to the cell cycle. To test this hypothesis, we isolated GPMVs from populations of cells synchronized using a double Thymidine block that arrests cells at the border between G1/S phases. After Thymidine is removed from the cell cycle, the picket-fence effect on phase separation explains why micrometer-scale membrane domains are observed in isolated, cytoskeleton-free giant plasma membrane vesicles, but not in intact cell membranes. The experimentally observed suppression of large-scale phase separation below the phase transition temperature, and, on the other hand, preserves phase separation above transition temperature. Our experimental observations support the ideas put forward in our previous simulation study [1]: In particular, the picket-fence effect on phase separation explains why micro-meter-scale membrane domains are observed in isolated, cytoskeleton-free giant plasma membrane vesicles, but not in intact cell membranes. The experimentally observed suppression of large-scale phase separation much below the transition temperatures also serves as an argument in favor of the cryoprotective role of the cytoskeleton.


1292-Pos Board B184
Cytoskeletal Pinning Prevents Large-Scale Phase Separation in Model Membranes
Eugene P. Petrov1,2, Senthil Arumugam1, Jens Ehrig1, Petra Schwille1,2.
1Technische Universität Dresden, Dresden, Germany, 2Max Planck Institute of Biochemistry, Martinsried, Germany.
During the last decades, artificial lipid bilayers have become an important tool in studies of properties of the plasma membrane of cells. One important feature of cell membranes, which has been difficult to recapitulate in the artificial bilayer systems, is the membrane-bend rigidity arising from this critical point may play a role in cytokinesis or other processes vital for cell division. If this hypothesis is correct, it may suggest that biochemical perturbations that lower critical temperatures in GPMVs can be used to inhibit cellular proliferation, possibly providing a novel treatment strategy for some cancers.

1294-Pos Board B186
Ligand Receptor Binding Rate Kinetics via K-Space Image Correlation Spectroscopy: An in Silico Study
Hugo B. Brandao1, Paul W. Wiseman1,2.
1Department of Physics, McGill University, Montreal, QC, Canada, 2Department of Chemistry, McGill University, Montreal, QC, Canada.
To achieve a fundamental understanding of intra-cellular signalling pathways, it will be necessary to measure the rates of reaction between chemically reacting and interacting macromolecules. The magnitude of binding rates plays a very important molecular regulatory role in a range of systems including the binding of antigens to T-cell receptors, which can lead to differing immune-responses, as well as rates of hydrolysis of GTPs with Rac or Rho proteins, which lead to temporal changes in actin filament lengths and cell motility. Here, we develop an image correlation technique which may be used to study such systems in conjunction with fluorescence microscopy. We simulate receptors diffusing in 2D with diffusion coefficients varying from 0 to 10 pixels²/ frame. Receptors are only visible as point emitters when a fluorescent ligand is bound to the receptor; ligand binding kinetics are created by turning receptors ‘on’ or ‘off’ with average life-times varying from 3 to 20 frames drawn from a negative exponential distribution. Photobleaching is similarly incorporated by randomly turning diffusing receptors ‘off’ after average times varying from 20 to 400 frames. The image time-series is generated by convolving a Gaussian function of fixed radius with the point emitter distribution to create 128×128 pixel images with background noise added to give a signal to noise ratio of 3. We use k-space image correlation spectroscopy (kICS) and develop a two-state kinetic binding model with freely diffusing receptors on a 2D membrane to capture the membrane binding kinetics of the image time-series. We show that kICS can accurately recover on/off binding rates at the 95% confidence level for over 75% of simulations. Typically, percentage errors are less than 30% for weak photobleaching and within 60% for strong photobleaching effects.

1295-Pos Board B187
Single Molecule Tracking of Annexin V in Cushioned DMPC Assemblies
James A. Broz1, Kumud R. Poudel1, David J. Keller2.
1Washington State University, Pullman, WA, USA, 2University of New Mexico, Albuquerque, NM, USA.
Using single molecule imaging (SMI), this study describes the phase behavior and mobility of individual transmembrane (TM) proteins and compares those results with the bulk phase behavior of the biomimetic membrane in which they have been incorporated. To accomplish this a TM protein, Annexin V, was incorporated into a cushioned planar supported 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) / L-α-lysophosphatidyl-serine (Brain PS) bio-mimetic assembly and its mobility between 30 and 16 C was measured. Fluorescence microscopy and Fluorescence Recovery After Photobleaching (FRAP) were used to verify the structural integrity and the phase behavior (median melting temperature, TC = 22 C) of the lipid assembly. The structural confinement of individual Annexin V molecules was measured in three distinct phase regions: (1) a homogenous liquid crystalline phase region (Lα) in which Annexin V was unconfined (≥ 25 C), (2) two-phase region (Lα + gel-phase) in which Annexin V displayed intermediate confinement (24 - 20 C), and (3) a gel-phase region (Pα) with included nanoscopic domains that are enriched with PS and surround a single Annexin V TM protein (19 - 16 C); the mobility of Annexin V in these domains is highly confined. At early time lags, Annexin V moves with apparent Brownian-like behavior at all temperatures but the diffusion coefficients have very different magnitudes and temperature dependence. A possible mechanism for nanoscopic domain formation will be discussed.

Protein-Nucleic Acid Interactions I

1296-Pos Board B188
A SASSY Study of the CRISPR Associated Gene (Cas) Csn2 in the Presence and Absence of Calcium Ions
Yujie Chen, Ki Hyun Nam, Ailong Ke, Lois Pollack.
Cornell University, Ithaca, NM, USA.
Small angle X-ray scattering (SASSY) was used to study the solution structures of the E. Faecalis Csn2 protein, a cas gene required for DNA spacer acquisition.