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A b s t r a c t - - I n  this paper, some fixed-point theorems for discontinuous multivalued operators on 
ordered spaces are proved. These theorems improve the earlier known fixed-point theorems of [1,2]. 
The main fixed-point theorems are applied to first-order discontinuous differential inclusions for 
proving the existence of extremal solutions under certain monotonicity conditions. (~) 2006 Else- 
vier Ltd. All rights reserved. 

K e y w o r d s - - F i x e d - p o i n t  theorem, Functional differential inclusion. 

1. I N T R O D U C T I O N  

It  is known tha t  the  algebraic f ixed-point  theorems are useful in proving the  existence theorems 
for ex t remal  solut ions of nonlinear differential and integral  equat ions involving discontinuities.  
See [3,4] and  the  references therein.  Similarly, the  f ixed-point  theorems for mul t ivalued opera tors  

on ordered Banach spaces are useful for proving the existence of ex t remal  solut ions of discontin- 
uous differential  and integral  inclusions. Recently, some fixed-point  theorems for discontinuous 
mult ivalued mappings  are proved in [1,2,5], which are further appl ied to discontinuous differential 

inclusions for proving the existence of minimal  and maximal  solutions under cer ta in  monotonic i ty  

conditions.  Note t h a t  all these f ixed-point  theorems are proved in complete  lat t ices under  s t r ic t ly  

monotone increasing na ture  of the  mul t ivalued maps.  I t  is worthwhile to  ment ion tha t  all the  

ordered Banach spaces are not  complete  latt ice,  therefore it is desirable to improve the above 
fixed-point  theorems of Dhage [1], Dhage and O 'Regan  [2] to an a rb i t r a ry  ordered Banach space 
under  sui table  conditions.  

In this  article,  we present  some algebraic f ixed-point  theorems for mul t iva lued opera tors  on 
ordered spaces and discuss some of their  appl icat ions  to opera to r  inclusions involving two mul- 

t ivalued opera to rs  as well as to f irst-order bounda ry  value problems of discontinuous differential 
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inclusions for proving the existence theorems for extremal solutions under generalized monotonic- 
ity conditions. 

2. A U X I L I A R Y  R E S U L T S  

As our approach is more applied than mere theoretical, we rather restrict ourselves to the 
ordered metric spaces, however the results presented here can be extended to the abstract  setting 
of ordered topological and ordered spaces in a natural  way. 

In what  follows, let X denote an ordered metric space with a metric d and an order relation _<. 
Then, X becomes a ordered topological space, where the topology on X is induced by the metric d 
on it. A sequence {xn} of points of X is called monotone increasing if 

X l  <:__ X 2  ~__ . . .  <~ X n  <,~ . . .  . 

Similarly, a sequence {xn} of points of X is called monotone decreasing if 

xl>_x2>_...>_xn>_.... 

Finally, a sequence {xn) is called monotone if it is either monotone increasing or monotone 
decreasing on X. 

The following crucial result concerning the convergence of a monotone sequence is proved in [6]. 

LEMMA 2.1. H a  monotone increasing (resp., monotone decreasing) sequence {xn} of points in X 
has a cluster point, then it is a supn x~ (resp., infn xn). 

Let 7~(X) and Pp(X)  denote, respectively, the class of all subsets and the class of all nonempty 
subsets of X with the property p. Thus, Pal(X),  Pbd(X)  and Pep(X) denote, respectively, the 
classed of all closed, bounded, and compact  subsets of X.  A mapping Q : X --* Pp(X)  is called 
a multivalued mapping or a multivalued operator on X and a point u E X is called a fixed point 
of Q if u E Qu. 

We consider the following notations in the sequel. 
Let 

M -- {x E X I x  _< y for some y E Q(x)} 

and 
L - - - - { x E X I x _ > y  for s o m e y E Q ( x ) } .  

THEOREM 2.1. Let X be an ordered metric space and let 

Q: X -~ Pep(X). 

Assume tha t  

(Qo) the set M # 0, 
(Q1) x l  <_ yl E Qxl implies yl <-- y2 for some y2 E Qyl, and 
(Q2) every monotone increasing sequence {yn} defined by y~ E Qxn, n = 0, 2 . . . .  ; converges. 

whenever {xn} is a monotone increasing sequence in X.  

Then, Q has a fixed point. 

Similarly, we have the following. 

THEOREM 2.2. Let X be an ordered metric space and let Q : X ~ Pep(X).  Assume that 

(Q0) the set L ~ 0, 
(Q1) Xl ~-- Yl E QXl implies Yl >- Y2 [or some Y2 e Qyl, and 
(Q2) every monotone decreasing sequence {yn} defined by yn E Qxn, n = 0, 2 , . . .  ; converges, 

whenever (xn} is a monotone decreasing sequence in X .  

Then, Q has a fixed point. 

The proofs of Theorems 2.1 and 2.2 appear in [7] and are based on the welt ordered chains of 

generalized Q-iterations on M and L, respectively. We omit the details. 
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3 .  O R D E R E D  B A N A C H  S P A C E S  

Let R denote the real line and X a real Banach space. A closed subset  K of X is called a cone 
if it satisfies 

(i) K + K C _ K ,  
(ii) A K C K f o r a l l A • R  + , a n d  

(iii) { - K }  M K - 0, where 0 is a zero element of X. 

A cone K in X is said to be normal if the norm is semimonotone on X,  tha t  is, if x, y E X,  and 
x <_ y imply [IxH _< NiiY[l for some constant  N > 0. A cone K is regular if every monotone and 
order bounded sequence in X is convergent in norm. Again a cone K is said to be fully regular 
if every monotone  and norm-bounded sequence in X is convergent in norm. The  details of cones 
and their propert ies may be found in [4,8]. We define an order relation < with  the help of the 
cone K in X as follows. Let x, y • X.  Then, 

x <_y va y -  x E K. (3.1) 

The  Banach space X together  with a order relation _~ is called an ordered Banach space and it 
is denoted by (X, _<). Let  a, b • (X, <)  be such tha t  a _< b. Then,  the order interval [a, b] is a set 
in X to be defined by 

[a,b] = {x  E X l a _< x _< b}. (3.2) 

In the following, we define an order relation in Pp(X) useful in the sequel. Let A, B • P d ( X ) .  
Then, by A < B, we mean a < b, for all a • A and b E B. In part icular,  a < A implies a < b for 
all b • B, and if A _< A, then it follows tha t  A is a singleton set. 

The  above order relation in Pp(X) has been used in [2,5,9,10] in the s tudy of ext remal  solutions 
for differential and integral equations. 

DEFINITION 3.1. A multivalued mapping Q : X --* Pp(X) is cMled strictly monotone increasing 
if x < y, then Qx <_ Qy for all x, y • X .  Similarly, a multivalued mapp ing  Q : X ~ 7)p(X) is 
called strictly monotone decreasing if x < y, then Qx > Qy for a/l x, y • X.  

THEOREM 3.1. Let  [a, b] be a order interval in a subset Y of an ordered Banach space X and let 
Q : [a, b] ~ Pcp([a, b]) be a strictly monotone increasing mapping. If every monotone sequence 
{Yn) C UQ([a,b]) defined by Yn • Qxn, n = 0 , 2 , . . . ,  converges, whenever {Xn} is a monotone 
sequence in [a, b], then Q has a least fixed point x ,  a greatest fixed point x* in [a, b]. Moreover, 

x .  = min{y • [a,b]l Qy <_ y} 

and 

x .  = max{y • [ a , b ] l y  < Qy}. 

PROOF. We shall first show tha t  the Hypotheses (Q0) and (Q1) of Theorems 2.1 and 2.2 are 
satisfied. Since Qx c [a, b] for each x E [a, b], we have tha t  a < Qa and Qb <_ b. Hence, M ~ O 
and L ~ 0. Next,  Q is strictly monotone increasing, therefore, the Hypothesis  (Ql)  holds. Now. 
an application of Theorems 2.1 and 2.2 yield tha t  the fixed-point set of Q is nonempty.  Define a 
well-ordered chain C(a) of generalized Q-i terat ion of a and the inversely well-ordered chain C(b) 
of generalized Q-i terat ion of b in [a, b]. Then,  

x ,  - sup C(a) 

and 

x* --- inf C(b) 
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are the fixed points of Q in In, b] in view of Lemma 2.4 and Lemma 2.5 of [7]. We show shall that  
x .  and x* are respectively, the least and the greatest fixed point of Q in [a, b]. Let  u E [a, b] be 
an arbi t rary fixed point of Q. Then, we have a < u < b and u E Qu. Now, consider the order 
interval In, u] C In, b]. Since Q is strictly monotone increasing on In, b], we have C(a) C [a, u]. 
To see this, let x E In, u) be any point, then a _< x < u. By strictly monotonic nature of Q, 
a <_ Qx < u. As a result, C(a) C [a, u] and tha t  x ,  = sup C(a) 6 In, u]. Similarly, consider the 
order interval [u, b] C In, b]. Again, for any x 6 (u, b] one has Qx c [u, b]. Hence, C(b) C [u, b] and 
consequently, x* = inf C(b) E [u, b]. Thus, for any fixed point u of Q, we have tha t  x .  < u < x*. 
Hence, x .  and x* are, respectively, the least and the greatest fixed point of Q in [a, b]. 

Finally, let y E [a, b] be such that  Qy <_ y and consider the order interval [a, y] C In, b]. Let C(a) 
be a well-ordered chain of generalized Q-iteration of a in In, b]. Then,  C(a) c In, y]. Therefore, 
a < x .  < y for each y E [a, b] for which y < Qy. Hence, 

x .  = min{y E [ a , b ] iQy  ~ y}. 

Similarly, let y E [a, b] be such that  y < Qy and consider the order interval [y, b ] c  [a, b]. Let C(b) 
be an inversely well-ordered chain of generalized Q-iteration of b. Then,  C(b) C [y, b]. Therefore. 
y <_ x* < b for each y E [a, b] for which y <_ Qy. Hence, 

x* = min{y E [a,b] l y < Qy}. 

This completes the proof. 

Let X be an ordered metric space. A mult imap Q : X -~ Pp(X)  is called totally compact if 
UQ(X) is a compact subset of X. Q is called compact if uQ(S)  is a relatively compact  subset of 
X for all bounded subsets S of X. Again, Q is called totally bounded if for any bounded subset 
S of X, UQ(S) is a totally bounded subset of X. It is clear tha t  every compact multivalued map 
is totally bounded, but  the converse may not be true. However, these two notions are equivalent 
on bounded subsets of a complete metric space X. 

COROLLARY 3.2. Let [a, b] be an order interval in a subset Y of an ordered Banach space X and 
let Q : [a, b] ~ Pcp([a, b]) be a strictly monotone increasing multivalued mapping. Then, Q has 
a least and a greatest  fixed point in In, b] if any one of the following conditions is satisfied. 

(a) Q is compact multimap. 
(b) The cone K in X is normal and Q is compact. 
(c) The cone K is regular. 

PROOF. Let {xn} be a monotone sequence in [a,b] and let {Yn} be a monotone sequence in 
uQ([a,  b]) defined by Yn E Qxn for each n 6 N. Clearly, such a sequence {yn} exists since the 
multimap Q is monotone increasing on [a, b]. Suppose tha t  the hypothesis (a) holds. Then, 
uQ([a, b]) is compact  and the sequence {Yn} has a convergent subsequence. Since {Yn} is strictly 
monotone increasing, it converges to a point in In, b]. Again, if the hypothesis (b) holds, then the 
order interval In, b] is bounded in norm and uQ([a,  b]) is relatively compact set in X. Therefore, 
the sequence {Yn} C uQ([a,  b]) has a convergent subsequence and so the whole sequence converges 
to a point in uQ([a,  b]). Finally, if the hypothesis (c) holds, then by definition of the cone, the 
sequence {Yn} converges to a point in UQ([a,b]). Thus, all the conditions of Theorem 3.1 are 
satisfied under every hypothesis (a) or (b) or (e). Hence, an application of it yields tha t  Q has a 
least and a greatest fixed point in [a, b]. This completes the proof. 

A special case of Theorem 3.1 under slightly stronger condition in its applicable form to dif- 
ferential and integral inclusions is as follows. 

THEOREM 3.3. Let In, b] be an order interval in a subset Y of  an ordered Banach space X 
and let Q : [a, b] --~ ~ ° c p ( [ a  , b]) be a strictly monotone increasing mapping. I f  every sequence 
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(Yn} C UQ([a,b]) defined by Yn • Qxn, n = 0 , 2 , . . . ;  has a cluster point, whenever {xn} is a 
monotone sequence in [a, b], then Q has a least fixed point x .  a greatest fixed point x* in [a, b]. 
Moreover, 

x.  = min{y e [a,b][ Qy < y} 

and 

x.  = max{y e [a,b] [y  < Qy}. 

4. M U L T I V A L U E D  H Y B R I D  F I X E D - P O I N T  T H E O R Y  

In this section, we shall prove some fixed-point theorems for the opera tor  inclusions involving 
the sum and the  product  of two multivalued operators  in a Banach space under the mixed 
compactness  and monotonici ty conditions. I t  seems tha t  some of the results of this section are 
also new even to the single-valued analysis of mappings  in abst ract  spaces. The  results of this 
section also have a wide range of applications to per turbed  differential equations and inclusions 
for proving the existence of extremal  solutions. 

4.1.  H y b r i d  F i x e d - P o i n t  T h e o r y  in B a n a c h  S p a c e s  

In this section, we combine a topological fixed-point theorem with a algebraic fixed-point the- 
orem to derive a hybrid fixed-point theorem called the topo-algebraic hybrid fixed-point theorem 
for multivalued operators  in Banach spaces. Before going to the main results, we give some 
preliminaries needed in the sequel. 

Let X be a ordered metric  space and let T : X --+ Pp(X) .  Then,  T is called upper semicon- 
tinuous (u.s.c.) if for each x0 E X,  the set T(xo) is a nonempty  and closed subset of X,  and for 
each open set N C X containing T(xo), there exists an open neighborhood M of x0 such tha t  
tAT(M) C N. If  T is nonempty  and compact-valued,  then T is u.s.c, if and only if G has closed 
graph, i.e., given two sequences {Xn} and {Yn}, such tha t  yn e G(xn) for every n = 1, 2 , . . . :  
converging to the points x0 and y0 respectively, then Yo E G(xo). Finally, a multivalued mapping 
T on X into itself is called completely continuous if it is upper  semicontinuous and compact  on Y. 
Note tha t  the complete continuity of Q in a complete metric space X is equivalent to continuity 
together  with the total ly boundedness of Q on X.  

THEOREM 4.1. Let [a, b] be a norm-bounded order interval in a subset Y of an ordered Banach 
space X and let T : [a, b] x [a, b] --* Pcp([a,  b]) be a mapping satisfying, 

(a) y ~-* T(x,  y) is completely continuous and strictly monotone increasing for each x C [a, b], 
(b) x ~ T(x,  y) is strictly monotone increasing for each y • [a, b] and 
(c) every monotone sequence {Yn} C UT([a, b] x [a, b]) defined by Yn • T(xn,  y), n E N 

converges each y • In, b], whenever  i s  a monotone  sequence in hi. 

Then, the operator inclusion x • T(x,  x) has a least and a greatest solution in [a, b]. 

PROOF. Define the multivalued opera tor  Q : [a, b] ~ Pp([a, b]) by 

Qx = {y • T ( x , y )  [ y is greatest} .  (4.1) 

Let x • [a,b] be fixed and define the opera tor  Tx(y) : [a,b] ~ Pcp([a,b]) by Tz(y) = T(x ,y) .  
Then,  Tx is a completely continuous multivalued opera tor  which maps  a closed convex and 
bounded subset  [a, b] of the Banach space X into itself. Therefore, an applicat ion of a fixed-point 

theorem of [9] yields tha t  Tz has a least and a greatest  fixed point in [a, b] and consequently, the 
set Qx is nonempty  for each x • [a, b]. Moreover, Qx is compact  for each x • [a, b]. Furthermore,  
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hypothesis (c) implies tha t  Q satisfies all the conditions of Theorem 3.3 on [a, b] and hence, an 
application this theorem yields tha t  Q has a least and a greatest fixed point. This further implies 
tha t  the operator  inclusion x E T (x ,  x) has a greatest solution in [a, b]. Similarly, by taking 

Qx -~ {y E T(x ,  y) I Y is least},  (4.2) 

it is proved tha t  the operator  inclusion x E T(x ,  x) has a least solution in [a, b]. This completes 
the proof. 

As a consequence of Theorem 4.1, we obtain the following. 

COROLLARY 4.2. Let  [a, b] be an order interval in a subset Y of  an ordered Banach space X and 
let T :  [a, b] x [a, b] --* 7Pcp([a, b]) be a mapping satisfying 

(a) y ~-* T(x ,  y) is completely continuous and strictly monotone increasing for each x E [a, b] 
and 

(b) x ~-* T (x ,  y) is strictly monotone increasing for each y E [a, b]. 

Then, the operator inclusion x E T (x ,  x) has a / e a s t  and a greatest solution if  any one of  the 
following conditions is satisfied. 

(i) [a, b] is norm-bounded and T is compact multimap. 

(ii) The cone K in X is normal and x ~-o T(x ,  y) is compact for each y E [a, b]. 
(iii) The cone K is regular. 

The origin of the fixed-point theorems involving the sum of two operators in a Banach spaces 
lies in the works of Russian mathematician Krasnoselskii [11]. In this case, one operator  happens 
to be a contraction and another  happens to be completely continuous on the domain of their 
definition. Since every contraction is continuous, both operators in such theorems are continuous. 
Below we relax the continuity of one of the mappings in such hybrid fixed-point theorems, instead 
we assume the monotonicity and prove a fixed-point theorem in ordered Banach spaces. 

THEOREM 4.3. Let  [a, b] be an order interval in a subset Y of an ordered Banach space X .  Let  
A, B : [a, b] --~ ~cp(X) be two multivalued operators satisfying 

(a) A is compact and strictly monotone increasing, 
(b) B is completely continuous and strictly monotone increasing, and 
(c) A x  + B y  C [a, b] for a11 x, y e [a, b]. 

Further,  i f  the cone K in X is normal, then the operator inclusion x c A x  + B x  has a least 
and a greatest solution in [a, b]. 

PROOF. Define an operator  T on [a, b] x [a, b] by T ( x , y )  -- A x  + By.  From hypothesis (c), it 
follows tha t  T defines a multivalued mapping T : [a, b] x [a, b] --* 7~cp([a, hi). Now, the desired 
conclusion follows by an application of Corollary 4.2. 

REMARK 4.1. Note tha t  Hypothesis (c) holds if there exist elements a and b in X such that  
a < Aa + Ba  and Ab + Bb < b. 

When A and B are single-valued operators, Theorem 4.3 reduces to the following. 

COROLLARY 4.4. Let  [a, b] be an order interval in a subset Y of  an ordered Banach space X. 
Let  A, B : [a, b] ~ X be two single-valued operators satisfying 

(a) A is compact  and monotone increasing, 

(b) B is completely continuous and monotone increasing, 
(c) A x  + B y  e [a, b] for all z ,  y e [a, b]. 

Further, i f  the cone K in X is normal, then the operator inclusion A x  + B x  = x has a least and 
a greatest solution in [a, b]. 
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4.2. H y b r i d  F i x e d - P o i n t  T h e o r y  in B a n a c h  A l g e b r a s  

The  hybrid fixed-point theory involving the product  of two operators in a Banach algebra was 
initiated by the present author  in [12] and developed further in different directions in the due 
course of time. See [13,14] and the references therein. The main feature of these fixed-point 
theorems is again tha t  both the operators are continuous on their domain of definition. Below, 
we remove the continuity of one of the operators and prove a fixed-point theorem involving the 
product  of two operators in a Banach algebra. We need the following preliminaries in the sequel. 

A cone K in a Banach algebra X is called positive if 

(iv) K o K C_C_ K,  where "o  " is a multiplicative composition in X. 

LEMMA 4.1. (See [14].) H u l ,  u2, vl, v2 E K are such that ul <_ vl and u2 ~_ v2, then ulu2 <_ vlv2. 

THEOREM 4.5. Let  [a, b] be an order interval in a subset Y of  an ordered Banach algebra X with 
a cone K .  Let  A, B : [a, b] -* Pep(K) be two multivalued operators satisfying 

(a) A is compact and strictly monotone increasing, and 

(b) B is completely continuous and strictly monotone increasing, and 
(c) A x . S y  C [a, b] for all z, y • [a, b]. 

Further,  i f  the cone K in X is normal, then the operator  inclusion x • A x . B x  has a least and 
a greatest solution in [a, b]. 

PROOF. Define an operator  T on [a, b] x [a, b] by T(x ,  y) = Ax .By .  From Hypothesis (c) it follows 
that  T defines a multivalued mapping T :  [a, b] x [a, b] --* Pep([a, b]). Now, the desired conclusion 
follows by an application of Corollary 4.2. 

REMARK 4.2. Note tha t  Hypothesis (c) holds if 

(i) the cone K in X is positive and 
(ii) there exist elements a and b in [a, b] such tha t  a <_ Aa .Ba  and Ab.Bb <_ b. 

When A and B are single-valued operators, Theorem 4.5 reduces to the following. 

COROLLARY 4.6. Let  [a, b] be an order interval in a subset Y o f  an ordered Banach algebra X .  
Let A, B : [a, b] -~ K be two single-valued operators satisfying 

(a) A is compact  and monotone increasing, 
(b) B is completely continuous and monotone increasing, and 
(c) A x . S y  • [a, b I for all x, y e [a, hi. 

Further, i f  the cone K in X is normal, then the operator inclusion A x . B x  = x has a least and a 
greatest solution in [a, b]. 

THEOREM 4.7. Let  [a, b] be an order interval in a subset Y of  an ordered Banach a/gebra X with 
a cone K .  Let  A , B  : [a,b] ~ PcD(K) and C : [a,b] ~ P~p(X) be three multivalued operators 
satisfying 

(a) A and C are compact and strictly monotone increasing, and 
(b) B is completely continuous and strictly monotone increasing, and 
(c) A x . B y  + Cx  C [a, b] for all x, y • [a, b]. 

Further, i f  the cone K in X is normal, then the operator inclusion x • A x . B x  + Cx  has a least 
and a greatest solution in [a, b]. 

PROOF. Define an operator  T on [a, b] x [a, b] by T(x ,  y) = A x . B y  + Cx.  From hypothesis (c), 
it follows tha t  T defines a multivalued mapping T : [a, b] x [a, b] --* 7~cp([a, b]). Now, the desired 
conclusion follows by an application of Corollary 4.2. 

REMARK 4.3. Note that  Hypothesis (c) holds if 

(i) the cone K in X is positive and 
(ii) there exist elements a and b in [a, b] such that  a < A a . B a  + Ca and Ab.Bb + Cb <_ b. 

When A, B, and C are single-valued operators, Theorem 4.5 reduces to the following. 
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COROLLARY 4.8. Let  [a, b] be an order interval in a subset Y of an ordered Banach algebra X 
with a cone K. Let A, B : In, b] -~ K and C : In, b] ~ X be three single-valued operators 
satisfying 

(a) A and C are compact and monotone increasing, 
(b) B is completely continuous and monotone increasing, and 
(c) Ax . By  + Cx E [a, b] for a11 x, y e [a, b]. 

Further, if  the cone K in X is normal, then the operator inclusion A x . B x  + Cx = x has a least 
and a greatest solution in [a, b]. 

5. D I S C O N T I N U O U S  D I F F E R E N T I A L  I N C L U S I O N S  

The method of upper and lower solutions has been successfully applied to the problems of 
nonlinear differential equations and inclusions. For the first direction, we refer to [4] and for 
the second direction, we refer to [15]. In this section, we apply the results of previous sections 
to first-order periodic boundary  value problems of ordinary discontinuous differential inclusions 
for proving the existence of the extremal solutions between the given upper and lower solutions 
under monotonici ty conditions. 

5.1. P e r i o d i c  B o u n d a r y  V a l u e  P r o b l e m s  

Given a closed and bounded interval d = [0, T] in ~ ,  consider a periodic boundary  value 
problem of first-order discontinuous differential inclusion (in short DI), 

x '( t)  E F(t,  x(t)), a.e. t E J, 

x(O) = x(T),  (5.1) 

where F : J x ]R ~ Pp(R). 

By a solution of DI (5.1), we mean a function x E AC(J ,R)  such tha t  

x'(t) = v(t), t E J, x(0) = x(T),  

for some v E L I ( J , R )  satisfying v(t) E F(t ,x( t ) ) ,  a.e., for t E J ,  where AC(J ,R)  is a space of all 
absolutely continuous real-valued functions on J .  

The DI (5.1) and its generalizations have been discussed in the literature very extensively 
for different aspects of the solution under different continuity conditions. See [16,17] and the 
references therein. Notice tha t  the DI (5.1) and its generalizations with discontinuous F can 
be discussed via lattice theoretic approach as given in [1,2,5,12] for the existence of extremal 
solutions. In this section, we shall prove the existence theorems for extremal solutions to DI (5.1) 
via functional theoretic approach embodied in Theorem 3.1 under suitable conditions. 

Define a norm II' II and an order relation " _< " in AC(J,  N) by 

Ilxll = s u p  Ix(t)t (5.:2) 
tEJ 

and 

x <_ y ~ x(t) <_ y(t), for all t E J. (5.3) 

Here, the cone K in AC(J,  N) is defined by 

K = {x E AC(J ,N)  [ x(t) > 0}, 

which is obviously normal. See [3,4,8]. 
We need the following definition in the sequel. 
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DEFINITION 5.1. A function a E AC(J, N) is called a lower solution of the DI (5.1) ira' (t) <_ v(t). 
a.e., t E J ,  for MI v E L I ( j , N )  with v(t) E F(t,a(t)) a.e., t • J and a(O) < a(T). Similarly, a 
function b • AC(J, N) is called an upper solution of the DI (5.1) ifb'(t) > v(t), a.e., t • J, for all 
v • L I ( J , N )  with v(t) • f ( t ,b( t ) )  a.e., t • J and b(O) >_ b(T). 

We use the following notations in the sequel. 
Denote 

IF(t,x)[ = {lull u • V(t ,x)}  

and 

IIF(t,x)l] = sup{lul I u ~ F( t ,x )} .  

Let /3 : J x R --* Pp(N) be a multivalued function. Then, the set of all Lebesgue integrable 
selectors S t of/3 is defined by 

S~(x) = {v E L I ( J , R )  Iv(t)  E/3(t ,x( t ))  a.e., t E J} ,  

for x E AC(J, N). The problem that  St (x  ) ¢ 0 has been of great interest since long time. Some 
nice results concerning St (x  ) ~ 0 have been given in [18]. See also [19-21] and the references 
therein. 

We consider the following set of assumptions. 

(A1) There exists a Lebesgue integrable function m E LI(J, N) such that  

IF(t,x)l <_ re(t), a.e., t E J, 

for all x E R. 

(A2) F(t, x) is is closed and bounded subset of II~ for each (t, x) E J x R. 
(A3) S~.(x) ¢ 0 for each x E AC(J, R). 
(A4) There exists a Lebesgue integrable function k E LI(J ,  R +) such tha t  the multifunction 

x H F(t ,x)  + k(t)x is strictly monotone increasing for a.e., t E J.  
(As) There exist a lower solution a and an upper solution b of the DI (5.1) on J such that  

a<_b. 

Now consider the DI, 

x' + k(t)x(t)  E Fk(t ,x( t ) ) ,  a.e., t E J, 
z (0 )  = z (T) ,  (5.4) 

where Fk : J x R ~ 7~p(N) by 
Fk(t ,  z )  = F ( t , z )  + k(t)z. (5.5) 

REMARK 5.1. Note tha t  the DI (5.1) is equivalent to the DI (5.4) and the lower solution a of 
the DI (5.1) is the lower solution for the DI (5.4) and the upper solution b of the DI (5.1) is the 
upper solution for the DI (5.4) on J and conversely. 

REMARK 5.2. Assume tha t  Hypotheses (A1)-(A3) hold. Then, Fk(t,x) is compact  for each 
(t,x) E J x R and S1F~(x) ¢ 0, for each x E AC(J,R).  Again, 

IFk(t ,x) l  = I F ( t , x )  + k(t) (t)l 

< re(t) + k(t)[llal[ + Iibll] 

= 7( t ) ,  

for all t E J and x E [a,b]. Note tha t  3,(.) = m(.) + k(.)[Ha H + IIb]l] E L I ( J , R ) .  

We need the following lemma in the sequel. 
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LEMMA 5.1. For any k, (r 6 LI (J ,  R),  x is a solution to the differential equation, 

x '  4- k ( t )x ( t )  = ix(t), a.e., t • J, 

x(o) = x (T)  • R, 

i[ and only i f  it is a solution of  the integral equation, 

z ( t )  = g~ (t, s )~(s)  ds, 

where 
e K ( s ) - K ( t )  0 < s < t < T, 

gk(t, S) = 1 -- e -k (T) '  

' eK(s)-K(t)-K(T) 0 < t < s < T, 
1 - e - K ( T )  ' - - 

where K( t )  = f~ k(s) ds. 

Notice tha t  the  Green 's  function gk is nonnegative on J x J and the number,  

exists. 

THEOREM 5.1. 

Mk := max{Igk(t ,s)[  : t , s  • [0,T]}, 

(5.6) 

(5.7) 

(5.8) 

Assume  that Hypotheses  (A1)-(A5) hold. Then, the DI  (5.1) has a minimal  and 
a maximal  solution on J.  

PROOF. Let  X = AC(J ,  R) and define an order interval In, b] in X,  which does exist in view of 
Hypothesis  (A5). Define a mul t imap Q on [a, b] by 

{ /: } Q x =  u E X l u ( t ) =  g k ( t , s ) v ( s ) d s ,  v e S k ( x  ) (5.9) 

= pc o s k  (~), 

where the continuous opera tor  IC : L 1 (J, R) ---* C(J ,  R) is defined by 

ICy(t) = gk(t, s)v(s)  ds. (5.10) 

Obviously the  multivalued opera tor  Q is well defined since S~k (x) # 0 for all x 6 X in view 
of Remark  5.1. We shall show tha t  the multivalued opera tor  Q satisfies all the conditions of 
Theorem 3.1. 

STEP I. First,  we show tha t  Q is strictly monotone increasing on [a, b]. Let x, y 6 [a, b] be such 
tha t  x _< y, x # y, and let ul 6 Qx  be arbitrary.  Then,  there exists an element Vl 6 S~k(x ), tha t  
is, vl( t )  6 Fk( t , x ( t ) )  a.e., t • J such tha t  

Ul(t) = 9k(t, s)vl(s)  as. (S. l l )  

Since (A4) holds, for every element vl E S~. (x) we have tha t  vl _< v2 on J for all v2 6 S~- k (Y). 
Now, for each element u2 6 Qy there is a v2 6 S~k (y) such tha t  

u2(t) = gk(t, s)v~(s) ~s. (5.12) 



F i x e d - P o i n t  T h e o r e m s  599 

Now, for any t E J ,  we have 

r /or 

As a result we have from (5.7),(5.8), 

T / .  

ul(t)  = ] ,  gk(t ,s)vl(s)  ds 

T I" 
<_ ]o gk(t, s)v2(s) d~ 

= ~ 2 ( t ) ,  

for all t E J.  Hence, ul < u2. Therefore, Qx < Qy, tha t  is, Q is strictly monotone increasing 
on X and in particular on [a, b]. 

STEP II .  Next, we claim tha t  Q has compact-values and maps [a, b] into itself. First, we show that  
Qx is a compact  subset of X for each x E [a, b]. To show Q has compact  values, it then suffices to 
prove tha t  the composition operator/C o S~k has compact  values on X. Let x E [a, b] be arbitrary 
and let {vn} be a sequence in S ~ ( x ) .  Then, by the definition of S1F~, vn(t) E Fk(t, x(t)) a.e., for 
t E J.  Since Fk(t, x(t)) is compact,  there is a convergent subsequence of  vn(t) (for simplicity call 
it vn(t) itself) tha t  converges in measure to some v(t), where v(t) E Fk( t ,x( t ) )  a.e., for t E J. 
From the continuity of K:, it follows tha t  ]Cvn(t) ~ ICy(t) pointwise on J as n --* c~. In order to 
show that  the convergence is uniform, we first show that  {/Cv~} is an equicontinuous sequence. 
Let t, r E J;  then 

fOO T fOT ds IlCvn(t) - ]Cvn(q-)I <_ gk(t, s)v,~(s) ds - gk(r, S)V~(S) 

~_ Igk(t,s) -gk(7-,s)l lvn(s)lds.  

(5.13) 

(5.14) 

The function gk is continuous on the compact  set J × J ,  so it is uniformly continuous there. In 
addition, vn E LI (J ,R) ,  so the right-hand side of (5.13) tends to 0 as t --* T. Hence, {/Cv,~} is 
equicontinuous, and an application of the Arzel~-Ascoli theorem implies tha t  there is a uniformly 
convergent subsequence. We then have lCvnj -~ ICy E (IC o S~k) (x) as j -~ oo, and so (K: o S1 k ) (x) 
is compact.  Hence, Qx is a compact  subset of X for each x E [a, b]. 

Again, let u E Qb be arbitrary. Then there is a v E S ~  (b) such that  

9•o 

T 
u(t) = gk(t, S)V(S) ds, t E J .  

Since b is an upper solution of DI (5.1), we have 

/0 r /0 u(t) = gk(t, S)V(S) ds < gk(t, s)[b'(s) + k(s)b(s)] ds 

[ for <_ _ gk(t,s)b'(8)as+ k(s)gk(t,s)b(s)d~ = bit), 
30 

for all t E J .  Hence, u _< b and consequently, Qb < b. Similarly, it is proved that  a <_ Qa. Since 
Q is strictly monotone increasing, we have for any x, a _< x _< b, 

a <_ Qa < Qx < Qb <_ b. 
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Hence, Q defines a mul t imap Q :  [a, b] ~ Pep([a, b]) and the  claim follows. 

STEP I I I .  Let {xn} be a monotone increasing sequence in [a, b] and let {Yn} be a sequence in 
uQ([a,  b]) defined by Yn E Qxn, n e N. We shall show tha t  {yn} is a uniformly bounded and 
equi-continuous set in [a, b]. Since Yn E Qxn, there exists a vn E SIFk(Xn) such tha t  

yn(t) -- gk(t, s)vn(s) ds, 

for all t E J .  Therefore, by Remark  5.1, 

T T 

]yn(t)[---- ~0 gk(t ,s)vn(s)ds < 9~o gk(t,s) [vn(s)'ds 

Z" <_ ~k(t,s)-y(s)ds < MklI~'IIL1, 

for all t E J and so {Yn} is uniformly bounded. 
Next, we prove the equicontinuity of the sequence {yn} on J .  To finish, it is enough to show 

tha t  Y~ is bounded on [0, T]. Now, for any t E [0, Tl, 

TO ds ~ T 
lye(t)[ _< -~gk(t ,s)v(s)  ---- ( - k ( s ) )gk ( t , s ) v ( s )ds  ~ K M k ] I 3 " [ I L  1 = c, 

where K = m a x t e j  k(t). Hence, for any t , r  E [0, T] one has 

l y n ( t )  - yn (~ - ) l  _< ~ l t  - ~-I - *  o ,  a s  t - - ,  ~-. 

This shows tha t  (Yn} is a equicontinuous sequence of functions in [a,b]. Now, {Yn} is a uni- 
formly bounded and equicontinuous, so it has a convergent subsequence by Arzel~-Ascoli the- 
orem. Hence, {Yn} has a cluster point in [a,b]. Now, we apply Theorem 3.1 to yield tha t  the 
operator  inclusion x E Qx has a least and a greatest  solution which correspond, respectively, to 
the minimal and maximal  solutions of the DI (5.1) on J .  This completes the proof. 

5.2. P e r t u r b e d  P e r i o d i c  B o u n d a r y  V a l u e  P r o b l e m  

Given a closed and bounded interval J = [0, T] in T~, consider the initial value problem of 
first-order per turbed differential inclusion (in short, PDI) ,  

x'(t) e F(t, x(t)) + G(t, x(t)), a.e., t E J, 
x(O) = x(T),  (5.15) 

where F, G : J × R ~ Pc,  (R). 
By a solution of PDI  (5.15), we mean a function x E AC(J ,R)  whose first derivative x '  

exists and is a member  of LI(J ,~)  in F(t ,x ) ,  i.e., there exists a v E LI(J ,R)  such tha t  v(t) E 
F( t ,x ( t ) )  + G(t ,x( t ) )  a.e., t E J ,  and x'(t) = v(t), t e J and x(O) = x(T)  e R, where AC(J ,R)  
is the space of all absolutely continuous real-valued functions on J .  

The  special cases of per turbed DI (5.15) have been studied in the l i terature very extensively. 
See [11] and the  references therein. In this paper  we shall prove the existence of the extremal  solu- 
tions of per turbed  DI (5.15) under the weaker continuity condition of one of the multifunctions F 
and G. 

DEFINITION 5.2. A multivalued map map F : J ~ Pep(R) is said to be measurable if for every 
y E X,  the function t ~ d(y, F(t))  = inf{[[y - x[[ : x E F( t )}  is measurable. 
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DEFINITION 5.3. A multivalued map 13 : J x R --, ~p(R) is said to be L1-Carath~odory if 

(i) t ~-~ 13(t, x) is measurable for each x • R, 
(ii) x ~-* 13(t, x) is upper semicontinuous for almost all t • J, and 

(iii) for each real number r > 0, there exists a function hr • LI (J ,R)  such that 

1113(t,x)II -- sup{lul : u • G(t, x)} < hr(t), a.e., t • J, 

for all x • ~t wi th  Ixl _< r. 

Then,  we have the following lemmas due to Lasota  and Opial [18]. 

LEMMA 5.2. g d i m ( X )  < ce and F : J x X ~ •cp(X) is L1-Carathdodory, then S~(x) ~ 0 for 
each x • X .  

LEMMA 5.3. Let X be a Banach space, F an L1-Carathdodory multivalued m a p  with S1F ~ O 
and K : LI (J ,R)  ~ C ( J , X )  be a linear continuous mapping. Then, the operator, 

~OSlF  : C ( J , X )  ---* :Pep(X) 

is a closed graph operator in C(J, X )  x C(J, X) .  

REMARK 5.3. I t  is known tha t  a multivalued map  Q : X ~ Pp(X)  is upper  semicontinuous if 
and only if it is a closed graph operator.  

DEFINITION. A function a • AC(J, R) is called a lower solution of PDI (5.4) if  for ali vl • 
L I ( J , R )  with vl( t )  • F(t ,a( t ) )  and v2 • L ' ( J ,R )  with v2(t) • G(t,a(t)) a.e., t • J, we have 
that a'(t) < vl( t )  + v2(t) a.e., t • J and a(O) < a(T). Similarly, a function b • AC(J,  •) is called 
an upper solution of PDI (5.15) if  for all vl E LI (J ,R)  with vl(t) • F(t ,b(t))  and v2 • L I ( j , R )  
with v2(t) • C(t,b(t)) a.e., t e J, we have that b'(t) >_ vl(t) + v2(t) a.e., t • J and b(O) >_ b(T). 

We now introduce the following hypotheses in the sequel. 

(B1) G : J × • --~ Pcp,cv(R) is LLCara th~odory  multifunction. 
(B2) The  multifunction x ~-* G(t, x) is strictly monotone increasing almost  everywhere for t • J .  
(B3) The  PDI  (5.15) has a lower solution a and an upper  solution b with a <_ b. 

Consider the periodic PDI,  

x'(t) + k(t)x(t) • Fk(t, x(t)) + a( t ,  z(t)),  a.e., t • J, 
z(O) = x(T),  (5.16) 

where Fk is defined by (5.5). 

REMARK 5.4. Note t ha t  the PDI  (5.15) is equivalent to the PDI  (5.16) and the lower solution a of 
the PDI  (5.15) is the lower solution for the P D I  (5.16) and the upper  solution b of the PDI  (5.15) 
is the upper  solution for the PDI  (5.16) on J and conversely. 

THEOREM 5.2. Assume that Hypotheses (A1)-(A4) and (B1)-(B3) hold. Then, the PDI (5.15) 
has a solution in [a, b]. 

PROOF. Define an order interval [a, b] in AC(J,  R) which does exist in view of Hypothesis  (B2). 
Now, PDI  (5.15) is equivalent to the integral inclusion, 

/0 /0 x(t) E gk( t , s )Fk(s ,x ( s ) )ds+ gk( t ,s )G(t ,x( t ) )ds ,  t • J, (5.17) 

where the Green 's  function gk(t, s) is given by (5.8). 

Define two multivalued operators  A, B :[a ,  b] ~ "Pp(AC(J,R)) by 

/o T Ax (t) = gk (t, s) Fk (s, x (s)) ds, t e J,  (5.18) 
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and I T 
Bx( t )  = g k ( t , s ) a ( s , x ( s ) ) d s ,  t ~ J. (5.19) 

Clearly, the multivalued operators A and B are well defined on [a, b] in view of Hypotheses (As) 
and (B1). We shall show tha t  .4 and B satisfy all the conditions of Theorem 4.3 on [a, b]. 

STEP I. Since (A1)-(A4) hold, it can be shown as in the proof of Theorem 4.1 that  ,4 is a 
compact-valued, totally bounded and strictly monotone.increasing multivalued map on [a, b]. 

STEP II.  Next, we show tha t  B is completely continuous strictly monotone increasing multivalued 
operator on [a, b]. Let x, y E [a, b] be such that  x < y and let Ul E B x  be arbitrary. Then, there 
is a vl E S~(x)  such that  ul(t)  = f t  Vl (s) ds. Since (Ha) holds, we have that  vl _ < v2 for all 
v2 E S l  (y). Therefore, 

fo r fo r ul(t)  = gk(t, s)vl(s) ds <_ gk(t, s)v2(s) ds = u2(t), 

for all t E J ,  where u2 E By.  This shows that  B is strictly monotone increasing on [a, b]. 

STEP I I I .  Since (B2) holds, from Remark 5.3 it follows that  

fo T fo T a(t) < gk(t, S)Vl(S) ds + gk(t, s)v2(s)) ds, 

for all t E J and for all Vl E S~.k(a), v2 E S~(a). This further in view of the definitions of 
multivalued operators A and B implies tha t  a <_ Aa + Ba. Similarly, it is shown that  Ab + Bb <_ b. 
As A and B are strictly monotone increasing, we have tha t  Ax  + By  E [a, b] for all x, y E [a, b]. 

STEP IV. Finally, we show that  B is completely continuous on [a, b]. From the definition of B, 
it follows tha t  

/0" Bx( t )  = gk(t, s)G(s, x(s)) ds = (1C o Sb)  (x)(t), 

where K: is continuous linear operator on LI(J,  ~,) into C(J ,R)  defined by 

fo T ICy(t) = gk(t, s)v(s) ds. 

It  is clear from Lemma 5.3 that  K: o S 1 is a closed graph operator. Let {xn} be a sequence 
in LI (J ,R )  such tha t  xn ~ x .  as n --* c~. Consider a sequence {yn} in C(J ,R)  defined by 
Yn E M o S ~ ( x n )  for each n E N such that  Yn --* y..  But then { y , ~ - x o }  E / C o S ~ ( z n )  and 
(Yn - xo) --* (y. - xo). Since K: o S~ is a closed graph operator,  one has y. - Xo E K: o S~(x . )  
and consequently, y.  E IC o S~(x . ) .  As a result B is a closed graph operator  and which is further 
upper semicontinuous in view of Remark 5.1. 

Next, we show that  B is totally bounded on [a, b]. Let S be a subset of [a, b]. Since the cone K 

is normal in AC(J ,R ) ,  S is bounded in norm, and so there is a constant r = Ila[[ + [[b[[ such that  
I[x[[ _< r for all x E S. To conclude, it enough to show that  UP(S)  is uniformly bounded and 
equicontinuous set in AC(J ,  IR). Let y E UP(S)  be arbitrary. Then, there is a v E S~(x)  such 
that  

L y(t) = gk(t ,s)v(s)ds ,  t E J, 
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for some z E S. Now by (H2), 

JY(t)J = I foTg~(t, s)v(s) ds 

T 
<- ~o gk(t 's)lv(s)lds 

T 
<_ Mk fo IIG(s,x)llds 

# <_ Mk hr(s) ds 

<_ Mkllhrl]L,. 

This shows tha t  the set UB(S) is uniformly bounded in AC(J, R). Now for any t e [0, T], 

l y ' ( t ) l  _< 

< 

-~gk(t, s)v(s) ds 
f/o 

or(--k(s) )gk(t, s)v(s) ds 

K MkII'YIIL~ 
(2. 

where K = max te j  k(t). Hence for any t, ~- E [0, T] one has 

l y ( t )  - y(~') l  -< ~lt  - ~l  ---' o ,  as  t --~ ~-. 

Therefore, for any t, T E J ,  we have 

l y ( t )  - y ( r ) l  ~ o,  a s  t --~ ~, 

for all y E UB(S). Hence UB(S) is an equicontinuous set in AC(J, ](). Thus, UB(S) is a relatively 
compact  subset of  AC(J, ~) in view of Arzela-Ascoli theorem. Therefore, B is a completely 
continuous multivalued operator  on [a, b]. As Bx  C B(S)  for all x E S, B is a compact-valued 

multivalued operator on In, b]. 
Thus, A and B satisfy all the conditions of Theorem 4.2 and hence, an application of it yields 

tha t  the operator  inclusion x E A x + B x  has a least and a greatest solution in [a, b]. Consequently, 
the PDI  (5.15) has a minimal and a maximal solution in In, b]. This completes the proof. 

REMARK 5.5. In a recent paper [22], the present author has proved some fixed-point theorems 
for discontinuous multivalued mappings on ordered Banach spaces under weaker monotonicity 
conditions as in [7] concerning the existence of a least and a greatest fixed points. But in that  
case the multivalued mappings are required to satisfy a stronger hypothesis tha t  the images of 
the multivalued mappings are compact  chains, a condition which is rather difficult to verify in 

the practical applications to differential and integral inclusions. 
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