s = 1,2,3,4 are space–time indices and
i, j,k, l = 1,2,3,4 are SU(4) indices. The scalar fields satisfy the
conditions

ϕi j = −ϕ ji = −1

2
εi jklϕ

kl, ϕ i j = (ϕi j)
∗. (2.1)

For the fermions ψ i = P+ψ i transforms as 4 of SU(4), and ψi ≡
P−ψ i = (ψ i)∗ , ψ̄ i ≡ ψ̄ i P+ , ψ̄i ≡ ψ̄ i P− , where P± are chiral pro-
jectors.

The bosonic CSG fields [1] are G = {ea
m, V i

jm, T −i j
mn , ζ, Eij, Dij

kl},

while the fermionic fields are {ψ i
m,Λi,χ

i j
k}. In what follows we

shall consider only the bosonic CSG background.
Here ea

m is the vierbein, V i
jm is SU(4) gauge field potential,

T −i j
mn are complex antisymmetric anti-self-dual tensors of dimen-

sion 1 transforming in 6 of SU(4) (T −i j
mn = − 1

2 εmn
pq T −i j

pq ) while
(ζ, Eij, Dij

kl) are Lorentz scalars of dimensions 0, 1 and 2 respec-
tively (i.e. they have 4, 2 and 0 derivatives in their kinetic term
in CSG action [1,9]). The complex scalars Eij = E ji are in repre-
sentation 10 of SU(4), while Dij

kl are in real representation 20
(Dij

kl = Dkl
i j = (Dij

kl)
∗ = 1

4 εi ji′ j′εklk′l′ Dk′l′
i′ j′ ).

In [1] the physical complex scalar ζ is replaced by a doublet of
complex scalars φα with

φαφα = φ1φ
∗
1 − φ2φ

∗
2 = 1, φ1 = (φ1)

∗, φ2 = −(φ2)
∗,
(2.2)

by adding a local U (1) gauge symmetry. Then φα transforms under
global SU(1,1) as well as local U (1), φ′

α = e−iγ (x)Uβ
αφβ , i.e. has the

10 In principle, they can be reconstructed using the Noether procedure given that
the full non-linear supersymmetry transformation rules are known (and close off-
shell on CSG fields) [1].
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U (1) chiral weight −1.11 Then only φα transforms under SU(1,1)

but other fields with non-zero chiral weights transform under local
U (1), i.e. all fields with derivative couplings and non-zero chiral
weights couple to the scalar U (1) connection through the covariant
derivative (Ω is the chiral weight)

Dm = ∂m − iΩam, am = iφα∂mφα. (2.3)

The scalar connection am is invariant under the SU(1,1) and trans-
forms by a gradient under the U (1).

The general form [2] of the N = 4 vector multiplet Lagrangian
(before U (1) gauge fixing) may be written as [2] L = LB + LF ,
with the bosonic part12

LB = 1

4
iτ (φ)F +

mn F +
mn − 1

4
iτ̄ (φ)F −

mn F −
mn

−
(

1

Φ
T +

mnij F +
mnϕ

i j + 1

Φ∗ T −i j
mn F −

mnϕi j

)

− 1

2

(
Φ∗

Φ
T +

mnij T
+
mnklϕ

i jϕkl + Φ

Φ∗ T −i j
mn T −kl

mn ϕi jϕkl

)

− 1

2
Dmϕ i jDmϕi j

− 1

12

(
R + 1

2
Ekl Ekl + 2DmφαDmφα

)
ϕ i jϕi j

+ 1

4
Dij

klϕklϕ
i j, (2.4)

iτ (φ) ≡ −φ∗
1 + φ∗

2

φ∗
1 − φ∗

2
, iτ̄ (φ) = φ1 + φ2

φ1 − φ2
,

Φ(φ) ≡ φ∗
1 − φ∗

2 , Φ∗ = φ1 − φ2, (2.5)

and the fermionic part

LF = −1

2
ψ̄ i/Dψi − 1

2
ψ̄i/Dψ i − 1

4
Eijψ̄

iψ j − 1

4
Eijψ̄iψ j

+ 1

4
εikljψ̄

iσmn T −kl
mn ψ j + 1

4
εikljψ̄iσmn T +

mnklψ j. (2.6)

In general, the derivative Dm contains the gravitational ∇m part as
well as the SU(4) gauge potential (Vm), in addition to the U (1)

term (am) in (2.3) (note that the bosonic vector multiplet fields
have zero chiral weights while ψi has weight −1/2).

While the Fmn(A) dependent part of the action (2.4) is not in-
variant under SU(1,1) acting on φα , it was shown in [2] that the
corresponding equations of motion (written in first-order form)
are invariant provided one also “duality-rotates” the vector field
strength as in the closely related case of the Poincaré supergrav-
ity [5].

Our aim will be to integrate over the vector multiplet fields
{Am,ϕi j,ψi} in (2.4), (2.6) and compute the divergent part of the
resulting effective action. For this we do not need to fix the local
U (1) symmetry and may treat the scalar functions τ (φ), Φ(φ) and
am as arbitrary background fields. Equivalently, we may choose to
fix the spurious local U (1) by a “physical” gauge, e.g., φ1 = φ∗

1 [1,2]

φ1 = (
1 − ζ ζ ∗)−1/2

, φ2 = ζ
(
1 − ζ ζ ∗)−1/2

, (2.7)

11 Other CSG fields having non-zero chiral weights are: T −i j
mn (−1); E(i j) (-1);

Λi (− 3
2 ); χ

[i j]
k (− 1

2 ); ψ i
μ (− 1

2 ). The Q -susy parameter εi has weight 1/2.
12 We use Euclidean signature with imaginary time (fourth) component, with
ε1234 = 1. For simplicity we shall often ignore trivial metric factors not distinguish-
ing between coordinate and target-space indices (which are always contracted with
Euclidean signature metric so we will often not raise them in the contractions). Self-
dual parts of 2nd rank tensors are defined as F ±

mn = 1
2 (Fmn ± F �

mn), F +
mn = (F −

mn)∗ ,

F �
mn = 1

2 εmnpq F pq .
where the complex scalar ζ (taking values in the disc |ζ | � 1) is
an independent degree of freedom. Then am is no longer an invari-
ant of a redefined SU(1,1) acting on ζ (that preserves the gauge
condition) but it changes only by a gradient. Explicitly,13

am = i
ζ∂mζ ∗ − ζ ∗∂mζ

2(1 − ζ ζ ∗)
,

Fmn(a) ≡ ∂[man] = i
∂[mζ∂n]ζ ∗

(1 − ζ ζ ∗)2
. (2.8)

Instead of ζ it is useful to use the complex scalar which is directly
equal to the scalar–vector coupling τ (φ) in (2.4)

τ ≡ C + ie−σ = i
φ∗

1 + φ∗
2

φ∗
1 − φ∗

2
= i

1 + ζ ∗

1 − ζ ∗ , (2.9)

am = i
∂m(τ + τ̄ )

4 Imτ
+ 1

2
∂m ln

τ + i

τ̄ − i
,

Fmn(a) = i∂[mφα∂n]φα = i
∂[mτ∂n]τ̄
4(Imτ )2

. (2.10)

The transformation from ζ to τ in (2.9) maps a unit disc into half-
plane, so that τ transforms as τ → aτ+b

cτ+d under the corresponding
SL(2, R) equivalent to original SU(1,1) (see, e.g., [20]). One has in
(2.5)

iτ̄ = g−2 + iC, ΦΦ∗ = g2 = (Imτ )−1, g ≡ eσ/2. (2.11)

Note also that14

−4Dm∂αDm∂α = 4
∂mζ∂mζ ∗

(1 − ζ ζ ∗)2

= ∂mτ∂mτ̄

(Imτ )2
= (∂mσ)2 + e2σ (∂mC)2. (2.12)

3. Divergent part of N = 4 SYM effective action in conformal
supergravity background

The UV divergent part of the SYM effective action in the CSG
background is related to conformal anomaly and thus should be
given to all orders by the 1-loop logarithmically divergent term.
To determine the latter one may just consider a single Abelian
vector multiplet action (2.4), (2.6) quadratic in A = {Am,ϕi j,ψi}
but keeping full dependence on the (bosonic) background fields
G = {ea

m, V i
jm, T −i j

mn , ζ, Eij, Dij
kl}. As already mentioned, while it is

not necessary to fix the U (1) gauge for concreteness we will be
expressing all the scalar functions in terms of the complex scalar
τ in (2.9)–(2.12).

The 1-loop effective action is given by the contribution of the
mixed vector–scalar sector, the vector ghosts and the fermions

Γ = 1

2
ln DetH1,0 − ln DetHgh − 1

2
ln DetH1/2, (3.1)

where H are second-order matrix differential operators, depending
on the background fields G . Then

Γ∞ = − 1

(4π)2
lnΛ

∫
d4x

√
g(a2)N=4 tot, (3.2)

where the diagonal DeWitt–Seeley coefficient a2 of the generic op-
erator

13 In our notation here A[n Bm] = An Bm − Am Bn .
14 Here Dmφα = (∂m + iam)φα , see (2.3). Dm∂αDm∂α is manifestly SU(1,1)

invariant, and thus invariant under the SL(2, R) acting on τ , with Imτ →
1

(cτ+d)(cτ̄+d)
Imτ , ∂mτ → 1

2 ∂mτ .

(cτ+d)
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HAB = −1AB ∇̂2 + 2hm
AB∇̂m + ΠAB (3.3)

has the following form [16]

a2 = tr

[
1

180

(
Rmnrs Rmnrs − Rmn Rmn + ∇2 R

)
+ 1

6
∇2 P̂ + 1

2
P̂ · P̂ + 1

12
F̂mnF̂mn

]
,

P̂ AB = ΠAB − 1

6
R1AB − ∇̂mhm

AB + hmAC hm
C B ,

F̂mnAB = [∇̂m, ∇̂n]AB − ∇̂[mhn]AB + h[mAC hn]C B . (3.4)

Here ∇̂m is given by the gravitational covariant derivative ∇m plus
possible extra gauge (SU(4) and U (1)) field potentials for unmixed
fields, while hm

AB accounts for the mixing between different types
of fields.

The vector–scalar operator originating from (2.4) may be writ-
ten as

H1,0 =
⎛
⎜⎝

H1 −2g
−−→
Dm

1
Φ∗ T −kl

mn −2g
−−→
Dm

1
Φ

T +
mnkl

2T +
i jnm

1
Φ

−→
Dn g H0

Φ∗
Φ

T +
i j · T +

kl

2T −i j
nm

1
Φ∗

−→
Dn g Φ

Φ∗ T −i j · T −kl H0

⎞
⎟⎠ ,

(3.5)

where g = eσ/2 is a coupling function (see (2.11)), Dm = ∇m +
iam − Vm and

(H0)
kl
i j =

(
−D2 + 1

6
R + 1

12
M

)
1kl

i j − 1

2
Dij

kl,

M = Ekl Ekl + 4DmφαDmφα. (3.6)

The fermionic operator can be found by squaring the first-order
operator in (2.6)

−1

2

(
ψ̄ i ψ̄i

)(
/Dδ

j
i P− ( 1

2 Eij + σ · T −
i j )P+

( 1
2 Eij + σ · T +i j)P− /Dδi

j P+

)

×
(

ψ j

ψ j

)
. (3.7)

Here Dm = ∂m + 1
2 σabω

ab
m + i

2 am − Vm and P± are chiral projectors.

3.1. Vector–scalar sector

Let us start with the contribution of the vector–scalar sector (in
which we will include also the ghost contribution). Ignoring first
the vector–scalar mixing due to the T −i j

mn background in (2.4) one
is to account for the presence of a non-trivial scalar background-
dependent factor in the vector kinetic operator H1. This issue was
dealt with already in [19] in the case of a simple vector coupling
in the first line of (2.4) and we will follow the same approach here.

Choosing the gauge fixing term as g2[∇m( 1
g2 Am)]2 where g =

eσ/2 and redefining Am → g Am the vector operator H1 may be
written as (here C is the real part of τ in (2.9))

H1mn = gmn
(−∇̃2 + Π

) + Πmn, (3.8)

Πmn = Rmn + g4∇m
1

g2
∇n

1

g2
− g2∇m∇n

1

g2

+ 1

2
g4(gmn∇rC∇rC − ∇mC∇nC),

Π = 1

2
g2∇2 1

g2
− 1

4
g4∇m

1

g2
∇m

1

g2
,

∇̃m An ≡ ∇m An − i
g2εmn

rs∇rCAs. (3.9)

2

The corresponding ghost operator is

Hgh = −∇2 + Π. (3.10)

Then in addition to the standard single-vector gravitational contri-
bution to a2 [21]15

(a2)1 grav = 1

10
C2 − 31

180
E, (3.11)

C2 = Rmnpq Rmnpq − 2Rmn Rmn + 1

3
R2,

E ≡ R�R� = Rmnpq Rmnpq − 4Rmn Rmn + R2,

C2 − E = 2

(
R2

mn − 1

3
R2

)
, (3.12)

there is also a non-trivial scalar background contribution [19]
(∇mτ = ∂mτ )

S(τ ) = 1

4(Imτ )2

[
D2τD2τ̄ − 2

(
Rmn − 1

3
R

)
∇mτ∇nτ̄

]

+ 1

48(Imτ )4
(∇mτ∇mτ∇nτ̄∇nτ̄ + 2∇mτ∇mτ̄∇nτ∇nτ̄ ),

D2τ ≡ ∇2τ + i

Imτ
∇mτ∇mτ ,

D2τ̄ ≡ ∇2τ̄ − i

Imτ
∇mτ̄∇mτ̄ . (3.13)

The quadratic part of this 4-derivative action is the same as found
for the singlet scalar kinetic term in the CSG action [9]. The full
non-linear expression (3.13) is invariant under the SL(2, R) act-
ing on the local scalar coupling τ = C + ig−2 [19] (note, e.g., that

1
Imτ D2τ → cτ̄+d

cτ+d
1

Imτ D2τ ).
To compute the scalar contribution we need to account for the

reality constraints (2.1): we may solve them explicitly16 or formally
do the summation over i, j in (3.5), adding extra 1/2 factor in the
final result.

The operator (3.5) has the form (3.3) where

1AB =
⎛
⎜⎝

gmn 0 0

0 1kl
i j 0

0 0 1i j
kl

⎞
⎟⎠ , ∇̂mAB =

⎛
⎝ ∇̃m 0 0

0 Dm 0

0 0 Dm

⎞
⎠ ,

hmAB =
⎛
⎜⎝

0 T −kl
nm

g
Φ∗ T +

nmkl
g
Φ

T +
i jmr

g
Φ

0 0

T −i j
mr

g
Φ∗ 0 0

⎞
⎟⎠ ,

ΠAB − 1

6
R1AB

=
⎛
⎝Πmn + gmn(Π − 1

6 R) −2gDr(
1

Φ∗ T −kl
rn ) −2gDr(

1
Φ

T +
rnkl)

2T +
i jrm

1
Φ

∇r g − 1
2 Dij

kl + 1
121kl

i j M Φ∗
Φ

T +
i j · T +

kl

2T −i j
rm

1
Φ∗ ∇r g Φ

Φ∗ T −i j · T −kl − 1
2 Dij

kl + 1
121i j

kl M

⎞
⎠ .

(3.14)

15 We include the ghost contribution and ignore the scheme-dependent total
derivative term ∇2 R .
16 A solution to these constraints may be chosen as

ϕi j =

⎛
⎜⎜⎜⎝

0 ϕ12 ϕ13 ϕ14

−ϕ12 0 −ϕ∗
14 ϕ∗

13

−ϕ13 ϕ∗
14 0 −ϕ∗

12

−ϕ14 −ϕ∗
13 ϕ∗

12 0

⎞
⎟⎟⎟⎠ ,

∂mϕ i j∂mϕi j = 4
(
∂mϕ∗

12∂mϕ12 + ∂mϕ∗
13∂mϕ13 + ∂mϕ∗

14∂mϕ14
)
.
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Also,

F̂rs = [∇̂r, ∇̂s] − ∇̂[rhs] + h[rhs]

=
⎛
⎜⎝

−Rnmrs + T −kl
[n[r T +

s]m]kl −∇̃[r(T −kl
ns]

g
Φ∗ ) −∇̃[r(T +

ns]kl
g
Φ

)

−D[r(T +
i js]m

g
Φ

) Frs(V ) T +
i j[rt T +

klts]
Φ∗
Φ

−D[r(T −i j
s]m

g
Φ∗ ) T −i j

[rt T −kl
ts]

Φ
Φ∗ Frs(V )

⎞
⎟⎠.

(3.15)

Applying the algorithm in (3.4) to this operator we find the total
vector–scalar sector (1 vector, 6 real scalars) contribution to the
logarithmic divergence coefficient

(a2)1,0 =
(

1

10
+ 6

120

)
C2 −

(
31

180
+ 6

360

)
E + S(τ )

+ 1

6
F 2

mn(V ) + 1

48
M2 + 1

8
Dij

kl Dkl
i j

+
(

2

3
+ 2

)
Dr T −kl

rm Ds T +
smkl

+
(

2

3
+ 1

)
Rmn T −kl

mr T +
rnkl −

∇nτ∇mτ̄

(Imτ )2
T −i j

nr T +
rmi j

+ T −i j
ma T +

ani j T
−kl
mb T +

bnkl +
2

3
T −i j

ma T +
ani j T

−kl
mb T +

bnkl

− 1

3
T −i j

mn T +
abi j T

−kl
mn T +

abkl. (3.16)

Here M and S were defined in (3.6), (3.13).

3.2. Fermionic sector

Let us now determine the fermionic contribution to (3.2).
Squaring the operator in (3.7) and putting it into the form (3.3)
gives

H1/2 = −
(

δk
i P+ 0

0 δi
k P−

)
D2

+
(Rk

i + eije jk (/Deik)

(/Deik) Ri
k + eije jk

)(
P+ 0
0 P−

)

+ 2

(
0 T −

ikmrγr

T +ik
mr γr 0

)(
P+ 0
0 P−

)
Dm,

Rk
i ≡ 1

4
Rδk

i − σrs F k
i rs(V ) + 1

2
δk

i σrs Frs(a),

eij ≡ 1

2
Eij + σ · T −

i j . (3.17)

The corresponding matrices P̂ and F̂ in (3.4) are

P̂ =
(

Y k
i (/Deik) − DmT −

ikmnγn

(/Deik) − DmT +ik
mn γn Y i

k

)(
P+ 0
0 P−

)
,

Y k
i ≡ 1

12
Rδk

i − σrs F k
i rs(V )

+ 1

2
δk

i σrs Frs(a) + eije
jk + T −

i jrm T + jk
ms γrγs, (3.18)

F̂sr =
(

Z j
i sr −D[s T −

ikr]mγm

−D[s T +ik
r]m γm Z j

i sr

)
,

Z j
i sr ≡ 1

2
Rsr

mnσmnδ
j
i + F j

i sr(V )

− 1
δ

j
i F sr(a) + T −

ik[sm T +kj
r]n γmγn. (3.19)
2

This gives (for the number nF = δi
i of Weyl fermions)17

1

2
tr P̂ 2 = nF

[
1

72
R2 − 1

4
F 2

mn(a)

]
− F 2

mn(V )

+ 1

12
R Eij Ei j + 1

8
Eij E jk Ekl E

li

− 2DmT −
klmrDn T +kl

nr + 1

2
Dr EklDr Ekl, (3.20)

1

12
tr F̂mnF̂mn = 1

12

[
nF F 2

mn(a) + 4F 2
mn(V )

− 1

2
nF Rsrmn Rsrmn + 8Rsr

mn T −
klsm T +kl

rn

+ 8
(
2T −

mrik T +kj
rn T −

msjl T
+li
sn − T −

mnik T +kj
rs T −

mnjl T
+li
rs

)
− 8Ds T +i j

sm Dr T −
rmi j

]
. (3.21)

Then finally we get for the corresponding a2 coefficient in (3.4)
(here nF = 4 and we include the minus sign in front of the
fermionic contribution in (3.1))

(a2)1/2 = 1

10
C2 − 11

180
E + 1

3
F 2

mn(V ) + 1

3
F 2

mn(a)

− 1

4

(
Dm EijDm Eij + 1

6
R Eij Ei j

)
− 1

16
Eij E jk Ekl E

li

+ 4

3
DmT +

i jmrDn T −i j
nr + 1

3
RmnT −kl

mr T +
rnkl

+ 1

3

(
2T −ik

mr T +
rnkj T

− jl
mr T +

rnli − T −ik
mn T +

rskj T
− jl
mn T +

rsli

)
. (3.22)

This expression is obviously SU(1,1) invariant.

3.3. Final result

The total N = 4 vector multiplet contribution (a2)N=4 tot is
given by the sum of (3.16) and (3.22). It thus starts with (a2)1,0 +
(a2)1/2 = 1

4 (C2 − E) + · · · = 1
2 (R2

mn − 1
3 R2) + · · · . The complete ex-

pression may be written as

(a2)N=4 tot = 1

4
LN=4 CSG, (3.23)

LN=4 CSG = 2

[
Rmn − 1

4

∇(mτ∇n)τ̄

(Imτ )2
+ 2T −i j

mr T +
rni j

]2

− 2

3

[
R − ∇mτ∇mτ̄

2(Imτ )2

]2

+ 2F i
jmn(V )F j

i mn(V )

+ 1

(Imτ )2

∣∣∣∣∇2τ + i

Imτ
∇mτ∇mτ

∣∣∣∣
2

+ 16Dr T −i j
rm Ds T +

smij

+ 4

3

(
2T −ik

mr T +
rnkj T

− jl
ms T +

snli − T −i j
mr T +

rni j T
−kl
ms T +

snkl

)
− Dr Ei jDr Ei j − 1

6

(
R − ∇mτ∇mτ̄

2(Imτ )2

)
Eij Ei j

− 1

6
Eij E jk Ekl E

li + 1

2
Dij

kl Dkl
i j. (3.24)

17 Note the following identities

T −ik
mn T +

kjmn + T −
jkmn T +ki

mn = − 1

2
δi

j T −kl
mn T +

klmn, T −
ms T +

sn = T −
ns T +

sm,

Rmnsr T −
ms T +

nr = −Rmn T −
ms T +

sn.
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This should represent (up to an overall factor of 1/4, cf. (1.1), (3.2))
the bosonic part of the full N = 4 conformal supergravity La-
grangian.

This expression passes several checks. The resulting action (1.2)
is Weyl-invariant; in particular, all the fields have the expected
Weyl-invariant kinetic terms. Also, the truncation to N = 2 theory
(when i, j = 1,2) is consistent with the known non-linear action
of N = 2 supergravity [1].

The resulting CSG Lagrangian is invariant under the global
SU(1,1), supporting the proposal [1] about the existence of the
full non-linear N = 4 CSG action with such symmetry.

The final expression in (3.24) may be rewritten in the man-
ifestly SU(1,1) invariant form with local U (1) invariance by re-
placing the SL(2, R) invariants built out of derivatives of τ by the
corresponding combinations involving φα as in (2.10), (2.12), or
by using the direct relation between τ and φα in (2.9) in the
gauge (2.7). In particular, for the double-derivative term in (3.13),
(3.24) one has D2τD2 τ̄

4(Imτ )2 = (εαβφαD2φβ)(εγ δφ
γ D2φδ).

4. Summary

The above computation of divergent term in the N = 4 SYM ef-
fective action in conformal supergravity background allowed us to
find the complete SU(1,1) symmetric action of N = 4 conformal
supergravity in the bosonic sector. We used that the divergent part
of the effective action is local, preserves all the symmetries of the
underlying classically superconformal theory and starts with the
Weyl tensor squared term.

The fermionic part of the N = 4 conformal supergravity action
can be found by the same method. Indeed, the N = 4 SYM–CSG
coupling given in [2] contains all the required fermionic terms.
This is still straightforward but technically more involved.

Acknowledgements

A.A.T. would like to thank R. Kallosh and R. Roiban for discus-
sions of related models. The work of I.L.B. and N.G.P. was partially
supported by RFBR grant, project No. 12-02-00121 and by a grant
for LRSS, project No. 224.2012.2. Also, I.L.B. acknowledges the sup-
port of the RFBR-Ukraine grant, project No. 11-02-90445 and DFG
grant, project No. LE 838/12-1. N.G.P. acknowledges the support of
the RFBR grant, project No. 11-02-00242. The work of A.A.T. was
supported by the STFC grant ST/J000353/1 and by the ERC Ad-
vanced grant No. 290456.

References

[1] E. Bergshoeff, M. de Roo, B. de Wit, Nucl. Phys. B 182 (1981) 173.
[2] M. de Roo, Nucl. Phys. B 255 (1985) 515.
[3] M. de Roo, Phys. Lett. B 156 (1985) 331;

M. de Roo, P. Wagemans, Nucl. Phys. B 262 (1985) 644.
[4] S. Deser, C. Teitelboim, Phys. Rev. D 13 (1976) 1592;

J.H. Schwarz, A. Sen, Nucl. Phys. B 411 (1994) 35, arXiv:hep-th/9304154.
[5] E. Cremmer, J. Scherk, S. Ferrara, Phys. Lett. B 74 (1978) 61;

E. Cremmer, B. Julia, Nucl. Phys. B 159 (1979) 141.
[6] S. Ferrara, R. Kallosh, A. Van Proeyen, Conjecture on hidden superconformal

symmetry of N = 4 supergravity, arXiv:1209.0418.
[7] E.S. Fradkin, A.A. Tseytlin, Nucl. Phys. B 203 (1982) 157;

E.S. Fradkin, A.A. Tseytlin, Phys. Lett. B 110 (1982) 117.
[8] E.S. Fradkin, A.A. Tseytlin, Phys. Lett. B 134 (1984) 187.
[9] E.S. Fradkin, A.A. Tseytlin, Phys. Rep. 119 (1985) 233.

[10] H. Romer, P. van Nieuwenhuizen, Phys. Lett. B 162 (1985) 290.
[11] N. Berkovits, E. Witten, JHEP 0408 (2004) 009, arXiv:hep-th/0406051.
[12] E. Witten, Comm. Math. Phys. 252 (2004) 189, arXiv:hep-th/0312171.
[13] S. Ferrara, C. Fronsdal, A. Zaffaroni, Nucl. Phys. B 532 (1998) 153, arXiv:hep-

th/9802203.
[14] H. Liu, A.A. Tseytlin, Nucl. Phys. B 533 (1998) 88, arXiv:hep-th/9804083.
[15] A.A. Tseytlin, Theor. Math. Phys. 133 (2002) 1376; Teor. Mat. Fiz. 133 (2002)

69, arXiv:hep-th/0201112.
[16] B.S. DeWitt, Dynamical Theory of Groups and Fields, Gordon and Breach, New

York, 1965;
P.B. Gilkey, J. Diff. Geom. 10 (1975) 601.

[17] I.L. Buchbinder, Theor. Math. Phys. 61 (1984) 1215; Teor. Mat. Fiz. 61 (1984)
393.

[18] R. Roiban, A.A. Tseytlin, On duality symmetry in perturbative quantum theory,
arXiv:1205.0176 [hep-th].

[19] H. Osborn, Phys. Lett. B 561 (2003) 174, arXiv:hep-th/0302119.
[20] J.H. Schwarz, Dilaton–axion symmetry, arXiv:hep-th/9209125.
[21] M.J. Duff, Nucl. Phys. B 125 (1977) 334;

M.J. Duff, Class. Quantum Grav. 11 (1994) 1387, arXiv:hep-th/9308075.


	"Induced" N=4 conformal supergravity
	1 Introduction
	2 N=4 Abelian vector multiplet coupled to external N=4 conformal supergravity
	3 Divergent part of N=4 SYM effective action in conformal supergravity background
	3.1 Vector-scalar sector
	3.2 Fermionic sector
	3.3 Final result

	4 Summary
	Acknowledgements
	References


