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a b s t r a c t

An infinite word is S-automatic if, for all n ≥ 0, its (n + 1)th letter is the output of a de-
terministic automaton fed with the representation of n in the numeration system S. In this
paper, we consider an analogous definition in a multidimensional setting and study its re-
lation to the shape-symmetric infinite words introduced by Arnaud Maes. More precisely,
for d ≥ 1, we show that a multidimensional infinite word x:Nd → Σ over a finite alpha-
bet Σ is S-automatic for some abstract numeration system S built on a regular language
containing the empty word if and only if x is the image by a coding of a shape-symmetric
infinite word.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Let k ≥ 2. An infinite word x = (xn)n≥0 is k-automaticif for all n ≥ 0, xn is obtained by feeding a deterministic finite
automaton with output (DFAO for short) with the k-ary representation of n. In his seminal paper [4], Cobham showed that
an infinite word is k-automatic if and only if it is the image by a coding of a fixed point of a uniform morphism of constant
length k.
If we relax the assumption on the uniformity of themorphism, Cobham’s result still holds but k-ary systems are replaced

by awider class of numeration systems, the so-called abstract numeration systems [6,13,12]. If an abstract numeration system
is denoted by S, the corresponding sequences that can be generated are said to be S-automatic. That is, the (n+1)th element
of such a sequence is obtained by feeding aDFAOwith the representation of n in the particular abstract numeration system S.
In the vein of Arnaud Maes’ thesis, this paper studies the relationship between sequences generated by automata and

sequences generated by morphisms, but extended to the framework of multidimensional infinite words, i.e., maps from
Nd to some finite alphabet Σ . For instance, k-automatic sequences have been generalized either by considering d-tuples
of k-ary representations given to a suitable DFAO or by iterating morphisms for which images of letters are d-dimensional
cubes of constant size; see [14,11] for questions related to frequencies of letters. In [13] multidimensional S-automatic
sequences have been introduced mimicking O. Salon’s construction. Let us also mention [2] where a different notion of
bidimensional morphism is introduced in connection with problems arising in discrete geometry. In [5] bidimensional S-
automatic sequences turn out to be useful in the context of combinatorial game theory. They play a central role to get new
characterizations of P-positions for the famous Wythoff game and some of its variations. Another motivation for studying
the set of multidimensional S-automatic words w over {0, 1} is to consider them as characteristic words of subsets Pw of
Nd, to extend the structure 〈N;<〉 by the corresponding predicates Pw and to study the decidability of the corresponding
first-order theory. Also see [3] for the relationship with second-order monadic theory.
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Our main result in this paper can be precisely stated as follows.

Theorem. Let d ≥ 1. The d-dimensional infinite word x is S-automatic for some abstract numeration system S = (L,Σ, <)
where ε ∈ L if and only if x is the image by a coding of a shape-symmetric d-dimensional infinite word.

Our first task is to define the different concepts occurring in this statement.

1.1. Abstract numeration systems

IfΣ is a finite alphabet,Σ∗ denotes the free monoid generated byΣ having concatenation of words as product and the
empty word ε as neutral element. Ifw = w0 · · ·w`−1 is a word, ` ≥ 0, where thewj’s are letters, then |w| denotes its length
`. Let (Σ, <) be a totally ordered alphabet and u, v be two words overΣ . We say that u is genealogically less than v, and we
write u ≺ v, if either |u| < |v| (i.e., u is shorter than v) or |u| = |v| and there exist p, s, t ∈ Σ∗, a, b ∈ Σ such that u = pas,
v = pbt and a < b (i.e., u is lexicographically less than v). Note that in the literature, genealogical order is also called radix
order. Also let us mention that we have adopted the convention that all words and arrays have indices starting from 0.

Definition 1. An abstract numeration system [6] is a triple S = (L,Σ, <)where L is an infinite regular language over a totally
ordered finite alphabet (Σ, <). Enumerating the words of L using the genealogical ordering ≺ induced by the ordering <
ofΣ gives a one-to-one correspondence repS :N→ Lmapping the non-negative integer n onto the (n+ 1)th word in L. In
particular, 0 is sent onto the first word in the genealogically ordered language L. The inverse map of repS is the S-value map
denoted by valS : L→ N.

Example 2. Consider the alphabetΣ = {a, b}with a < b. The first fewwords in the regular language L = {a, ba}∗{ε, b} are
ε, a, b, aa, ab, ba, aaa, aab. For S = (L,Σ, <), we have, for instance, valS(b) = 2 and repS(5) = ba.

Remark 3. Any positional numeration system built on a strictly increasing sequence (Un)n≥0 of integers such that U0 = 1
gives an abstract numeration system whenever N is U-recognizable, i.e., whenever the set of greedy representations of the
non-negative integers in terms of the sequence (Un)n≥0 is regular.

Any regular language is accepted by a deterministic finite automaton, which is defined as follows. A deterministic finite
automaton A (DFA for short) is given by A = (Q , q0,Σ, δ, F) where Q is the finite set of states, q0 ∈ Q is the initial state,
δ:Q × Σ → Q is the transition function and F ⊆ Q is the set of final states. The function δ can be extended to Q × Σ∗ by
δ(q, ε) = q for all q ∈ Q and δ(q, aw) = δ(δ(q, a), w) for all q ∈ Q , a ∈ Σ and w ∈ Σ∗. A word w ∈ Σ∗ is accepted by
A if δ(q0, w) ∈ F . The language accepted byA is the set of the accepted words. A deterministic finite automaton with output
(DFAO for short)B = (Q , q0,Σ, δ,Γ , τ ) is defined analogously where Γ is the output alphabet and τ :Q → Γ is the output
function. The output corresponding to the input w ∈ Σ∗ is τ(δ(q0, w)).

1.2. S-automatic multidimensional infinite words

Let d ≥ 1. To work with d-tuples of words of the same length, we introduce the following map.

Definition 4. Ifw1, . . . , wd are finite words over the alphabetΣ , the padding map (·)#: (Σ∗)d → ((Σ ∪ {#})d)∗ is defined
as

(w1, . . . , wd)
#
:= (#m−|w1|w1, . . . ,#m−|wd|wd)

wherem = max{|w1|, . . . , |wd|}.

As an example, (ab, bbaa)# = (##ab, bbaa). In what follows, we use the notationΣ# as a shorthand forΣ ∪ {#}.

Definition 5. A d-dimensional infinite word over the alphabet Γ is a map x:Nd → Γ . We use notation like xn1,...,nd or
x(n1, . . . , nd) to denote the value of x at (n1, . . . , nd). Such a word is said to be S-automatic for an abstract numeration
system S = (L,Σ, <) if there exists a deterministic finite automaton with output A = (Q , q0, (Σ#)d, δ,Γ , τ ) such that,
for all n1, . . . , nd ≥ 0,

τ(δ(q0, (repS(n1), . . . , repS(nd))
#)) = xn1,...,nd .

In this case, we say that the DFAOA generates the infiniteword x. The notion of an S-automatic infinitewordwas introduced
in [13] (also see [10]) as a natural generalization of the multidimensional k-automatic sequences introduced in [14].

Example 6. Consider the abstract numeration system introduced in Example 2, S = ({a, ba}∗{ε, b}, {a, b}, a < b) and the
DFAO depicted in Fig. 1. Since this automaton is fed with entries of the form (repS(n1), repS(n2))#, we do not consider the
transitions on input (#,#). If the outputs of the DFAO are considered to be the states themselves, then the DFAO generates
the bidimensional infinite S-automatic word given in Fig. 2.



1240 E. Charlier et al. / Discrete Mathematics 310 (2010) 1238–1252

Fig. 1. A deterministic finite automaton with output.

Fig. 2. A bidimensional infinite S-automatic word.

1.3. Multidimensional morphism

This section is given for the sake of completeness and is intended to present the notion of a multidimensional morphism.
Let d be a positive integer. It is fixed for the whole section. If i ≤ j are integers, then [[i, j]] denotes the interval of integers

{i, i + 1, . . . , j}. For all n ∈ Nd and i ∈ [[1, d]], we let ni denote the ith component of n and n̂i denote the (d − 1)-tuple
(n1, . . . , ni−1, ni+1, . . . , nd) in Nd−1. Letm and n be two d-tuples in Nd. We writem ≤ n (resp.m < n), if mi ≤ ni (resp.
mi < ni) for all i = 1, . . . , d. In particular, we set 0 := (0, . . . , 0) and 1 := (1, . . . , 1).

Definition 7. Let s1, . . . , sd be positive integers or∞. A d-dimensional array over the alphabet Σ is a map x with domain
[[0, s1−1]]×· · ·×[[0, sd−1]] taking values inΣ . By convention, if we have si = ∞ for some i, thenwe set [[0, si−1]] = N. If
x is such an array, we write |x| for the d-tuple (s1, . . . , sd) ∈ (N∪ {∞})d, which is called the shape of x. We let εd denote the
d-dimensional array of shape 0. Note that we have ε1 = ε. If n = (n1, . . . , nd) belongs to the domain of x, we indifferently
use the notation xn1,...,nd , xn, x(n1, . . . , nd) or x(n). A d-dimensional array x is said to be bounded if we have |x|i <∞ for all
i ∈ [[1, d]]. The set of d-dimensional bounded arrays overΣ is denoted by Bd(Σ). A bounded array x is a square of size c ∈ N
if |x| = (c, . . . , c).

Definition 8. Let x be a d-dimensional array. If we have 0 ≤ s ≤ t ≤ |x| − 1, then x[s, t] is said to be a factor of x and is
defined as the array y of shape t− s+ 1 given by y(n) = x(n+ s) for all n ∈ Nd such that n ≤ t− s. For any u ∈ Nd, the set
of factors of x of shape u is denoted by Factu(x).

Example 9. Consider the bidimensional (bounded) array of shape (2, 5),

x =
a b a a b
c d b c d .

We have

x[(0, 0), (1, 1)] =
a b
c d and x[(0, 2), (1, 4)] =

a a b
b c d .

For instance, Fact1(x) = {a, b, c, d} and

Fact(2,3)(x) =
{
a b a
c d b ,

b a a
d b c ,

a a b
b c d

}
.
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Definition 10. Let x be a d-dimensional array of shape s = (s1, . . . , sd). For all i ∈ [[1, d]] and k < si, we let x|i,k denote the
(d− 1)-dimensional array of shape

|x|̂i = ŝi = (s1, . . . , si−1, si+1, . . . , sd)

defined by setting the ith coordinate equal to k in x, that is,

x|i,k(n1, . . . , ni−1, ni+1, . . . , nd) = x(n1, . . . , ni−1, k, ni+1, . . . , nd)

for all nj ∈ [[0, sj − 1]]with j ∈ [[1, d]] \ {i}.

Definition 11. Let x, y be two d-dimensional arrays. If for some i ∈ [[1, d]], |x|̂i = |y|̂i = (s1, . . . , si−1, si+1, . . . , sd), then we
define the concatenation of x and y in the direction i to be the d-dimensional array x�i y of shape

(s1, . . . , si−1, |x|i + |y|i, si+1, . . . , sd)

satisfying
(i) x = (x�i y)[0, |x| − 1]
(ii) y = (x�i y)[(0, . . . , 0, |x|i, 0, . . . , 0), (0, . . . , 0, |x|i, 0, . . . , 0)+ |y| − 1].
The d-dimensional empty word εd is a word of shape 0. We extend the definition to the concatenation of εd and any d-
dimensional word x in the direction i ∈ [[1, d]] by

εd�
i x = x�i εd = x.

In particular, εd�i εd = εd.

Example 12. Consider the two bidimensional arrays

x =
a b
c d and y =

a a b
b c d

of shape respectively |x| = (2, 2) and |y| = (2, 3). Since |x|̂2 = |y|̂2 = 2, we get

x�2 y =
a b a a b
c d b c d .

However x�1 y is not defined because 2 = |x|̂1 6= |y|̂1 = 3.

Let x be a d-dimensional array andµ:Σ → Bd(Σ) be a map. Note thatµ cannot necessarily be extended to a morphism
on Σ∗. Indeed, if x is an array over Σ , µ(x) is not always well defined. Depending on the shapes of the images by µ of the
letters in Σ , when trying to build µ(x) by concatenating the images µ(xi) we can obtain ‘‘holes’’ or ‘‘overlaps’’. Therefore,
we introduce some restrictions on µ.

Definition 13. Let µ:Σ → Bd(Σ) be a map and x be a d-dimensional array such that

∀i ∈ [[1, d]],∀k < |x|i,∀a, b ∈ Fact1(x|i,k) : |µ(a)|i = |µ(b)|i. (1)

Then the image of x by µ is the d-dimensional array defined as

µ(x) = �10≤n1<|x|1
(
· · ·
(
�
d
0≤nd<|x|d µ(x(n1, . . . , nd))

)
· · ·
)
.

Note that the ordering of the products in the different directions is unimportant.

Example 14. Consider the map µ given by

a 7→
a a
b d , b 7→

c
b , c 7→ a a , d 7→ d .

Let

x =
a b
c d .

Since |µ(a)|1 = |µ(b)|1 = 2, |µ(c)|1 = |µ(d)|1 = 1, |µ(a)|2 = |µ(c)|2 = 2 and |µ(b)|2 = |µ(d)|2 = 1,µ(x) is well defined
and given by

µ(x) =
a a c
b d b
a a d

.

However, µ2(x) is not well defined.
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Definition 15. Let µ:Σ → Bd(Σ) be a map. If for all a ∈ Σ and all n ≥ 1, µn(a) is inductively well defined from µn−1(a),
that is, µn−1(a) satisfies (1), then µ is said to be a d-dimensional morphism.

The usual notion of a prolongable morphism can also be given in this multidimensional setting.

Definition 16. Let µ be a d-dimensional morphism and a be a letter such that (µ(a))0 = a. We say that µ is prolongable on
a. Then the limit

w = µω(a) := lim
n→+∞

µn(a)

is well defined andw = µ(w) is a fixed point ofµ. A d-dimensional infinite word x overΣ is said to be pure morphic if it is a
fixed point of a d-dimensional morphism. It is said to bemorphic if there exists a coding ν:Γ ∗ → Σ∗ (i.e., a letter-to-letter
morphism) such that x = ν(y) for some pure morphic word y over Γ .

Note that if a d-dimensional infinite wordw is a fixed point of a d-dimensional morphism µ, then (1) implies

∀i ∈ [[1, d]],∀k ∈ N,∀a, b ∈ Fact1(w|i,k) : |µ(a)|i = |µ(b)|i.

1.4. Shape-symmetric morphic words

The property of shape-symmetry was first introduced by A. Maes and was used mainly in connection with logical
questions about the decidability of first-order theories where 〈N;<〉 is extended by some morphic predicate [7,9,8]. This
property is a natural generalization of uniform morphisms where all images are squares of the same size [14]. Let d ≥ 2 be
an integer.

Definition 17. Let µ:Σ → Bd(Σ) be a d-dimensional morphism having the d-dimensional infinite word x as a fixed point.
If the imagesµ(xn,...,n), for all n ∈ N, of the letters on the diagonal of x are squares, then x is said to be shape-symmetric (with
respect to µ).

Remark 18. Two equivalent formulations of shape-symmetry are given as follows. Let µ:Σ → Bd(Σ) be a d-dimensional
morphism having the d-dimensional infinite word x as a fixed point. This word is shape-symmetric if and only if

∀i, j ≤ d,∀k ∈ N,∀a ∈ Fact1(x|i,k),∀b ∈ Fact1(x|j,k) : |µ(a)|i = |µ(b)|j

or, if and only if for any permutation f of [[1, d]], we have, for all n1, . . . , nd ≥ 0,

|µ(x(n1, . . . , nd))| = (s1, . . . , sd)⇒ |µ(x(nf (1), . . . , nf (d)))| = (sf (1), . . . , sf (d)).

Remark 19. A. Maes showed that determining whether or not a map µ:Σ → Bd(Σ) is a d-dimensional morphism is a
decidable problem. Moreover he showed that if µ is prolongable on a letter a, then it is decidable whether or not the fixed
point µω(a) is shape-symmetric [7–9].

Example 20. The following morphism has a fixed point µω(a)which is shape-symmetric.

µ(a) = µ(f ) =
a b
c d , µ(b) =

e
c , µ(c) = e b , µ(d) = f , µ(e) =

e b
g d ,

µ(g) = h b , µ(h) =
h b
c d .

In Fig. 3 we have represented the beginning of the array. Some elements are underlined for the use of Example 34.

Definition 21. Let µ:Σ → Bd(Σ) be a d-dimensional morphism having the d-dimensional infinite word x as a fixed point.
The shape sequence of xwith respect to µ in the direction i ∈ [[1, d]] is the sequence

Shapeµ,i(x) = (|µ(x|i,k)|i)k≥0.

For a unidimensional morphism µ having the infinite word x = x0x1x2 · · · as a fixed point, the shape sequence of x with
respect to µ is Shapeµ(x) = (|µ(xk)|)k≥0.

Remark 22. Let µ:Σ → Bd(Σ) be a d-dimensional morphism having the d-dimensional infinite word x as a fixed point.
Note that x is shape-symmetric if and only if

Shapeµ,1(x) = · · · = Shapeµ,d(x).
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Fig. 3. A fixed point of µ.

Fig. 4. The successive e-erased arrays from x.

1.5. Erasing hyperplanes from multidimensional arrays

This short section is quite technical and it is only needed in the second part of the proof of Theorem 25. Here we define
how to erase hyperplanes from a multidimensional array.

Definition 23. Let d ≥ 2 be an integer. Let x be a d-dimensional array of shape (s1, s2, . . . , sd) over Σ ∪ {e}, where e does
not belong toΣ . A (d− 1)-dimensional array x|i,k is called an e-hyperplane of x if each letter in x|i,k is equal to e. Erasing an
e-hyperplane x|i,k of xmeans replacing xwith a d-dimensional array x′ = y�i z, where

y =
{
x[0, (s1, . . . , si−1, k, si+1, . . . , sd)− 1], if k ≥ 1;
εd, otherwise

and

z =
{
x[(0, . . . , 0, k+ 1, 0, . . . , 0), |x| − 1], if k < si − 1;
εd, otherwise.

We let ρe denote the map which associates with any d-dimensional array x overΣ ∪ {e} the array ρe(x) obtained by erasing
iteratively every e-hyperplane of x. Moreover, we say that x is e-erasable if the array ρe(x) does not contain the letter e
as a factor. In other words, for each position n such that xn = e, there exists an integer i ∈ [[1, d]] such that x|i,ni is an
e-hyperplane.

Example 24. Consider the bidimensional array

x =

a b a e e a
e e e e e e
a a e e e b
e e a e b b
b a b e e a

of shape (5, 6). Clearly, x|2,3 is a e-hyperplane. By erasing x|2,3 from x, we obtain the bidimensional array x′ = y�2 z of shape
(5, 5), where y = x[(0, 0), (4, 2)] and z = x[(0, 4), (4, 5)]. Then x′

|1,1 is a e-hyperplane of x
′. By erasing x′

|1,1 from x
′, we

obtain the bidimensional array x′′ = y′�1 z ′ of shape (4, 5), where y′ = x′[(0, 0), (0, 4)] and z ′ = x′[(2, 0), (4, 4)]. The
erased arrays x′ and x′′ are depicted in Fig. 4. Moreover, we have ρe(x) = x′′ since there is no e-hyperplane in x′′. Because
the letter e still occurs in x′′, the bidimensional array x is not e-erasable.

2. Main result

Let us recall that our goal is to prove the following result.

Theorem 25. Let d ≥ 1. The d-dimensional infinite word x is S-automatic for some abstract numeration system S = (L,Σ, <)
where ε ∈ L if and only if x is the image by a coding of a shape-symmetric infinite d-dimensional word.
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Fig. 5. The automatonAµ1,a .

The case d = 1 is proved in [13]. It is a natural generalization of the classical theorem of Cobham from 1972 [4]. For the
sake of clarity, we present the proof in the case d = 2. We split the proof into two parts.
Part 1. Assume that x = ν(µω(a))where ν:Σ∗ → Γ ∗ is a coding and µ:Σ∗ → B2(Σ) is a two-dimensional morphism

prolongable on a such that y = µω(a) is shape-symmetric.We show in this part that x is S-automatic for some S = (L,Σ, <)
where ε ∈ L.
Let Y1 = (y0,n)n≥0 be the first row of y. This word Y1 is a unidimensional infinite word over a subset Σ1 of Σ . It is clear

that Y1 is generated by a unidimensional morphism µ1 derived from µ (one only has to consider the first row occurring in
the images by µ of the letters inΣ).

Definition 26. With each (unidimensional)morphismµ:Σ → Σ∗ andwith each letter a ∈ Σ we can canonically associate
a DFA denoted byAµ,a and defined as follows. Let rµ := maxb∈Σ |µ(b)|. The alphabet ofAµ,a is {0, . . . , rµ − 1}. The set of
states isΣ . The initial state is a and every state is final. The (partial) transition function δµ is defined by δµ(b, i) = (µ(b))i,
for all b ∈ Σ and i ∈ {0, . . . , |µ(b)| − 1}. By removing from the language accepted byAµ,a the words having 0 as a prefix,
we obtain the directive language of (µ, a). We let Lµ,a denote this directive language. Note that Lµ,a is a prefix language since
all states in Aµ,a are final. In particular, we have ε ∈ Lµ,a. The reason why we call it directive will be clear; see Lemma 29
and Corollary 30.

Example 27. Considering the morphism µ of Example 20, we get Σ1 = {a, b, e}, µ1: a 7→ ab, b 7→ e, e 7→ eb and
Y1 = abeebebeebeebebeebebeeb · · ·. The DFA associated with (µ1, a) is depicted in Fig. 5. The first few words in the directive
language of (µ1, a) are ε, 1, 10, 100, 101, 1000, 1001, 1010, 10000.

Lemma 28. Let µ:Σ → Σ∗ be a morphism prolongable on a ∈ Σ . We have

#(Lµ,a ∩ {0, . . . , rµ − 1}s) =
{
|µs(a)| − |µs−1(a)|, if s > 0;
1, if s = 0.

Proof. The adjacency matrix M ∈ NΣ×Σ of Aµ,a is defined for all b, c ∈ Σ by Mb,c = #{i | δµ(b, i) = c}. For all s ≥ 0,
[Ms]b,c is the number of paths of length s from b to c in Aµ,a. Since all states are final, the number Ns of words of length
s accepted by Aµ,a is obtained by summing up all the entries of Ms in the row corresponding to a. In particular, we have
N0 = 1. Because Aµ,a has a loop of label 0 in a, the number of words of length s accepted by Aµ,a and starting with 0 is
equal to the number Ns−1 of words of length s− 1 accepted byAµ,a. Consequently, the number of words of length s > 0 in
the directive language Lµ,a is exactly Ns − Ns−1. Of course, the matrixM can also be related to the morphism µ andMb,c is
also the number of occurrences of c in µ(b). In particular, summing up all entries in the row ofMs corresponding to a gives
|µs(a)|. Therefore, the number of words of length s > 0 in the directive language Lµ,a is |µs(a)| − |µs−1(a)|. �

Lemma 29. Let µ:Σ → Σ∗ be a morphism prolongable on a ∈ Σ . Let S be the abstract numeration system built on the
directive language Lµ,a of (µ, a) with the ordered alphabet ({0, . . . , rµ − 1}, 0 < · · · < rµ − 1). Then, for the infinite word
µω(a) = y0y1y2 · · · and for all n ≥ 0, we have

yn = δµ(a, repS(n))

and, by setting valS(0) = 0,

µ(yn) = µω(a)[valS(repS(n)0), valS(repS(n)(|µ(yn)| − 1))].

This latter formula is equivalent to

∀n ∈ N, ∀i ∈ [[0, |µ(yn)| − 1]], (µ(yn))i = yvalS (repS (n)i).

Proof. Proceed by induction on the length s of the words in Lµ,a. The only word of length 0 in Lµ,a is repS(0) = ε. Since µ is
prolongable on a, we have y0 = a = δµ(a, repS(0)). Moreover, for any i ∈ [[0, |µ(a)| − 1]], we have valS(i) = i. So for any
i ∈ [[0, |µ(a)| − 1]], we get (µ(y0))i = yi.
Now take s ∈ N\{0} and assume that the lemma holds for all integersm such that |repS(m)| ∈ [[0, s−1]]. Take n ∈ N\{0}

such that |repS(n)| = s. Write repS(n) = wkwhere |w| = s− 1 and k ∈ [[0, |µ(δµ(a, w))| − 1]]. Since Lµ,a is prefix-closed,
there exists an integerm such thatw = repS(m). Hence, we have
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Fig. 6. The automatonAµ2,a .

δµ(a, repS(n)) = δµ(a, wk)
= δµ(δµ(a, repS(m)), k)
= δµ(ym, k) (by the induction hypothesis)
= (µ(ym))k (by the definition of δµ)
= yvalS (repS (m)k) (by the induction hypothesis)
= yn.

Thus, we have shown y` = δµ(a, repS(`)) for all ` ∈ [[0, |µs(a)| − 1]]. Moreover, from the lemma above, we get

|repS(n)| = t ⇔ n ∈ [[|µ
t−1(a)|, |µt(a)| − 1]]. (2)

Therefore we can write

µs+1(a) = µs−1(a)uynv︸ ︷︷ ︸
µs(a)

µ(u)µ(yn)µ(v)

for some finite words u, v. Hence, we get

∀i ∈ [[0, |µ(yn)| − 1]], (µ(yn))i = y|µs(a)|+|µ(u)|+i.

By the definition of Lµ,a, we have

∀i ∈ [[0, |µ(yn)| − 1]], valS(repS(n)i) = valS(repS(n)0)+ i.

Hence, to conclude the proof, it suffices to show valS(repS(n)0) = |µs(a)| + |µ(u)|.
From (2) we know that |µs(a)| is the S-value of the first word of length s+1 in Lµ,a with respect to the genealogical order.

Next, from the definition of Lµ,a and from the first part of the proof, it follows that Lµ,a contains exactly |µ(δµ(a, repS(`)))| =
|µ(y`)|words of the form repS(`)j, where ` belongs to [[0, |µs(a)|−1]] and j is a letter. Since repS(|µs−1(a)|) is the first word
of length s in Lµ,a with respect to the genealogical order, we get that |µ(u)| =

∑n−1
`=|µs−1(a)| |µ(y`)| is exactly the number of

words of length s + 1 in Lµ,a of the form repS(`)j with |repS(`)| = s and ` < n, i.e., the number of words in Lµ,a of length
s+ 1 less than repS(n)0 with respect to the genealogical order. The result follows. �

Corollary 30. Let µ:Σ → Σ∗ be a morphism prolongable on a ∈ Σ and let µω(a) = y0y1y2 · · ·. Let S be the abstract
numeration system built on the directive language Lµ,a of (µ, a)with the ordered alphabet ({0, . . . , rµ−1}, 0 < · · · < rµ−1).
Let n ≥ 0 and repS(n) = w0 · · ·w`, where thewj’s are letters. Define z0 := µ(a) and for j = 0, . . . , `−1, set zj+1 := µ((zj)wj).
Then, yn = (z`)w` .

Example 31. Continue Example 27. The fixed point Y1 of µ1 starts with

abeebebe = y0 · · · y7

and repS(7) = 1010. From Lemma 29, y7 = e has been generated by applyingµ1 to the letter in the position valS(101) = 4,
i.e., y4 = b.We have y7 = (µ1(b))0. In turn, y4 occurs in the image byµ1 of the letter in the position valS(10) = 2, y2 = e and
we have y4 = (µ1(e))1. Now y2 appears in the image of the letter in the position valS(1) = 1 and we have y2 = (µ1(b))0.

The following result is obvious.

Lemma 32. Let x, y be two infinite (unidimensional) words and λ,µ be twomorphisms such that there exist letters a, b such that
x = λω(a) and y = µω(b). The languages Lλ,a and Lµ,b are equal if and only if Shapeλ(x) = Shapeµ(y).

Example 33. If one considers the morphism µ2 defined by a 7→ ac , c 7→ e, e 7→ eg , g 7→ h and h 7→ hc (which is derived
from the first columnof the bidimensionalmorphism in Example 20), we have theDFAAµ2,a depicted in Fig. 6. The automata
in Figs. 5 and 6 clearly accept the same language (the first one being minimal).

Let Y2 = (yn,0)n≥0 be the first column of y. This word Y2 is a unidimensional infinite word over a subsetΣ2 ofΣ . It is clear
that Y2 is generated by a morphism µ2 derived from µ. Since y is shape-symmetric, thanks to Remark 22 and to Lemma 32,
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Fig. 7. DFAO generating µω(a) as an S-automatic word.

we have

Lµ1,a = Lµ2,a =: L.

We consider the abstract numeration system built upon this language L (with the natural ordering of digits). With all the
above discussion and in particular in view of Corollary 30, it is clear that if repS(m) = ub and repS(n) = vc where b and c
are letters, then

(µ(yvalS (u),valS (v)))b,c = ym,n. (3)

Example 34. Consider the letter c occurring in the position (4, 7) in the fixed point y of µ underlined in Fig. 3. We have
(4, 7) = (valS(101), valS(1010)). If we consider the pair (valS(10), valS(101)) = (2, 4), we get (µ(y2,4))1,0 = (µ(b))1,0 =
c = y4,7. In other words, y4,7 comes from y2,4. We can continue in this way. We have b = y2,4 = (µ(y1,2))0,1 because
(valS(1), valS(10)) = (1, 2). Now y1,2 = c = (µ(y0,1))1,0 because (valS(ε), valS(1)) = (0, 1). Finally y0,1 = b =
(µ(y0,0))0,1 = (µ(a))0,1 because (valS(ε), valS(ε)) = (0, 0).

Now we extend Definition 26 to the multidimensional case.

Definition 35. For each d-dimensional morphism µ:Σ → Bd(Σ) and for each letter a ∈ Σ , define a DFA Aµ,a over the
alphabet {0, . . . , rµ − 1}d where rµ = max{|µ(b)|i | b ∈ Σ, i = 1, . . . , d}. The set of states isΣ , the initial state is a and all
states are final. The (partial) transition function is defined by

δµ(b,n) = (µ(b))n,

for all b ∈ Σ and n ≤ |µ(b)|.

Thanks to (3), the automatonAµ,a is such that, for allm, n ≥ 0,

ym,n = δµ(a, (repS(m), repS(n))
0),

where we have padded the shortest word with enough 0’s to make two words of the same length as in Definition 4. If we
consider the coding ν as the output function, the corresponding DFAO generates x as an S-automatic sequence. Note that
paddingwith 0’s correctly works since 0 is the lexicographically smallest letter and the directive language L does not contain
any words starting with 0. This concludes the first part.

Example 36. Consider the two-dimensional morphism µ of Example 20 and its fixed point µω(a) depicted in Fig. 3. If
S = (L, {0, 1}, 0 < 1) is the abstract numeration system constructed on L = {ε, 1, 10, 100, 101, 1000, 1001, 1010, . . .},
then the corresponding DFAO depicted in Fig. 7, where the output function is the identity, generatesµω(a) as an S-automatic
word. For instance, if we continue Example 34, by reading (repS(4), repS(7))0 = (0101, 1010), we get

y0,0 = a
(0,1)
→ y0,1 = b

(1,0)
→ y1,2 = c

(0,1)
→ y2,4 = b

(1,0)
→ y4,7 = c,

and the letters appearing in this sequence of transitions are exactly the underlined ones in Fig. 3.

Part 2. Assume that x = (xm,n)m,n≥0 is a two-dimensional S-automatic infinite word over an alphabet Γ for some
abstract numeration system S = (L,Σ, <) where ε ∈ L and Σ = {a1, . . . , ar} with a1 < · · · < ar . Let A =

(QA, q0, (Σ#)2, δA,Γ , τA) be a deterministic finite automaton with output generating x. We may assume that # =: a0
is a symbol not belonging toΣ and that a0 < a1. Recall that this means that xm,n = τA(δA(q0, (repS(m), repS(n))#)) for all
m, n ≥ 0. Without loss of generality, we suppose that δA(q, (#,#)) = q, for all q ∈ QA. In this part we prove that x can
be represented as the image by a coding of a morphic shape-symmetric two-dimensional infinite word. We do the proof in
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Fig. 8. The fixed point µA
ω(p).

three steps. First, we show that x can be obtained by applying an erasing map to a fixed point of a uniform two-dimensional
morphism. In the second step we prove that x is morphic. The generating morphism µ and the coding ν are obtained using
a construction based on a unidimensional construction from [1]. Finally, we show that the considered fixed point of µ is
shape-symmetric.

Definition 37. Let d ≥ 1. Any DFA of the form A = (Q , q0,Σd, δ, F), where Σ = {a0, a1, . . . , ar} with the ordering
ai < ai+1 for all 0 ≤ i ≤ r−1, can be canonically associatedwith a d-dimensionalmorphismdenoted byµA:Q → Bd(Q ) and
defined as follows. The image of a letter q ∈ Q is a d-dimensional square x of size r + 1 defined by xn = δ(q, (an1 , . . . , and))
for all 0 ≤ n = (n1, . . . , nd) ≤ (r, . . . , r).

Example 38. Consider the alphabetΣ = {#, a, b}with # < a < b and the automatonA depicted in Fig. 1 with added loops
of label (#,#) on all states. Then we get

µA(p) =
p q q
p p s
q p s

, µA(q) =
q p q
p s q
p q s

, µA(r) =
r s s
p r s
p r p

, µA(s) =
s r s
r q s
r s r

and µA
ω(p) is the two-dimensional infinite word depicted in Fig. 8. Notice that µA

ω(p) is different from the S-automatic
word given in Fig. 2. However, by erasing some rows and columns in Fig. 8, namely the ones corresponding to the words not
belonging to L = {a, ba}∗{ε, b}, we obtain exactly the word in Fig. 2.

By assumption, L is a regular language over Σ . Hence, there exists a DFA accepting L and we may easily modify it to
obtain a DFA L = (QL, `0,Σ#, δL, FL) accepting {#}∗L and satisfying δL(`0,#) = `0. Note that `0 is a final state since
ε ∈ L. Next, let us define a ‘‘product’’ automatonP = (Q , p0, (Σ#)2, δ, F) imitating the behavior ofA and two copies of the
automatonL, one for each dimension. The set of states of P is the Cartesian product Q = QA × QL × QL, where the initial
state p0 is (q0, `0, `0). The transition function δ:Q × (Σ#)2 → Q is defined by

δ((q, k, `), (a, b)) = (δA(q, (a, b)), δL(k, a), δL(`, b)),

where (q, k, `) belongs to Q and (a, b) is a pair of letters in (Σ#)2. The set of final states is F = QA × FL × FL. Let
y = (ym,n)m,n≥0 be the infinite word satisfying

ym,n = δ(p0, (repS(m), repS(n))
#).

Note that both the first and the second component of (repS(m), repS(n))# belong to the language {#}∗L and, therefore,
δ(p0, (repS(m), repS(n))#) is a final state. Define τ : F → Γ to be the coding satisfying τ((q, k, `)) = τA(q) for all (q, k, `) ∈
F . By construction, it is clear that τ(y) = (xm,n)m,n≥0. We consider the canonically associated morphism µP :Q → B2(Q )
given in Definition 37. Note that µP is prolongable on p0, since δ(p0, (a0, a0)) = (δA(q0, (#,#)), δL(`0,#), δL(`0,#)) =
(q0, `0, `0) = p0.

Example 39. Let us continue Example 6 and consider again the abstract numeration system S = ({a, ba}∗{ε, b}, {a, b}, a <
b) and the DFAO depicted in Fig. 1, with additional loops of label (#,#) on all states. The minimal automaton of
{#}∗{a, ba}∗{ε, b} is depicted in Fig. 9. If P is the corresponding product automaton, then the fixed point µP

ω((p, g, g))
of µP is the two-dimensional infinite word depicted in Fig. 10.

Let e be a new symbol. Recall that ρe is the erasing map given in Definition 23. Let ρ denote ρe ◦ λ, where λ is a morphism
on Q ∪ {e} defined by

λ(p) =
{
e, if p 6∈ F;
p, otherwise.
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Fig. 9. The minimal automaton accepting {#}∗{a, ba}∗{ε, b}.

Fig. 10. The fixed point µP
ω((p, g, g)).

We first claim that y = ρ(µP
ω(p0)). Observe that the infinite word λ(µP

ω(p0)) is e-erasable. Namely, all letters in a fixed
column C of the infinite bidimensional word µP

ω(p0) are of the form (q, k, `) where the third component ` is fixed. If `
does not belong to FL, the word λ(C) is a unidimensional e-hyperplane of λ(µP

ω(p0)). Thus, the map ρ erases all columns
where the third component ` does not belong to FL. The same holds for rows and second components k of the letters
in Q . Hence, the two-dimensional infinite word ρ(µP

ω(p0)) contains only letters belonging to F . By the construction of the
morphism µP , those letters are coming from the automaton P by feeding it with words belonging to ((Σ#)2)∗ ∩ ({#}∗L)2.
More precisely, all rows and columns corresponding to words not belonging to L are erased and (ρ(µP

ω(p0)))m,n is equal to
δ(p0, (repS(m), repS(n))#) = ym,n. Hence, defining ϑ = τ ◦ ρ, we get a map fromΣ to Γ such that x = ϑ(µP

ω(p0)).

Example 40. We continue Example 39 and this time we consider the bidimensional infinite S-automatic word depicted in
Fig. 2. Thisword is exactly the bidimensional infiniteword obtained by erasing all rows and columns corresponding towords
not belonging to L from the bidimensional word µωA(p) depicted in Fig. 8. By the previous construction, we obtain that this
word is also the two-dimensional infinite word obtained by first erasing all columns with ` as the third component and all
rows with ` as the second component from the two-dimensional infinite word µP

ω((p, g, g)) depicted in Fig. 10 and then
mapping the infinite word by τ .

Next we show that x is morphic by getting rid of the erasing map ρ. We construct a morphism µ prolongable on some
letter α and a coding ν such that x = ν(µω(α)). We follow the guidelines of [1, Theorem 7.7.4]. First we need the following
definitions.

Definition 41. Let µ be a morphism on some finite alphabetΣ and let Ψ ⊆ Σ . We say that a letter a ∈ Σ is

(i) (µ,Ψ )-dead if the word µn(a) ∈ Ψ ∗ for every n ≥ 0.
(ii) (µ,Ψ )-moribund if there exists m ≥ 0 such that the word µm(a) contains at least one letter in Σ \ Ψ , and for every
n > m, µn(a) ∈ Ψ ∗.

(iii) (µ,Ψ )-robust if there exist infinitely many n ≥ 0 such that the word µn(a) contains at least one letter inΣ \ Ψ .

The following lemma from [1, Lemma 7.7.3] is also valid for multidimensional morphisms, since the proof is only based
on the finiteness of the alphabetΣ .

Lemma 42. Let µ be a morphism on some finite alphabet Σ and let Ψ ⊆ Σ . Then there exists an integer T ≥ 1 such that the
morphism ϕ = µT satisfies:

(a) If a is (ϕ,Ψ )-moribund, then ϕn(a) ∈ Ψ ∗ for all n > 0 and a ∈ Σ \ Ψ .
(b) If a is (ϕ,Ψ )-robust, then the word ϕn(a) contains at least one letter inΣ \ Ψ for all n > 0.

Remark 43. Note that, by Lemma 42, a letter in Ψ is either (ϕ,Ψ )-dead or (ϕ,Ψ )-robust and a letter in Σ \ Ψ is either
(ϕ,Ψ )-moribund or (ϕ,Ψ )-robust.

Wemay assume, by taking a power ofµP if necessary, thatµP satisfies the properties (a) and (b) listed forϕ in Lemma 42
with Ψ = F c := Q \ F . For the sake of simplicity, we use the words dead, moribund and robust instead of (µP , F c)-dead,
(µP , F c)-moribund and (µP , F c)-robust from now on.
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Fig. 11. Type Tp of a letter p = (q, k, `) ∈ Q .

Next we classify the states of QL and Q into four categories. The type of a state k ∈ QL is

Tk =


∆, if k 6∈ FL and ∀a ∈ Σ#, δL(k, a) 6∈ FL;
M, if k ∈ FL and ∀a ∈ Σ#, δL(k, a) 6∈ FL;
RF c , if k 6∈ FL and ∃a ∈ Σ#, δL(k, a) ∈ FL;
RF , if k ∈ FL and ∃a ∈ Σ#, δL(k, a) ∈ FL.

The type of a state p = (q, k, `) ∈ Q is

Tp =


∆, if p is dead;
M, if p is moribund;
RF c , if p ∈ F c and p is robust;
RF , if p ∈ F and p is robust.

By these definitions, it is clear that the type of (q, k, `) ∈ Q only depends on the types of k and ` ∈ QL according to Fig. 11.
Note that by the properties (a) and (b) of Lemma 42, it suffices to consider transitions δL(k, a) for each letter a ∈ Σ# instead
of transitions δL(k, w) for all words w in (Σ#)∗. For instance, if the type of k is RF c and the type of ` is RF , then k 6∈ FL and
(q, k, `) belongs to F c . Moreover, there exist m, n ∈ [[0, r]] such that δL(k, am) ∈ FL and δL(`, an) ∈ FL. This means that
(µP ((q, k, `)))m,n belongs to F . Hence, by Lemma 42 and Remark 43, (q, k, `) is robust.
Let us define two morphisms λ∆ and λM on Q ∪ {e} in a similar way as λwas defined above:

λ∆(p) =
{
e, if p is dead;
p, otherwise and λM(p) =

{
e, if p is moribund;
p, otherwise.

By the property (b) of Lemma 42, we know that if p is robust, then µP (p) contains at least one letter in F and since every
dead letter must belong to F c , the word λ∆(µP (p)) contains at least one letter in F . For any ` ∈ QL, let us define a sequence
(d`(i))0≤i≤h` such that d`(0) = 0, d`(h`) = r + 1 and for all i ∈ [[0, h` − 1]], d`(i) < d`(i+ 1) and there exists exactly one
index n ∈ [[d`(i), d`(i+ 1)− 1]] satisfying

δL(`, an) ∈ FL. (4)

Note that h` is the number of letters an ∈ Σ# satisfying condition (4). Hence, for each robust letter p = (q, k, `), we get
hk, h` ≥ 1 and we may define the factorization

λ∆(µP (p)) =

wp(0, 0) wp(0, 1) · · · wp(0, h` − 1)
wp(1, 0) wp(1, 1) · · · wp(1, h` − 1)

...
...

. . .
...

wp(hk − 1, 0) wp(hk − 1, 1) · · · wp(hk − 1, h` − 1)

,

where each bidimensional array

wp(i, j) = λ∆(µP (p))[(dk(i), d`(j)), (dk(i+ 1)− 1, d`(j+ 1)− 1)]

contains exactly one letter in F .

Example 44. Let us continue Example 40. Recall that the product automatonP is produced from the automatonA depicted
in Fig. 1 and the automaton L depicted in Fig. 9. Note that the type of the state ` in L is T` = ∆ and all other states have
type RF . By Fig. 10, we see that

µP (p, g, g) =
(p, g, g) (q, g, h) (q, g, k)
(p, h, g) (p, h, h) (s, h, k)
(q, k, g) (p, k, h) (s, k, k)

and

µP (q, g, h) =
(q, g, `) (p, g, h) (q, g, k)
(p, h, `) (s, h, h) (q, h, k)
(p, k, `) (q, k, h) (s, k, k)

.
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Since h` is the number of letters an ∈ Σ# such that δL(`, an) ∈ FL, we notice that hg = 3 and hh = 2. By Fig. 11, we have
λ∆(µP (p, g, g)) = µP (p, g, g) and

λ∆(µP (q, g, h)) =
e (p, g, h) (q, g, k)
e (s, h, h) (q, h, k)
e (q, k, h) (s, k, k)

.

Since all letters in µP (p, g, g) belong to F , the array w(p,g,g)(i, j) is a square of size 1 for (i, j) ∈ [[0, hg − 1]] × [[0, hg − 1]].
We also obtain

w(q,g,h)(0, 0) = e (p, g, h) , w(q,g,h)(0, 1) = (q, g, k) ,

w(q,g,h)(1, 0) = e (s, h, h) , w(q,g,h)(1, 1) = (q, h, k) ,

w(q,g,h)(2, 0) = e (q, k, h) , w(q,g,h)(2, 1) = (s, h, k)

from the image λ∆(µP (q, g, h)).

Now we show that if p is a robust state, the bidimensional array λM(λ∆(µP (p))) is e-erasable. If v := λM(λ∆(µP (p)))
is not e-erasable, then there must exist m, n ≥ 0 such that vm,n = e, vm,n′ 6= e for some n′ and vm′,n 6= e for some m′. By
construction, the letter p′ = (µP (p))m,n = (q, k, `) is mapped to e either if Tp′ = ∆ or if Tp′ = M . By the same reason,
the letters vm,n′ = (q′, k, `′) and vm′,n = (q′′, k′, `) must be robust. Thus, there exist letters am′′ , an′′ ∈ Σ# such that
δL(k, am′′) ∈ FL and δL(`, an′′) ∈ FL. Hence, it follows that p′ = (q, k, `) is robust, since the letter (µP (p′))m′′,n′′ belongs
to F , which is a contradiction. Then, for each robust letter p = (q, k, `), for each i with 0 ≤ i < hk and for each j with
0 ≤ j < h`, write

(ρe(λM(wp(i, j))))m,n =: vp,i,j(m, n)

where (m, n) < sp,i,j := |ρe(λM(wp(i, j)))|. Note that the array λM(wp(i, j)) is e-erasable as a factor of the e-erasable array
λM(λ∆(µP (p))).
Now we are ready to introduce a two-dimensional morphismµ on a new alphabetΞ and a coding ν ′:Ξ → Q such that

y = ν ′(µω(α)) for a letter α ∈ Ξ . The alphabet of the new symbols is

Ξ = {α(p, i, j) | p = (q, k, `) is robust, 0 ≤ i < hk and 0 ≤ j < h`}.

We define the bidimensional arrays up,i,j(m, n) for each robust letter p = (q, k, `) ∈ Q , (i, j) ∈ [[0, hk − 1]] × [[0, h` − 1]]
and (m, n) < sp,i,j as follows. If vp,i,j(m, n) = (q′, k′, `′), then up,i,j(m, n) is an array of shape (hk′ , h`′) such that

(up,i,j(m, n))i′,j′ = α(vp,i,j(m, n), i′, j′)

for (i′, j′) ∈ [[0, hk′ − 1]] × [[0, h`′ − 1]]. The image of α(p, i, j) by the morphism µ:Ξ → B2(Ξ) is defined as the array

up,i,j(0, 0) up,i,j(0, 1) · · · up,i,j(0, s2 − 1)
up,i,j(1, 0) up,i,j(1, 1) · · · up,i,j(1, s2 − 1)

...
...

. . .
...

up,i,j(s1 − 1, 0) up,i,j(s1 − 1, 1) · · · up,i,j(s1 − 1, s2 − 1)

,

where (s1, s2) = sp,i,j. Note that the above concatenation of the arrays up,i,j(m, n) is well defined. Since all letters occurring
on a row of wp(i, j) are of the form (q′, k′, `′) where the second component k′ is fixed, it also means that the letters
vp,i,j(m, n) and vp,i,j(m, n′) occurring on the same row of ρe(λM(wp(i, j))) have the same second component k′. Hence,
|up,i,j(m, n)|̂2 = |up,i,j(m, n

′)|̂2 = hk′ and the words up,i,j(m, n) and up,i,j(m, n
′) can be concatenated in the direction 2.

The same holds for up,i,j(m, n) and up,i,j(m′, n) in the direction 1. The coding ν ′:Ξ → Q is defined by

ν ′(α(p, i, j)) = ρ(wp(i, j)). (5)

Note that by the definition ofwp(i, j), there is only one letter belonging to F and the array λ(wp(i, j)) is e-erasable, since only
one letter is different from e. This shows that ν ′ is a coding.
Following the proof of [1, Theorem 7.7.4], we may prove by induction that

ν ′ ◦ µn


α(p, 0, 0) α(p, 0, 1) · · · α(p, 0, h` − 1)
α(p, 1, 0) α(p, 1, 1) · · · α(p, 1, h` − 1)

...
...

. . .
...

α(p, hk − 1, 0) α(p, hk − 1, 1) · · · α(p, hk − 1, h` − 1)

 = ρ ◦ µn+1P (p) (6)

for all robust letters p = (q, k, `) and for all n ≥ 0. Since µP is prolongable on p0 and x = ϑ(µωP (p0)) is a two-
dimensional infinite word, the letter p0 must be robust. Therefore, we have (wp0(0, 0))0,0 = vp0,0,0(0, 0) = p0. Thus,
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(up0,0,0(0, 0))0,0 = α(p0, 0, 0) and, consequently, the morphism µ is prolongable on α := α(p0, 0, 0). For all n ≥ 0, it
follows from (6) that we have

ν ′(µn+1(α)) =

[
ν ′(µn(up0,0,0(0, 0))) U

V W

]
=

[
ρ(µn+1P (p0)) U

V W

]
,

where U, V andW are bidimensional arrays. Since ρ(µn+1P (p0)) tends to y as n tends to infinity, we have
ν ′(µω(α)) = ρ(µωP (p0)) = y.

Hence, defining the coding ν:Ξ → Γ as ν = τ ◦ ν ′ we obtain
ν(µω(α)) = τ(y) = x.

Example 45. Let us continue Example 44. We obtain

ρe(λM(λ∆(µP (q, g, h)))) =
(p, g, h) (q, g, k)
(s, h, h) (q, h, k)
(q, k, h) (s, k, k)

.

Sincew(p,g,g)(i, j) is a square of size 1 for every (i, j) ∈ [[0, 2]] × [[0, 2]], we have

s(p,g,g),i,j = |ρe(λM(w(p,g,g)(i, j)))| = (1, 1)

and

v(p,g,g),i,j(0, 0) = w(p,g,g)(i, j) = (µP (p, g, g))i,j.

In particular, we have v(p,g,g),0,0(0, 0) = (p, g, g) and v(p,g,g),0,1(0, 0) = (q, g, h). Hence, u(p,g,g),0,0(0, 0) is an array of shape
(hg , hg) = (3, 3) such that

(u(p,g,g),0,0(0, 0))i′,j′ = α(v(p,g,g),0,0(0, 0), i′, j′) = α((p, g, g), i′, j′)

for (i′, j′) ∈ [[0, 2]] × [[0, 2]] and the image µ(α((p, g, g), 0, 0)) = u(p,g,g),0,0(0, 0) is

α((p, g, g), 0, 0) α((p, g, g), 0, 1) α((p, g, g), 0, 2)
α((p, g, g), 1, 0) α((p, g, g), 1, 1) α((p, g, g), 1, 2)
α((p, g, g), 2, 0) α((p, g, g), 2, 1) α((p, g, g), 2, 2)

.

Similarly, |u(p,g,g),0,1(0, 0)| = (hg , hh) = (3, 2) and

(u(p,g,g),0,1(0, 0))i′,j′ = α(v(p,g,g),0,1(0, 0), i′, j′) = α((q, g, h), i′, j′)

for (i′, j′) ∈ [[0, 1]] × [[0, 2]]. Thus, the image µ(α((p, g, g), 0, 1)) = u(p,g,g),0,1(0, 0) is

α((q, g, h), 0, 0) α((q, g, h), 0, 1)
α((q, g, h), 1, 0) α((q, g, h), 1, 1)
α((q, g, h), 2, 0) α((q, g, h), 2, 1)

.

Next we apply the coding ν to the images above. Hence, by (5), we have

ν ′(µ(α((p, g, g), 0, 0))) = µP (p, g, g)

and

ν ′(µ(α((p, g, g), 0, 1))) =
(p, g, h) (q, g, k)
(s, h, h) (q, h, k)
(q, k, h) (s, k, k)

.

Since ν = τ ◦ ν ′, the infinite word ν(µω(α((p, g, g), 0, 0))) begins with

ν
(
µ(α((p, g, g), 0, 0))�2 µ(α((p, g, g), 0, 1))

)
=

p q q p q
p p s s q
q p s q s

,

which is exactly the left upper corner of the infinite word depicted in Fig. 2.

Finally, we have to show that w = µω(α) is shape-symmetric, that is, |µ(wn,n)| is a square for all n ∈ N. First, observe
that since we have α = α(p0, 0, 0), where the second and the third component of p0 = (q0, `0, `0) are equal, the letter
µω(α)n,n must be of the form α((q, k, k), i, i), where (q, k, k) is a robust letter in Q and i belongs to [[0, hk − 1]]. Second, if
p = (q, k, k) is a robust letter in Q , then µ(α(p, i, i)) is a square for all i ∈ [[0, hk − 1]]. Hence, the result follows.



1252 E. Charlier et al. / Discrete Mathematics 310 (2010) 1238–1252

Acknowledgements

We thank one of the referees for many proposed improvements in the text. The second author was supported by Osk.
Huttunen Foundation.

References

[1] J.-P. Allouche, J. Shallit, Automatic Sequences: Theory, Applications, Generalizations, Cambridge University Press, 2003.
[2] P. Arnoux, V. Berthé, A. Siegel, Two-dimensional iterated morphisms and discrete planes, Theoret. Comput. Sci. 319 (2004) 145–176.
[3] O. Carton, W. Thomas, The monadic theory of morphic infinite words and generalizations, Inform. and Comput. 176 (2002) 51–76.
[4] A. Cobham, Uniform tag sequences, Math. Systems Theory 6 (1972) 164–192.
[5] E. Duchêne, A.S. Fraenkel, R. Nowakowski, M. Rigo, Extensions and restrictions of Wythoff’s game preservingWythoff’s sequence as set of P positions,
J. Combin. Theory Ser. A, in press (doi:10.1016/j.jcta.2009.07.010).

[6] P.B.A. Lecomte, M. Rigo, Numeration systems on a regular language, Theory Comput. Syst. 34 (2001) 27–44.
[7] A.Maes, Decidability of the first-order theory of 〈N;<, P〉 formorphic predicates P , Preprint 9806, Inst. für Informatik und PraktischeMath., Christian-
Albrechts-Univ. Kiel (1998).

[8] A.Maes, An automata-theoretic decidability proof for first-order theory of 〈N, <, P〉withmorphic predicate P , J. Autom. Lang. Comb. 4 (1999) 229–245.
[9] A. Maes, Morphic predicates and applications to the decidability of arithmetic theories, Ph.D. Thesis, Univ. Mons-Hainaut, (1999).
[10] S. Nicolay, M. Rigo, About the frequency of letters in generalized automatic sequences, Theoret. Comp. Sci. 374 (2007) 25–40.
[11] J. Peyrière, Fréquence des motifs dans les suites doubles invariantes par une substitution, Ann. Sci. Math. Québec 11 (1987) 133–138.
[12] M. Rigo, Generalization of automatic sequences for numeration systems on a regular language, Theoret. Comp. Sci. 244 (2000) 271–281.
[13] M. Rigo, A. Maes, More on generalized automatic sequences, J. Autom. Lang. Comb. 7 (2002) 351–376.
[14] O. Salon, Suites automatiques àmulti-indices, Séminaire de théorie des nombres de Bordeaux, Exp. 4 (1986–1987), 4.01–4.27; followedby anAppendix

by J. Shallit, 4-29A–4-36A.

http://dx.doi.org/doi:10.1016/j.jcta.2009.07.010

	Multidimensional generalized automatic sequences and shape-symmetric morphic words
	Introduction
	Abstract numeration systems
	 S -automatic multidimensional infinite words
	Multidimensional morphism
	Shape-symmetric morphic words
	Erasing hyperplanes from multidimensional arrays

	Main result
	Acknowledgements
	References


