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monic irreducible polynomials over finite fields by showing that
similar explicit formula holds for the number of irreducible poly-
nomials obtained by a fixed quadratic transformation. Our main
tools are a combinatorial argument and Hurwitz genus formula.
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1. Introduction

Let Fq denote the finite field with q elements, where q is a prime power, and let Fq[x] denote
the polynomial ring over Fq . For f (x), a polynomial of degree m over Fq whose constant term is
nonzero, its reciprocal is the polynomial f ∗(x) = xm f (1/x) of degree m over Fq . A polynomial f (x)
is called self-reciprocal if f ∗(x) = f (x). The reciprocal of an irreducible polynomial is also irreducible.
The roots of the reciprocal polynomial are the reciprocals of the roots of the original polynomial, and
hence, any self-reciprocal irreducible monic (srim) polynomial of degree greater than one must have
even degree, say 2n.

Self-reciprocal irreducible polynomials over finite fields have been studied by many authors. Car-
litz [3] counted the number of srim polynomials of degree 2n over a finite field for every n. He
showed the following.

E-mail address: omran.ahmadi@ucd.ie.
1071-5797/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.ffa.2011.02.009

https://core.ac.uk/display/82471128?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.ffa.2011.02.009
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ffa
mailto:omran.ahmadi@ucd.ie
http://dx.doi.org/10.1016/j.ffa.2011.02.009


474 O. Ahmadi / Finite Fields and Their Applications 17 (2011) 473–480
Theorem 1. (See [3].) Let SRIM(2n,q) denote the number of srim polynomials of degree 2n over Fq. Then

SRIM(2n,q) =
⎧⎨
⎩

1
2n (qn − 1), if q is odd and n = 2m,

1
2n

∑
d|n,

d odd
μ(d)qn/d, otherwise.

In [4,6], Cohen and Meyn, respectively, obtained the same result by methods simpler than that
was used by Carlitz in [3].

In [1], it has been shown that if K is a field and p(x) ∈ K [x] is a self-reciprocal polynomial of
degree 2n, then for some f (x) ∈ K [x] of degree n, we have

p(x) = xn f
(
x + x−1) = xn f

(
x2 + 1

x

)
. (1)

This implies that self-reciprocal irreducible monic polynomials can be studied in the context of
quadratic transformation of irreducible polynomials. A quadratic transformation of an irreducible poly-
nomial f (x) of degree n over Fq is the polynomial

p(x) = h(x)n f

(
g(x)

h(x)

)
, (2)

where g(x) and h(x) ∈ Fq[x] are coprime polynomials with

max
(
deg(g),deg(h)

) = 2.

Now it is natural to ask whether there exists a similar explicit formula for the number of irre-
ducible polynomials of a fixed degree which have been obtained from other irreducible polynomials
by applying a fixed quadratic transformation. In this paper we show that in fact this is the case and
for any fixed quadratic transformation, we determine the number of irreducible polynomials of degree
n over a finite field whose transformation is also irreducible. Our result generalizes Carlitz’s result—
Carlitz’s formula for the number of srim polynomials can be recovered from our result. It should also
be mentioned that in [7], the authors have developed a general framework for counting some families
of irreducible polynomials including srim polynomials over finite fields. The results of [7] have some
overlap with results of this paper although techniques are quite different.

The remainder of this paper is organized as follows. In Section 2, we state the main result of
the paper. In Section 3, we gather some preliminary results which will be used in Section 4 which
contains the proof of the main result. Finally we conclude by Section 5 which contains some remarks
and comments.

In this paper T (m,q) denotes the set of elements from Fqm which are not in any proper subfield
of Fqm .

2. Main result

Throughout this section and Section 4 we assume that g(x) = a1x2 + b1x + c1 and h(x) = a2x2 +
b2x + c2.

Theorem 2. Let q be a prime power, and let g(x) and h(x) ∈ Fq[x] be relatively prime polynomials with
max(deg(g),deg(h)) = 2. Also let I(n,g,h) be the set of monic irreducible polynomials f (x) of degree n > 1

over Fq whose quadratic transformation by g(x) and h(x), i.e. p(x) = h(x)n f ( g(x)
h(x) ), is irreducible over Fq.

Then
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#I(n,g,h) =

⎧⎪⎪⎨
⎪⎪⎩

0, if b1 = b2 = 0 and q = 2l,
1

2n (qn − 1), if q is odd and n = 2m, m � 1,

1
2n

∑
d|n,

d odd
μ(d)qn/d, otherwise.

Notice that Carlitz’ result follows from the above theorem for g(x) = x2 + 1 and h(x) = x.

3. Preliminaries

In this section we gather some results which will be used in the rest of the paper to prove the
main result of the paper.

3.1. Polynomial transformation of irreducible polynomials

The following lemma is known as Capelli’s lemma and can be found in [4] too.

Lemma 3. Let f (x) be a degree n irreducible polynomial over Fq, and let g(x),h(x) ∈ Fq[x]. Then p(x) =
h(x)n f (g(x)/h(x)) is irreducible over Fq if and only if for any root α of f (x) in Fqn , g(x) − αh(x) is an
irreducible polynomial over Fqn . In fact in order to show that p(x) is irreducible over Fq, it suffices to show that
g(x) − αh(x) is an irreducible polynomial over Fqn for some root α of f (x) in Fqn .

3.2. Resultant and discriminant

We begin this section by recalling the Resultant of polynomials over a field K . For a more detailed
treatment see [5, Chapter 1, pp. 35–37].

Let F (x) and G(x) ∈ K [x] and suppose F (x) = a
∏s−1

i=0 (x − xi) and G(x) = b
∏t−1

j=0(x − y j), where
a,b ∈ K and x0, x1, . . . , xs−1, y0, y1, . . . , yt−1 are in some extension of K . Then the Resultant,
Res(F , G), of F (x) and G(x) is

Res(F , G) = (−1)stbs
t−1∏
j=0

F (y j) = at
s−1∏
i=0

G(xi). (3)

Notice that Res(F , G) = 0 if and only if F (x) and G(x) have a common root in some extension
of K . Thus if Res(F , G) �= 0, then F (x) and G(x) are coprime. There is another formulation of resultant
of two polynomials which is easier to compute with as follows. Suppose g(x) = a1x2 + b1x + c1 and
h(x) = a2x2 +b2x+c2 (for the formula for polynomials of higher degrees see [5, Chapter 1, pp. 35–37]).
Then

Res(g,h) =

∣∣∣∣∣∣∣

a1 b1 c1 0
0 a1 b1 c1
a2 b2 c2 0
0 a2 b2 c2

∣∣∣∣∣∣∣
. (4)

The following lemma which is probably already somewhere in the literature will be needed later.
It follows from direct calculations. The right-hand side of (5) can be calculated using (4), and the
left-hand side can be calculate using the usual formula for the discriminant of quadratic polynomials,
and then equality of two sides can be checked.

Lemma 4. Suppose g(x) = a1x2 + b1x + c1 , h(x) = a2x2 + b2x + c2 and let y be an indeterminate. Then

Discy
(
Discx

(
g(x) − yh(x)

)) = 16 Res(g,h), (5)

where Discx and Discy indicate that discriminant is taken with respect to variables x and y, respectively.
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3.3. Hurwitz genus formula

Lemma 5. (See [8, Theorem 5.9].) Let P
1(Fq) denote the one-dimensional projective space over Fq (algebraic

closure of Fq) , and let φ : P
1(Fq) → P

1(Fq) be a non-constant separable map. Then

2 degφ − 2 �
∑
P∈P1

(
eφ(P ) − 1

)
,

where eφ(P ) is the ramification index of φ at P . Equality holds if and only if eφ(P ) is not divisible by the
characteristic of Fq for all P ∈ P

1(Fq).

4. Proof of the main theorem

Proof. Let f (x) be a monic irreducible polynomial of degree n over Fq . Using Lemma 3, p(x) is irre-
ducible over Fq if and only if for any root α of f (x) in Fqn , g(x) − αh(x) is irreducible over Fqn . Thus

in order to compute the number of irreducible polynomials p(x) = h(x)n f ( g(x)
h(x) ) over Fq it suffices to

compute the number of elements β ∈ T (n,q) for which

rβ(x) = g(x) − βh(x)

is irreducible in Fqn [x] and divide the result by n.
Now for m = 1,2,3, . . . , let

U (m,q) = {
β: β ∈ T (m,q), rβ(x) is irreducible and quadratic over Fqn

}
. (6)

Notice that

#I(n,g,h) = 1

n
#U (n,q).

It turns out that we first need to compute the number of elements of some auxiliary sets. Thus let

U (n,q) = {
β: β ∈ Fqn , rβ(x) is irreducible and quadratic over Fqn

}
, (7)

and

V (n,q) = {
β: β ∈ Fqn and ∃γ ∈ Fqn s.t. g(γ ) = βh(γ )

}
. (8)

If for β ∈ Fqn , rβ(x) is not a constant polynomial over Fqn , then it is either irreducible over Fqn

or it has exactly two roots in Fqn and gets factored as a product of two linear polynomials over Fqn .
Thus if we let c be the number of β ∈ Fqn for which rβ(x) is a constant polynomial over Fqn , then

#V (n,q) = qn − c − #U (n,q). (9)

In order to compute #V (n,q) we do a double counting as follows. Suppose that

W (n,q) = {
(γ ,β): γ ,β ∈ Fqn ; g(γ ) = βh(γ )

}
. (10)
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For every γ ∈ Fqn , there is a unique β ∈ Fqn so that g(γ ) = βh(γ ) unless γ is a root of h(x) = 0.
Now let the number of roots of h(x) = 0 be a. Since deg(h(x)) � 2, we have a � 2. Thus

#W (n,q) = qn − a; a � 2. (11)

On the other hand for every β ∈ V (n,q) there are either one or two γ ∈ Fqn such that
g(γ ) = βh(γ ). In order to compute #V (n,q) we need to know how many elements in V (n,q) have
exactly one preimage and how many have exactly two preimages. We deal with the fields of odd and
even characteristic separately:

• Fields of even characteristic: we have two cases:
– b1 = b2 = 0: for every β ∈ V (n,q) there is exactly one γ ∈ Fqn such that g(γ ) = βh(γ ). In fact

in this case p(x) is always a square of a polynomial over Fq and hence the transformation by
g(x) and h(x) does not result in any irreducible polynomial. This proves one of the cases of the
main theorem. So in the rest of the paper we prove the remaining cases.

– Either b1 or b2 is nonzero: for every β ∈ V (n,q) the equation

rβ(x) = g(x) − βh(x) = (a1 − βa2)x2 + (b1 − βb2)x + (c1 − βc2) = 0

has exactly two solutions in Fqn unless either rβ(x) is a linear polynomial or b1 −βb2 = 0. Each
case can happen for at most one value of β .

• Fields of odd characteristic: for every β ∈ V (n,q) there are exactly two γ such that g(γ ) = βh(γ ),
unless either

rβ(x) = (a1 − βa2)x2 + (b1 − βb2)x + (c1 − βc2)

is a linear polynomial, or it is a quadratic polynomial with a repeated root and hence its discrim-
inant

w(β) = Disc(h)β2 + (4a1c2 + 4c1a2 − 2b1b2)β + Disc(g) (12)

is zero. The linear case can happen for at most one value of β . In the quadratic case with repeated
roots, we claim that Eq. (12) can be zero for at most two values of β . It suffices to show that w(β)

is not identically zero. Suppose that w(β) is identically zero. Then all the coefficients of w(β) are
zero and hence Disc(w(β)) = 0. But using Lemma 4 we have

Disc
(

w(β)
) = 16 Res(g,h).

This is a contradiction since we have assumed that g(x) and h(x) are relatively prime and do not
have a common root.

Now if we let d be the number of β for which rβ(x) is a linear polynomial and b be the number
of β for which rβ(x) is a quadratic polynomial and β has one preimage, then d � 1 and the above
arguments show that b � 2. From this fact and Eq. (11) we deduce that

#V (n,q) = #W (n,q) + b + d

2
= qn − a + b + d

2

or equivalently

#U (n,q) = qn + a − b − d − 2c = qn + a − b − 2c − d
. (13)
2 2
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Having computed #U (n,q) we can compute #U (n,q). We claim that

#U (n,q) =
∑
d|n

d odd

#U (n/d,q). (14)

Notice that if β ∈ U (m,q) and m | n, then β ∈ U (n,q) if and only if n/m is an odd number since
otherwise Fqn contains a quadratic extension of Fqm and hence rβ(x) is not irreducible over Fqn any
more. This proves (14).

Using (13) and applying Möbius inversion we get

#U (n,q) = 1

2

∑
d|n

d odd

μ(d)
(
qn/d + a − b − 2c − d

)

= 1

2

∑
d|n

d odd

μ(d)qn/d + a − b − 2c − d

2

∑
d|n

d odd

μ(d). (15)

Now if n is not a power of two and hence has at least two odd positive divisors, then we have

∑
d|n

d odd

μ(d) = 0,

and thus

#U (n,q) = 1

2

∑
d|n

d odd

μ(d)qn/d.

This finishes the proof for the case of n not being a power of two. On the other hand if n = 2m for
some m � 1, then

#U (n,q) = 1

2

(
qn + a − b − 2c − d

)
.

In the sequel, we show that a − b − 2c − d = −1 if Fq is of odd characteristic and a − b − 2c − d = 0
if Fq is of even characteristic. In order to prove this we can use elementary arguments and consider
many cases but here we use Hurwitz genus formula, Theorem 5, to give a shorter proof.

Now let Φ be a map defined over one-dimensional projective space over Fq as follows

Φ : P
1(Fq) → P

1(Fq),

Φ
([X : Y ]) = [

a1 X2 + b1 XY + c1Y 2 : a2 X2 + b2 XY + c2Y 2].
Over the fields of odd characteristic, Φ is obviously separable and non-constant and furthermore

since over fields of even characteristic we have assumed that either b1 or b2 is nonzero, it is sep-
arable over the fields of even characteristic, too. Thus one can apply Theorem 5 to the map Φ and
conclude that over fields of odd characteristic Φ has two ramification points and over fields of even
characteristic it has just one ramification point.

Now in order to avoid confusion in the rest of the proof, let ∞1 and ∞2 denote the points at
infinity at the domain and range of the map Φ , respectively. In this setting, as we are assuming that



O. Ahmadi / Finite Fields and Their Applications 17 (2011) 473–480 479
n = 2m for some m � 1, all the x and β related to a,b, c,d are in Fq2 and thus a is the number of
finite preimages of ∞2, b is the number of finite ramification points with finite image, c is one if ∞1
is a ramification point and it image is finite and zero otherwise, and d is the number of finite points
which have two preimages one of them being ∞1.

Suppose that Fq is of odd characteristic. If ∞2 is a branch point (its preimage is a ramification
point), then its preimage Φ−1(∞2) is either ∞1 or finite. If Φ−1(∞2) is ∞1, then a = 0, b = 1 as we
can have one more ramification point, c = 0 as there is no finite branch point having ∞1 as preimage
and d = 0 as there is no finite non-branch point having ∞1 as preimage. If Φ−1(∞2) is finite, then
a = 1 and there is one more ramification point. If ∞1 is ramified, then it is mapped to a finite point
and hence b = 0, c = 1 and d = 0. If ∞1 is unramified, then its image is finite and hence b = 1 as
there should be two ramified points, c = 0 and d = 1.

If ∞2 is not a branch point, then either it has two finite preimages or it has one finite preimage.
If it has two finite preimages, then a = 2, either b = 1, c = 1 and d = 0 if ∞1 is a ramification point
or b = 2, c = 0 and d = 1 if ∞1 is not a ramification point. If ∞2 has one finite preimage, then a = 1,
b = 2, c = 0 and d = 0.

We see that in all the cases if the characteristic of Fq is an odd number, then a − b − 2c − d = −1.
Similar arguments show that in the case of fields of even characteristic a − b − 2c − d = 0. This

finishes the proof as if n = 2m and q is a power of two then

1

2

∑
d|n

d odd

μ(d)qn/d = 1

2
qn. �

5. Comments

5.1. Alternative proof approach

Since rβ(x) is irreducible over fields of odd characteristic if and only if its discriminant is a
non-square in Fqn , another approach that can be used to prove the main result for fields of odd
characteristic is to see for how many β the discriminant of rβ(x) is a non-square and for how many β

it is a square in Fqn . This can be done using the following well-known lemma. The following lemma
implies that a quadratic polynomial over a finite field of odd characteristic is a square almost as many
times as it is a non-square.

Lemma 6. (See [5, Theorem 5.48].) Let q be an odd prime power, and let f (x) = a2x2 +a1x+a0 ∈ Fq[x] where
a2 �= 0. Let η be the quadratic character of Fqn . If Disc( f ) �= 0, then

∑
c∈Fqn η( f (c)) = −η(a2).

5.2. Palindromic primes

It is well known that the number I(2n,q) of irreducible polynomials of degree 2n over Fq is

I(2n,q) = 1

2n

∑
d|2n

μ(d)q2n/d,

and the probability that a random monic polynomial of degree 2n is irreducible over Fq is roughly 1
2n .

On the other hand, the number of polynomials of degree 2n obtained from a fixed quadratic transfor-
mation is qn . Thus Carlitz’ result and our result implies that the number of irreducible polynomials
among the polynomials obtained by a quadratic transformation is roughly what one would expect.
In [2], it was shown that

Number of palindromic primes � x written in base g

Number of palindromic numbers � x written in base g
= O

(
log log log x

log log x

)
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where the implied constant depends only on the base g and conjectured that

Number of palindromic primes � x written in base g

Number of palindromic numbers � x written in base g
∼ C

1

log x

or roughly speaking palindromic numbers with respect to primality behave like random integers.
Carlitz’ result can be viewed as an affirmative answer to their conjecture in the finite field setting.
Now we wonder what the analogue of our result is for the integer numbers and if one can establish
results similar to those of [2]?
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