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Abstract In plants, the ABC transporter PDR (pleiotropic drug
resistance) subfamily is composed of approximately 15 genes,
few of which have been analyzed. We have identified NtPDR3,
a Nicotiana tabacum PDR gene belonging to a cluster for which
no functional data was previously available. NtPDR3 was found
to be induced in suspension cells treated with methyl jasmonate,
salicylic acid, 1-naphthalene acetic acid, or cembrene, a macro-
cyclic diterpene. In agreement with the identification of a puta-
tive iron deficiency element in the NtPDR3 transcription
promoter region, we found that iron deficiency in the culture
medium induced NtPDR3 expression, thus suggesting a new
function of the PDR transporter family.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

ATP-binding cassette (ABC) transporters have been de-

scribed in all organisms and are found in most biological mem-

branes, where they couple ATP hydrolysis to the transport of a

wide range of substrates across the membrane, generally

against a concentration gradient [1].

Among the various ABC subfamilies, the PDR subfamily

is only found in plants and fungi and has been mainly char-

acterized in yeast (reviewed in [2,3]). Few plant PDR trans-

porters have been characterized at the functional level [4,5].

The first was SpTUR2, from the aquatic plant Spirodela

polyrrhiza, expression of which is induced by cold stress,

NaCl, and treatment with drugs, including abscissic acid

[6]. The Nicotiana plumbaginifolia ortholog, NpPDR1 (for-

merly NpABC1), is induced by sclareol, a diterpene involved

in plant defense and there are indications that this metabolite

is also transported by NpPDR1 [7]. This is also the case of

SpTUR2 and the Arabidopsis ortholog, AtPDR12 [8,9].

Other indications of the involvement of PDR transporters

in plant defense come from the induction of their expression

by defense signaling molecules, such as methyl jasmonate
Abbreviations: ABC, ATP-binding cassette; MJ, methyl jasmonate;
BY2, bright yellow-2
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(MJ) or salicylic acid, or directly upon pathogen inoculation

[9–11]. Moreover, preventing NpPDR1 expression by RNA

silencing causes N. plumbaginifolia plants to become sensitive

to the fungus, Botrytis cinerea [11]. NtPDR1, another closely

related gene, was identified in tobacco bright yellow-2 (BY2)

suspension cells after treatment with MJ and various elicitors

[12]. The role of PDR genes might go beyond plant defense,

since expression of AtPDR12 is enhanced in plants by the

lead and knockout atpdr12 lines are more sensitive to lead

[13]. Finally, in rice, OsPDR9 expression is related to pertur-

bation of the root environment, expression being triggered

by plant growth hormones and general redox status changes

in the roots [14].

All PDR genes for which functional data are currently avail-

able belong to the same cluster (Fig. 1). Since MJ is involved in

many physiological processes, including plant development

and stress responses [15] and activates genes involved in the

biosynthesis of secondary metabolites, such as alkaloids, qui-

nones, phenylpropanoid, and terpenes [16,17], we hypothe-

sized that MJ might enhance the synthesis of other PDR

transporters to facilitate metabolite excretion. Here, we report

the identification, sequencing, and characterization of

NtPDR3, which belongs to a previously non-characterized

cluster, and show that its expression is strongly induced by

iron deficiency.
2. Materials and methods

2.1. Plant material
N. tabacum BY2 [18] suspension cells were grown in MS medium

(MP-Biomedicals, #2610024) supplemented as described in [10] with
agitation (100 rpm) in the dark at 25 �C. Every week, 5 ml was reinoc-
ulated into 200 ml of fresh medium. Iron-lacking MS medium was pre-
pared according to [19] without adding Fe2+-EDTA.

2.2. Drug treatment of BY2 cells
Test chemicals were added to 3.5-day-old cultures. Cells were col-

lected at intervals by filtration, washed with two volumes of 20 mM
KCl, 5 mM Na-EDTA, 10 mM Tris (HCl), pH 8.0.
2.3. RNA isolation, Northern blotting and RT-PCR
RNA was isolated using a standard guanidine thiocyanate method.

RT-PCR and Northern blotting were performed using standard meth-
ods. RT-PCR fragments were obtained with the following primers:
5 0-CCCAAATGGTGGATCTGGTTC-30 and 5 0-CCATAACCTTAT
TTTCCCCC-3 0 (NtPDR3: nucleotides 4041–4388); 5 0-TCTTTGCTG
GTGTTGGTGAA-3 0 and 5 0-TGAGCTCATCCATACCCAAA-30

(ATP2-1: nucleotides 782–1432 [20]). These PCR fragments were
cloned and labeled with 32P-dCTP by random priming for Northern
blotting.
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Phylogenetic analysis of plant PDRs. Boot-straps and phylo-
genetic analysis were performed using Clustal W 1.83 [33] using amino
acid sequences of PDRs from Arabidopsis [4] and Oryza sativa [34],
SpTUR2 (CAA94437), NpPDR1 (formerly NpABC1, CAC40990),
NtPDR1 (BAB92011) and NtPDR2 (BAD07484). At, Arabidopsis
thaliana; Os, Oryza sativa; Sp, Spirodela polyrrhiza; Np, Nicotiana
plumbaginifolia; Nt, Nicotiana tabacum (in bold). (\) indicates that only
the NtPDR4 C-terminal region (486 residues) was used in the
alignment. OsPDR14 is represented at one-third of its real distance.
Dashed lines indicate NtPDR1 and NtPDR3 clusters.
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2.4. Cloning of PDR genes
cDNAs were generated from poly(A) RNA from cells treated for

4 h with 500 lM MJ. Two degenerate primers were used to amplify
the 3 0 part of the gene: (CysThrHisIleGlnProSer) MB1 (5 0-AT[A/T/
C]AT[A/T/C]TT[C/T]ATGGACGAACC-30) and MB2 (5 0-AT[A/T/
C]AT[A/T/C]TT[C/T]ATGGACGAGCC-3 0). A second nested-PCR
was performed using oligo(dT) and four degenerate primers (Asn-
ProAla ThrTrpMet): ED1 (5 0-AA[C/T]CC[A/T/G/C]GC[A/T/G/
C][A/G]CAT GGATG-30), ED2 (5 0-AA[C/T]CC[A/T/G/C]GC[A/T/
G/C][A/G]CTT GGATG-3 0), ED3 (5 0-AA[C/T]CC[A/T/G/C]GC[A/
T/G/C][A/G]CG TGGATG-30), and ED4 (5 0-AA[C/T]CC[A/T/G/
C]GC[A/T/G/C][A/G]CCTGGATG-30). The resulting PCR products
were cloned into the pGEM T-easy vector (Promega). The NtPDR3
5 0 end was obtained by dCTP tailing using a terminal transferase
(Roche) followed by successive nested PCRs using oligo(dG) and spe-
cific NtPDR3 primers.
A 760 bp fragment of the NtPDR3 promoter was obtained by in-

verse PCR using two sets of NtPDR3 internal nested primers and
BclI-digested and religated DNA.
The accession numbers are AJ831379 (cDNA) and AM050393

(genomic) for NtPDR3 and AJ831380 (partial cDNA) for NtPDR4.
2.5. Antibody preparation
Synthetic peptides corresponding to PDR sequences (see Section 3)

were coupled to BSA (Imject Maleimide Conjugation� kit, Pierce)
and used to immunize rabbits. Antibodies were purified from the anti-
serum using a SulfoLink� kit (Pierce).
2.6. Protein analysis and immunodetection
BY2 cell microsomal fractions and plasma membrane-enriched

fractions were prepared as described previously [7]. SDS–PAGE
and Western blotting were performed using standard methods. The
antibodies used were anti-PDR or PDR3 (this paper) or anti-H+-
ATPase [21].
3. Results

3.1. MJ induction of PDR proteins

Comparison of the SDS gel pattern of microsomal and plas-

ma membrane fractions of BY2 cells with and without 16 h

treatment with 250 lM MJ revealed in the treated samples

the presence of variant proteins (Fig. 2A), including one of

160 kDa, a size compatible with a full-size ABC transporter.

Western blots using anti-PDR antibodies raised against a 22-

amino acid sequence highly conserved in plant PDRs

(GRTVVCTIHQPSIDIFEAFDEL, position 1039–1060 in

NpPDR1) showed that, in the treated cells, a band of the same

size was detectable in the microsomal fraction and strong in

the plasma membrane fraction (Fig. 2B). An increase in the

MJ concentration from 50 nM to 250 lM resulted in a pro-

gressive increase in the signal (Fig. 2C). Using 250 lM MJ,

the increase was seen within 3 h and remained stable over

10 h (Fig. 2D). These results show that MJ rapidly induces

the expression of one or several PDRs localized in the plasma

membrane.
3.2. Sequence and phylogenetic analysis of MJ-induced tobacco

PDR genes

Using degenerate primers corresponding to conserved PDR

sequences, four PDR partial sequences were obtained after

RT-PCR using RNA from MJ-treated samples, two of which

corresponded to the previously described NtPDR1 [12] and

NtPDR2 [22], two very closely related genes; the other two

were named NtPDR3 and NtPDR4.

Full-length NtPDR3 cDNA was obtained by RACE and

RT-PCR. The putative translation initiator codon (Fig. 3)

was identified by its favorable ATG context (aaaATGGC)

[23] and the presence of an in-frame upstream stop codon

(TAA) at position �39. The cDNA contained a 4305 bp open

reading frame coding for a protein of 163330 Da with a typical

PDR organization.

Phylogenetic analysis revealed that NtPDR4 belongs to the

same cluster as NtPDR1 (Fig. 1). In contrast, NtPDR3 (53%

identity at the amino acid level with NtPDR1) clearly belongs

to another, as yet uncharacterized, cluster containing several

Arabidopsis genes and a single rice gene.

A 760 bp fragment encompassing the putative NtPDR3 pro-

moter region was obtained by inverse-PCR (Fig. 3). A putative

TATA box was found at position �194 to �186 upstream of

the ATG initiation codon. A search of a regulatory DNA se-

quence database (http://www.dna.affrc.go.jp/PLACE/signal-

scan.html) identified an activation sequence-1 (as-1) box

(�149 to �130), an iron deficiency element-1 (IDE-1) box

(�182 to �167), and a general transcription activator

(Gmlbc3) box (�99 to �74).
3.3. Expression of NtPDR3

MJ induction of NtPDR3 and NtPDR4 was monitored by

Northern blotting using 3 0 specific probes. NtPDR3 transcripts

were observed after 2 h treatment with 250 lM MJ (Fig. 4), in-

creased up to 6 h, then rapidly decreased and were undetect-

able after 10 h, while the control gene ATP2-1 was evenly

expressed. No signal was detected using the NtPDR4 probe

(data not shown), indicating that this gene is expressed at a

low level. In order to specifically detect expression of NtPDR3

protein, antibodies were raised against a 16-amino acid

http://www.dna.affrc.go.jp/PLACE/signalscan.html
http://www.dna.affrc.go.jp/PLACE/signalscan.html


Fig. 2. Expression of BY2 cell membrane proteins after MJ treatment.
(A) SDS–PAGE analysis (Coomassie blue staining) of microsomal (M)
and plasma membrane (PM) fractions (20 lg of protein) prepared
from untreated (�) BY2 cells or after 16 h treatment with 250 lM MJ
(+). Arrow-heads indicate additional bands. (B) Samples from (A)
analyzed by Western blotting using anti-PDR antibodies. (C) Western
blotting analysis of PDR proteins in the BY2 cell microsomal fraction
(20 lg) after 16 h treatment with the indicated MJ concentration. (D)
Western blotting of PDR proteins in a BY2 cell microsomal fraction
(20 lg) after treatment for the indicated time with 250 lM MJ.

Fig. 3. Sequence analysis of the putative NtPDR3 promoter region.
Nucleotides are numbered relative to the adenine of the presumed
NtPDR3 translation start codon. The coding sequence is in bold with
the corresponding amino acid residues below. The BclI site used in
inverse-PCR is underlined. Putative regulatory elements and a putative
TATA box are boxed; (*) indicates nucleotides that match the
consensus. Arrows indicate the as-1 TGA motif in the forward and
reverse orientation. A stop codon (TAA) in-frame with the first
methionine is boxed with dashed lines. The arrow-head indicates the 5 0

end of the cDNA.

Fig. 4. MJ induction of NtPDR3 transcription. RNA was prepared
from BY2 cells treated for the indicated time with 250 lM MJ and
analyzed (20 lg) by Northern blotting using the indicated probes.
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sequence in a highly divergent PDR region (FRSN-

SALSASQKDDAV; residues 35–50), then BY2 cells were trea-

ted for 16 h with various compounds and NtPDR3 expression

monitored by Western blotting (Fig. 5A). Ethanol (0.5%)

slightly induced NtPDR3 expression. MJ, 1-naphathalene ace-

tic acid and cembrene (dissolved in ethanol) induced NpPDR3

to a larger extent, unlike gibberellic acid and the diterpene scla-

reolide. Salicylic acid (dissolved in water) also induced

NpPDR3 expression while abscissic acid, nicotine and NaCl

had no effect. As a control, antibodies against the PDR con-

served region gave a stronger signal with MJ and sclareolide,

probably accounting for NpPDR1 expression [11]. Induction

of NpPDR3 expression by cembrene, 1-naphthalene acetic

acid and salicylic acid was confirmed by RT-PCR using

NpPDR3-specific primers (Fig. 5B).

The presence of an IDE-1 element in the NtPDR3 promoter

prompted us to investigate its induction pattern on iron depri-

vation. Chelation of divalent ions by addition of EDTA to the

growth medium triggered NtPDR3 expression in BY2 cells

(Fig. 5C). Since EDTA chelates ions other than iron, iron defi-

ciency-specific NtPDR3 induction was demonstrated by trans-

fer of BY2 cells to iron-free medium while no expression was

observed when iron was included in the medium (Fig. 5D).
RT-PCR using NtPDR3 specific primers confirmed these data

(Fig. 5E).
4. Discussion

All previously characterized PDR genes belong to the same

cluster and all seem to be involved in plant defense. Here, we

characterized NtPDR3, a gene belonging to a cluster previ-

ously uncharacterized at the functional level. NtPDR3 upregu-

lation by MJ and salicylic acid indicates that this gene might

also be involved in plant defense. Sclareolide and cembrene be-

long to two structurally different diterpene classes, the polycy-

clic labdanes and the macrocyclic duvanes, respectively, several

of which possess anti-fungal properties in Nicotiana species

[24]. While NpPDR1 expression is induced by sclareolide [7],

but only little by cembrene (data not shown), NtPDR3 expres-

sion was induced by cembrene, but little by sclareolide (Fig. 5).

Thus, these two PDR genes, which belong to two different

clusters, are controlled by different diterpene classes. Besides

inducing NpPDR1 expression, sclareol is a substrate of this



Fig. 5. Induction of NtPDR3 expression by various chemicals or iron
deficiency. (A) Microsomal fractions were prepared from BY2 cells
16 h after addition of the indicated compounds and analyzed by
Western blotting (20 lg) using NtPDR3, PDR or H+-ATPase
antibodies. MJ, 1-naphthalene acetic acid, gibberellic acid, sclareolide
and cembrene were added as ethanol solutions (0.5% ethanol final
concentration). (B) RT-PCR of NtPDR3 transcripts from BY2 cells
grown for the indicated periods of time in the presence of 500 lM
cembrene, 250 lM 1-naphthalene acetic acid or 250 lM salicylic acid.
ATP2-1 was used as a control. (C) Western blotting of a microsomal
fraction (40 lg) from BY2 cells 48 h after addition of the indicated
ETDA concentration. (D) Western blotting of plasma membrane
fractions (20 lg) from BY2 cells grown for 48 h in a synthetic MS
medium lacking iron. (E) RT-PCR of NtPDR3 transcripts from BY2
cells grown for the indicated periods of time in an iron-free medium
(�iron) or in the same medium supplemented with 100 lM Fe2+-
EDTA (+iron).
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transporter [7], so it will be interesting to determine whether

cembrene, in addition to triggering NtPDR3 expression, is also

a substrate for the encoded transporter.

NtPDR3 expression was induced by iron deficiency in the

culture medium. In agreement with this observation, we iden-

tified a putative IDE-1 element in the NtPDR3 promoter re-

gion. IDE-1 elements are found in many iron-deficiency

inducible promoters [25,26]. We could therefore propose that

NtPDR3 is involved in iron homeostasis. An alternative

hypothesis would be that iron deficiency upregulates iron

transporters, some of which are known to be leaky for Cu2+

and Zn2+ [27,28]. Intracellular accumulation of these ions

would result in cell intoxication and indirectly induce expres-

sion of NtPDR3. We can rule out this hypothesis since EDTA

also chelates these divalent cations and still induced NtPDR3

expression.

The observation that NtPDR3 was enriched in the plasma

membrane fraction supports the hypothesis that it is involved
in transport in or out of the cell, rather than in intracellular

compartmentalization like IDI7, a vacuolar ABC transporter

belonging to the TAP subfamily [29]. Although iron is abun-

dant in soil, it is mainly present in its less soluble oxidized form

(Fe3+) that is poorly available to plants. Iron uptake by non-

grass plant roots is improved by acidification of the rhizo-

sphere: Fe3+ is more soluble at low pH and is chelated by

organic acids that are secreted, Fe3+-chelates are then reduced

to Fe2+ by ferric-chelate reductase, and the ferrous iron is

transported into the cell through Fe2+-transporters (reviewed

by [30]). Besides root uptake, other steps are involved in

long-distance iron transport in the plant, such as xylem load-

ing in the root, phloem loading in the source tissues, and up-

take by all plant cells. NtPDR3 might therefore be involved

in any of these steps, either directly in iron transport, or indi-

rectly, such as in the transport of organic acids in the rhizo-

sphere or of nicotianamine, which has been proposed to

chelate iron in the phloem [31].

NtPDR3 activation by 1-naphthalene acetic acid might be

related to iron deficiency. Indeed, an involvement of auxin in

root epidermis cell development of iron-deficient plants was in-

ferred from phenotypical analysis of hormone-related Arabid-

opsis mutants and from the application of auxin antagonists

[32].

The relationship, if any, between cembrene and iron defi-

ciency is not clear. However, several ABC transporters trans-

port many different substrates with unrelated structures and

might thus be involved in different physiological roles. De-

tailed examination of NtPDR3 expression in plant tissues

and genetic approaches aimed at modifying its expression

are needed to understand the precise roles of NtPDR3 in

the plant.
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