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a b s t r a c t

Two sufficient conditions for the Gabor system to be a frame for L2(R) are presented in this
note. The conditions proposed are stated in terms of the Fourier transforms of the Gabor
system’s generating functions. It is also shown that these conditions are better than the
known result.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Frames were first introduced by Duffin and Schaeffer [1] in the context of nonharmonic Fourier series. Outside of this
area, this idea seems to have been lost until Daubechies et al. [2] brought attention to it in 1986. They shown that Duffin
and Schaeffer’s definition was an abstraction of a concept introduced by Gabor [3] in 1946 for doing signal analysis. Today,
the frames introduced by Gabor are called Gabor frames or Weyl–Heisenberg frames and play an important role in signal
analysis. Within the past two decades, Gabor frame has established itself as a rich and fertile area of mathematical analysis
[4–6]. At the same time, it has broad applications in information processing, for instance, one of the most fascinating recent
applications of Gabor analysis is in the area of wireless communication [5, Chapter 12].

Gabor systems are generated by modulations and translations of several functions. We are concerned with sufficient
conditions for the Gabor system to be a frame for L2(R). The sufficient conditions in time domain for the Gabor system
to be a frame have been known [7–10]. In 2000, Czaja [11] gave characterizations of orthogonal families, tight frames and
orthonormal bases of the Gabor systems via Fourier transform. In particular, Daubechies [7]mentioned a sufficient condition
in frequency domain for the Gabor system to be a frame (see Theorem 2.1).

In this paper, we will present two new sufficient conditions for Gabor frame via Fourier transform. The conditions we
proposed are stated in terms of the Fourier transforms of the Gabor system’s generating functions, and the conditions are
better than that of Daubechies. Although we consider a one-dimensional case here, our results are easily generalized to
multidimensional Gabor systems.

The paper is organized as follows. In Section 2, we introduce some notations and state the main results. Section 3 gives
the proofs of the results.
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2. Notations and main results

Before stating the following main results, we need some notations and known results. We use the Fourier transform of
the form

f̂ (ω) =

∫
R
f (x)e−2π ixωdx. (2.1)

Now, the definitions of frame and Gabor frame are listed as follows.

Definition 2.1. LetH be a separable Hilbert space. A sequence {fi}i∈N of elements ofH is a frame forH if there exist constants
0 < C ≤ D < ∞ such that for all h ∈ H,

C‖h‖2
≤

−
i∈N

|⟨h, fi⟩|2 ≤ D‖h‖2. (2.2)

The numbers C,D are called the frame lower and upper bounds, respectively (the largest C and smallest D for which (2.2)
holds are the optimal frame bounds). The sequence which satisfies only the upper inequality in (2.2) is called a Bessel
sequence. A frame is tight if C = D. If C = D = 1, it is called a Parseval frame.

Definition 2.2. Let a, b > 0 and g l(x) ∈ L2(R) (l = 1, 2, . . . , L). We call the system

g l
j,k(x) = e2iπ jbxg l(x − ka), j, k ∈ Z, l = 1, 2, . . . , L (2.3)

as a Gabor system generated by the functions g l. The system {g l
j,k(x)}l,j,k is called a Gabor frame if it constitutes a frame for

L2(R).
Let {g l(x) | l = 1, 2, . . . , L} ⊂ L2(R) and a, b > 0. Set

T :=
1
a
, (2.4)

Φs(ω) :=

L−
l=1

−
j∈Z

|ĝ l(ω − jb)ĝ l(ω − jb + sT )|, (2.5)

αs := ess sup
ω

Φs(ω), s ∈ Z, (2.6)

λ :=

−
s≠0

αs, (2.7)

γ := ess inf
ω

Φ0(ω), (2.8)

Is(ω) :=

L−
l=1

−
j∈Z

ĝ l(ω − jb)ĝ l(ω − jb + sT ), (2.9)

βs := ess sup
ω

|Is(ω)|, s ∈ Z, (2.10)

µ :=

−
s≠0

βs, (2.11)

then the following result holds [7].

Theorem 2.1. Let {g l(x) | l = 1, 2, . . . , L} ⊂ L2(R) and a, b > 0. If α0, λ and γ are defined by (2.6)–(2.8), respectively, and
they satisfy

λ < γ ≤ α0 < +∞,

then system (2.3) is a Gabor frame of L2(R) with lower bound C1 and upper bound C2 defined by

C1 =
γ − λ

a
and

C2 =
α0 + λ

a
,

respectively.



508 D. Li et al. / Applied Mathematics Letters 24 (2011) 506–511

Remark 2.1. In [12], we established Theorem 2.1 from the study of shift-invariant spaces.

Now, the first result of the paper is stated as follows.

Theorem 2.2. Let {g l(x) | l = 1, 2, . . . , L} ⊂ L2(R) and a, b > 0. If α0, γ and µ satisfy

µ < γ ≤ α0 < +∞, (2.12)

then system (2.3) constitutes a Gabor frame for L2(R) with the lower bound C1 and upper bound C2, where

C1 =
γ − µ

a
(2.13)

and

C2 =
α0 + µ

a
. (2.14)

Remark 2.2. Obviously, µ ≤ λ, so the frame bounds in Theorem 2.2 are better than ones in Theorem 2.1.
Set

θ := ess sup
ω

−
s∈Z\{0}

|Is(ω)|, (2.15)

then we have the following theorem.

Theorem 2.3. Let {g l(x) | l = 1, 2, . . . , L} ⊂ L2(R) and a, b > 0. If α0, λ and θ satisfy the following,

θ < γ ≤ α0 < +∞, (2.16)

then system (2.3) constitutes a Gabor frame with the frame lower bound C1 and upper bound C2 defined by

C1 =
γ − θ

a
(2.17)

and

C2 =
α0 + θ

a
, (2.18)

respectively.

Remark 2.3. Since θ ≤ µ, the frame bounds in Theorem 2.3 are better than ones in Theorem 2.2.

3. The proofs of main results

In order to prove Theorems 2.2 and 2.3, we need two lemmas. First, let Γ be the set of all functions in L2(R) satisfying

(i) ‖f̂ ‖∞ < ∞;

(ii) there exists a constant K such that supp(f̂ ) ⊂ [−K , K ] and 0∈̄supp(f̂ ).

Then we have

Lemma 3.1. Γ is a dense subset of L2(R).

The proof of this result is well known.

Lemma 3.2. Let h ∈ L2(R) and g be a bounded and compactly supported function. Then the series−
k∈Z

∫
R
g(ξ)h(ξ)ei2πka(ξ−ω)dξ (3.1)

is convergent to a periodic function G(ω) ∈ L2[0, T ], where G(ω) := T
∑

s∈Z g(ω + sT )h(ω + sT ) and T is defined by (2.4).

Proof. By periodization, we have

1
T

∫
R
g(ξ)h(ξ)ei2πka(ξ−ω)dξ =

1
T

∫ T

0

−
s∈Z

g(ξ + sT )h(ξ + sT )ei2πka(ξ−ω)dξ . (3.2)

Since g is a bounded and compactly supported function, the number of s in the above sum is finite. Thus, the left side of (3.2)
is a Fourier coefficient of the function 1

T G(ω) in L2([0, T ]). �
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Proof of Theorem 2.2. Let f ∈ L2(R), then by Lemma 3.1, there exists a function sequence {fm}
+∞

m=1 ⊂ Γ , such that

‖f̂m − f̂ ‖ → 0, m → ∞, (3.3)

suppf̂m ⊂ [−Km, Km], 0∈̄suppf̂m. (3.4)

For fixed j ∈ Z, define the functional

Pj(h) :=

L−
l=1

−
k∈Z

|⟨h, g l
j,k⟩|

2
=

L−
l=1

−
k∈Z

|⟨ĥ, ĝ l
j,k⟩|

2, h ∈ L2(R). (3.5)

Note that

g l
j,k(ω) = e−2π ika(ω−jb)ĝ l(ω − jb), (3.6)

hence we have

Pj(fm) =

L−
l=1

−
k∈Z

|⟨f̂m, ĝ l
j,k⟩|

2
=

L−
l=1

−
k∈Z

⟨f̂m, ĝ l
j,k⟩⟨ĝ

l
j,k, f̂m⟩

=

L−
l=1

−
k∈Z

∫
R
f̂m(ξ)e2π ika(ξ−jb)ĝ l(ξ − jb)dξ

∫
R
f̂m(ω)e−2π ik(ω−jb)ĝ l(ω − jb)dω. (3.7)

From Lemma 3.2, we obtain

Pj(fm) =

L−
l=1

−
s∈Z

T
∫

R
f̂m(ω + sT )ĝ l(ω − jb + sT )f̂m(ω)ĝ l(ω − jb)dω. (3.8)

Let

P(f ) =

L−
l=1

−
j,k∈Z

|⟨f , g l
j,k⟩|

2
=

−
j∈Z

Pj(f ),

then

P(fm) =
1
a

L−
l=1

−
j,s∈Z

∫
R
f̂m(ω + sT )ĝ l(ω − jb + sT )f̂m(ω)ĝ l(ω − jb)dω. (3.9)

Dividing s ∈ Z into s = 0 and s ≠ 0, we can rewrite P(fm) as

P(fm) = Q1(fm) + Q2(fm), (3.10)

where

Q1(fm) :=
1
a

L−
l=1

−
j∈Z

∫
R

|f̂m(ω)ĝ l(ω − jb)|2dω, (3.11)

Q2(fm) :=
1
a

L−
l=1

−
j∈Z

−
s∈Z\{0}

∫
R
f̂m(ω + sT )ĝ l(ω − jb + sT )f̂m(ω)ĝ l(ω − jb)dω. (3.12)

Since α0 < ∞, the series Q1(fm) is convergent and

γ

a
‖f̂m‖

2
≤ Q1(fm) ≤

α0

a
‖f̂m‖

2, (3.13)

that is
γ

a
‖fm‖

2
≤ Q1(fm) ≤

α0

a
‖fm‖

2. (3.14)

Let

Q ∗

2 (fm) :=
1
a

L−
l=1

−
j∈Z

−
s∈Z\{0}

∫
R
f̂m(ω + sT )ĝ l(ω − jb + sT )f̂m(ω)ĝ l(ω − jb)dω

 , (3.15)
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then from the fact that

|ĝ l(ω − jb + sT )ĝ l(ω − jb)| ≤
1
2
(|ĝ l(ω − jb + sT )|2 + |ĝ l(ω − jb)|2), (3.16)

we have

Q ∗

2 (fm) ≤
1
a

L−
l=1

−
j∈Z

−
s≠0

∫
R

|f̂m(ω + jb + sT )f̂m(ω + jb)| |ĝ l(ω)|2dω. (3.17)

By the definition of Γ , we get

Q ∗

2 (fm) ≤ C‖f̂m‖
2
∞

L−
l=1

∫
Em

|ĝ l(ω)|2dω, (3.18)

where Em = [−Km, Km], 0∈̄Em and C is a constant. Thus, we obtain

Q ∗

2 (fm) ≤ C‖f̂m‖
2
∞

L−
l=1

‖g l
‖
2 < ∞. (3.19)

This shows that Q ∗

2 (fm) is convergent, and consequently Q2(fm) is absolutely convergent. Then by the Cauchy–Schwarz
inequality,

|Q2(fm)| =

1a −s≠0

∫
R
f̂m(ω + sT )f̂m(ω)Is(ω)dω


≤

1
a

−
s≠0

∫
R
(|f̂m(ω + sT )||Is(ω)|

1
2 )(|f̂m(ω)||Is(ω)|

1
2 )dω

≤
1
a

−
s≠0

∫
R

|f̂m(ω + sT )|2|Is(ω)|dω
 1

2
∫

R
|f̂m(ω)|2|Is(ω)|dω

 1
2

. (3.20)

Note that∫
R

|f̂m(ω + sT )|2|Is(ω)|dω =

∫
R

|f̂m(ω)|2|Is(ω − sT )|dω

and

Is(ω − sT ) =

L−
l=1

−
j∈Z

ĝ l(ω − jb + sT )ĝ l(ω − jb)

=

L−
l=1

−
j∈Z

ĝ l(ω − jb + sT )ĝ l(ω − jb)

= I−s(ω), (3.21)

hence, by βs = β−s, we have

|Q2(fm)| ≤
1
a

∫
R

|f̂m(ω)|2
−
s≠0

βsdω =
µ

a
‖fm‖

2,

that is to say,

−µ

a
‖fm‖

2
≤ Q2(fm) ≤

µ

a
‖fm‖

2. (3.22)

It follows from (3.14) and (3.22) that

γ − µ

a
‖fm‖

2
≤ P(fm) ≤

α0 + µ

a
‖fm‖

2. (3.23)

Letm → +∞ in (3.23), then

γ − µ

a
‖f ‖2

≤ P(f ) ≤
α0 + µ

a
‖f ‖2.
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Therefore, system (2.3) is a Gabor frame of L2(R) with the frame lower bound C1 defined by (2.13) and the upper bound C2
defined by (2.14), respectively. This completes the proof. �

Proof of Theorem 2.3. Similar to the proof of Theorem 2.2, (3.11)–(3.14) and (3.20) hold. It follows from (3.20), the
Cauchy–Schwarz inequality and (3.21) that

|Q2(fm)| ≤
1
a

−
s≠0

∫
R

|f̂m(ω + sT )|2|Is(ω)|dω

 1
2
−

s≠0

∫
R

|f̂m(ω)|2|Is(ω)|dω

 1
2

=
1
a

−
s≠0

∫
R

|f̂m(ω)|2|Is(ω − sT )|dω

 1
2
−

s≠0

∫
R

|f̂m(ω)|2|Is(ω)|dω

 1
2

=
1
a

∫
R

|f̂m(ω)|2
−
s≠0

|I−s(ω)|dω

 1
2
∫

R
|f̂m(ω)|2

−
s≠0

|Is(ω)|dω

 1
2

≤
θ

a
‖fm‖

2, (3.24)

which implies that

−θ

a
‖fm‖

2
≤ Q2(fm) ≤

θ

a
‖fm‖

2. (3.25)

Combining (3.14) with (3.25), we get

γ − θ

a
‖fm‖

2
≤ P(fm) ≤

α0 + θ

a
‖fm‖

2. (3.26)

Letm → +∞ in (3.26), then we have

γ − θ

a
‖f ‖2

≤ P(f ) ≤
α0 + θ

a
‖f ‖2.

The proof is completed. �
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