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Abstract

Let I" be a finitely generated group with a given word metric. The asymptotic density of elements in I"
that have a particular property P is the limit, as » — 0o, of the proportion of elements in the ball of
radius r which have the property P. We obtain a formula to compute the asymptotic density of finite-order
elements in any virtually nilpotent group. Further, we show that the spectrum of numbers that occur as such
asymptotic densities consists of exactly the rational numbers in [0, 1).
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let I' be a finitely generated infinite group. If P is a property that elements of I may have,
such as having finite order, having cyclic centraliser or having a root, it is natural to ask: What is
the density of elements of I that have the property P?

To make this more precise, fix a finite set S of generators for I". Given two elements g and
hin I', set d(g, h) to be the length of the shortest word in S representing ¢~ '/. This defines
the word metric on I", which makes I” into a discrete, proper metric space. For r > 1, let Bg(r)
denote the ball of radius r centred at the identity of I" with respect to this metric. Let Eg(r)
denote the set of elements with property P in the ball of radius r.
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General Problem. Compute the asymptotics of | Es(r)|. In particular, find

DI, ) = lim 15T
r—oo |Bg(r)|

if this limit exists.

D(I', S) is the asymptotic density of elements in I" which have the property P. In this paper
we study the asymptotic density of finite-order elements in the class of virtually nilpotent groups
(i.e. groups containing a nilpotent subgroup of finite index). In Theorem 1.1 and Corollary 1.2
we obtain a formula to compute D(I", S) for any virtually nilpotent group I".

It is worth pointing out that if I is actually a nilpotent group, the finite-order elements of I
form a finite subgroup, so that D(I", S) = 0 for any generating set S. However, the situation is
very different when one passes to virfually nilpotent groups. For example, Theorem 1.1 can be
used to show that the densities of finite-order elements in the square and triangle reflection groups
in the Euclidean plane are 1/4 and 1/3, respectively. In fact, we prove in Theorem 1.3 that every
rational number in [0, 1) occurs as the density of finite-order elements in some virtually nilpotent
group. This is noteworthy in light of the fact that in many results of this nature in the literature the
limit is always either 0 or 1. A number of such examples is listed in [12]. The authors themselves
give an example exhibiting “intermediate” density; they show that the union of all proper retracts
in the free group on two generators has asymptotic density 6/72.

The phenomenon of positivity of D(I, S) is not restricted to groups of polynomial growth. In
fact there exist infinite torsion groups with intermediate [8] and even exponential [1,15] growth.
(For these D(I', §) =1.)

The quantity D(I, S) is not a geometric property; it may change drastically under quasi-
isometry. For example, every virtually nilpotent group contains a nilpotent subgroup of finite
index (for which D = 0). However, the large-scale geometry of nilpotent Lie groups plays an
important role in the methods used to study |Eg(r)|.

The idea of studying groups from a statistical viewpoint was introduced by Gromov, when he
indicated that “almost every” group is word-hyperbolic. Since then the notions of generic group
theoretic properties and generic-case behavior have been extensively studied by Arzhantseva,
Champetier, Kapovich, Myasnikov, Ollivier, Ol’shanskii, Rivin, Schupp, Schpilrain, Zuk and
others (see [12] and the references therein).

1.1. Virtually nilpotent groups

Our goal is to compute D (I, S) for virtually nilpotent groups I". First consider the following
geometric case.

Let G be a connected, simply connected nilpotent Lie group endowed with a left-invariant
Riemannian metric. Its group of isometries is given by Isom G = G x C, where G acts by left
multiplication and C is the group of automorphisms of G which preserve the metric. Let I” be a
discrete, cocompact subgroup of Isom G. Auslander [4] generalised Bieberbach’s First Theorem
to show that I has a unique maximal normal nilpotent subgroup A, which is torsion-free, and
that the quotient F = I"/ A is finite. (In particular I is virtually nilpotent.)

This information determines a representation p : F' — Aut(g), where g is the Lie algebra of G.
(See Section 3.) If A is an element of F, then the automorphism p(A) has eigenvalues for its
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action on g. The eigenvalues determined by elements of F in this way depend only on the iso-
morphism type of I'. The following theorem computes the asymptotics of Eg(r) and gives a
formula for D(I, S) in terms of the above eigenvalues.

Theorem 1.1. Retaining the above notation, let S be a finite set of generators for I' and let
Es(r) denote the set of finite-order elements in the ball of radius r in the word metric. Let
g=g"D>g>> - D gt =0 be the lower central series of g and let w: " — F denote the
projection map.

Then there exists ¢ > 0 such that for any A € F, if ) denotes the 1-eigenspace of p(A), then

|7~ (A) N Es(r)| <cerd™? 1)
where
k k _ .
d= Zl rank(g'/g'™) and p= Zi -rank(hNg'/h N g ™).
i=1 i=1
Further,
DI, 8) = 2
|F|

where m is the number of elements of p(F) that do not have 1 as an eigenvalue.

In particular, D(I", S) is independent of the generating set S, so we may write D(I”) instead
of D(I, S).

Dekimpe and Igodt [6] show that every finitely generated virtually nilpotent group has a sub-
group of finite index that arises as in the geometric case. In particular, they show (see Section 3)
that any virtually nilpotent group I” has a unique maximal finite normal subgroup, say Q, and
I'/ Q acts geometrically on a connected, simply connected nilpotent Lie group. So D(I"/Q) can
be computed using Theorem 1.1. Further, we have the following result.

Corollary 1.2. Let I" be an arbitrary finitely generated virtually nilpotent group with maximal
finite normal subgroup Q. Then D(I", S) = D(I"/ Q) for any generating set S of I'.

The formula in Theorem 1.1 makes it very easy to compute D(I”) using algebraic data as-
sociated with I'. A large class of examples is provided by crystallographic groups, i.e. groups
acting properly discontinuously and cocompactly on Euclidean space. These groups are virtu-
ally abelian (by Bieberbach’s First Theorem), and hence virtually nilpotent. There are 17, 230,
and 4783 crystallographic groups in dimensions 2, 3, and 4, respectively. These are available
as libraries designed for use with the computer algebra software GAP [19]. The results of the
computation of D(I") for these groups (obtained using GAP) are summarised in Appendix A.

Theorem 1.1 shows that D(I") is always a rational number. In the following theorem we
address the question of which rational numbers in [0, 1] can occur.

Theorem 1.3. Given any rational number p/q with 0 < p/q < 1, there exists a crystallographic
group I" such that D(I'") = p/q.
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This is proved in Section 11 by explicitly constructing finite subgroups of Gl(n, Z) in which
exactly (g — p)/q of the elements have eigenvalue 1.

The paper is organised as follows. Sections 2—6 contain definitions and background on nilpo-
tent Lie groups. In particular, Section 4 describes certain useful “polynomial” coordinate systems
for nilpotent Lie groups. Section 6 contains some technical lemmas about polynomial coordi-
nates.

The proof of Theorem 1.1 is contained in Sections 7-9. In Section 7 we show that a finite-
order element of length r in I" fixes a point in a certain ball centered at the identity in G. The
key is to use now the geometry of G to estimate the number of fixed sets of torsion elements
that intersect this ball. In Section 8, an argument about volumes of balls in G yields the upper
bound (1) in Theorem 1.1 for the number of torsion elements in any coset 77 1(A) of A. From
this bound it follows that if 1 is an eigenvalue of p(A), the torsion in 7~1(A) does not contribute
to D(I', S). In Section 9 an inductive argument shows that if 1 is not an eigenvalue of p(A), then
the coset 7 ~1(A) consists entirely of torsion elements. Theorem 1.1 then follows from the fact
that the asymptotic density of a coset of A in I" is 1/|F].

The proof of Corollary 1.2 appears in Section 10. Finally, in Section 11 we construct examples
to prove Theorem 1.3 and also investigate D(I”) for some virtually nilpotent groups which are
not virtually abelian.

2. Definitions and basic facts
2.1. Nilpotent Lie groups and Lie algebras

In this section we recall some background material, which can be found, for example, in [5]
or [7]. Recall that the lower central series for a Lie algebra g is defined by

g1 =g, g“rl = [g,gi] =R-span{[X, Y]: Xeg, Y egi} fori > 1.

k+1 — {0} for some k. If, in addition, gk is non-trivial, then g is

Then g is said to be nilpotent if g
called a k-step nilpotent Lie algebra.

The lower central series for a group G is given by G! = G, and G'*! =[G, G'] and G is
nilpotent if its lower central series is finite. If GHHl = {1}, with G* non-trivial, then G is called
a k-step nilpotent group. The Lie algebra of a connected nilpotent Lie group is nilpotent.

A Lie subgroup of G is a subgroup which is a submanifold of the underlying manifold of G.
If G is connected, the subgroups G' are Lie subgroups and the Lie algebra of G' is g'. Thus
G is k-step nilpotent if and only if g is. For each i, the subgroup G'*! is normal in G’ and the
quotients G/ G+ are abelian.

If G is a connected, simply connected nilpotent Lie group, the exponential map, exp:g — G,
is an analytic diffeomorphism. Denote its inverse by log. Define a map *:g x g — g by

X xY =log(expXexpY). 3)

The Baker—Campbell-Hausdor{f formula expresses X * Y as a universal power series which
involves commutators in X and Y. While the general term cannot be expressed in closed form,
the low-order terms in the formula are well known:

X*Y =X+ ¥+ o[X. V14 2 [X.[X.7]] - = [V.[X.7]
FY =XV XY ] - v )
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1 1
- &[Y, [X.[Xx, Y]] - E[X, [Y.[X, Y]]] + (commutators in > 5 terms).  (4)
If G is k-step nilpotent, then commutators in more than k terms are trivial, which makes this a
finite sum.

2.1.1. Automorphisms and isometries

An automorphism A of G leaves invariant the groups G'. Further, A satisfies the relation A o
exp = expodA. The fixed set of A is the image in G of the l-eigenspace of dA under the
exponential map. It is a Lie subgroup of G.

Let G be endowed with a left-invariant Riemannian metric. Its group of isometries is given
by Isom G = G x C, where G acts by left multiplication and C is the group of automorphisms
of G which preserve the inner product at the identity. We will write the action of an element
(g,A) elsomG ont € G as (g,A)(t) = gA(t). Any isometry fixing the identity is also an
automorphism of G.

If G is abelian, then G = R" with the standard inner product, where n is the dimension of G.
In this case Isom G =R" x O (n).

The identity elements of G and Aut(G) will be denoted by 1 and 7, respectively. We will
freely make use of the identifications (g, /) = g and (1, A) = A.

Any finite-order isometry of G has a fixed point. This follows from a more general result of
Auslander in [3]. If (g, A) is a finite-order isometry with fixed point p (so that gA(p) = p), then

(P~ 1) (. A (p. D= (p~'gA(p). A) = (p~ ' p. A) = (1, A).
Thus (g, A) is conjugate to (1, A) in Isom G and hence Fix((g, A)) = p Fix(A).
Lemma 2.1. Let A = (1, A) be a finite-order isometry of G fixing the identity. Let K be a normal,
A-invariant Lie subgroup of G with projection map 7 :G — G/K. If A is the automorphism
of G/K induced by A, then Fix(A) = m (Fix(A)).
Proof. Clearly 7 (Fix(A)) C Fix(A). Now if gK is fixed by A, then A leaves gK invariant.
Thus (g~', I)(1, A)(g, I) is a finite-order isometry (equal to (g~ A(g), A)) leaving K invariant,
which means it has a fixed point in K, say b. We now have

(e'A@. A)B)=b = g 'A@AD)=b = Agh)=gb.

So gb is fixed by A and gK = 7 (gbh). Thus Fix(A) C n(Fix(A)). O

2.2. Quasi-isometries

A map ¢: X — X’ between two metric spaces (X, d) and (X', d’) is a quasi-isometry if there
exist constants A > 1, and C, D > 0, such that

1
74, y) = C <d'(p(0), 9 () <rd(x,y)+C

for all x, y € X and every point of X’ is in a D-neighbourhood of ¢ (X).
The following classical result can be found, for example, in [11].
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Theorem 2.2 (Milnor, Efremovich, Svarc). If I' is a group acting properly discontinuously and
cocompactly by isometries on a proper geodesic metric space X, then I' is quasi-isometric to X.
More precisely, for any xo € X, the mapping I' — X given by y > y(xo) is a quasi-isometry.

3. Virtually nilpotent groups

A finitely generated group is said to be virtually nilpotent if it has a nilpotent subgroup of
finite index. Almost crystallographic groups, i.e. groups acting properly discontinuously and
cocompactly by isometries on a connected, simply connected nilpotent Lie group, are examples
of virtually nilpotent groups. This follows from the following theorem of Auslander.

Theorem 3.1. (See [4].) If I is a discrete, cocompact subgroup of IsomG = G x C, where G
is a connected, simply connected nilpotent Lie group, then A =I" N G is cocompact in G and
F =T'/A is a finite group. Further, A is the unique maximal normal nilpotent subgroup of I
and it is torsion-free.

Using the work of Kamishima, Lee, and Raymond, Dekimpe and Igodt gave an algebraic
condition for a virtually nilpotent group to be almost crystallographic. It is proved in [6] that
every virtually nilpotent group has a unique maximal finite normal subgroup. Further, they prove
the following:

Theorem 3.2. If I'' is a virtually nilpotent group with maximal finite normal subgroup Q, then
I' =T"/Q is almost crystallographic.

This is a generalisation of Malcev’s result [16] that any finitely generated, torsion-free nilpo-
tent group can be embedded as a discrete subgroup of a nilpotent Lie group, which is unique up
to isomorphism. Theorem 3.2 allows us to focus on almost crystallographic groups.

3.1. Eigenvalues

Let I" be an almost crystallographic group acting on G, i.e. there is an injection ¥ : I" —
G x Aut(G). By Theorem 3.1, I" has a unique maximal normal nilpotent subgroup A with
Y (A)=G Ny (), such that F = I'/A is finite.

Let 7:I" — F be the projection map. There is a unique homomorphism & : F — Aut(G)
which makes the following diagram commute:

11— G —— GXx Au(G) —— Aut(G) —— 1

N

1 A r F 1

A diagram-chase shows that £ is injective. In other words, F can be realised as a group of auto-
morphisms of G. We obtain an injective homomorphism p : F — Aut(g) by composing & with
the map that assigns to each automorphism in Aut(G) its derivative. If A € F, the eigenvalues
of A are the eigenvalues of the automorphism p(A) for its action on g.
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The fact that these eigenvalues are well defined follows from a theorem of Lee and Raymond
in [14] which says that any two isomorphic almost crystallographic groups acting on G are conju-
gate by an element of G X Aut(G). Indeed if ' : I' — G X Aut G is another injection, giving rise
to the homomorphism &": F — Aut(G), and the element (g, B) € G X Aut(G) conjugates v (I")
to ¥/ (I"), then we also have BE(F YB~! = &'(F), which implies that the eigenvalues assigned to
elements of F via & are the same as those assigned via &’.

4. Polynomial coordinates on G

For the rest of the paper, G will denote a connected, simply connected nilpotent Lie group.
In this section we describe how G can be naturally identified with R”, where n is the dimension
of G, so that the group structure is “polynomial” relative to the linear coordinates on R". Such
polynomial coordinate systems are treated, for example, in [5,10] or [20].

A map f:V — W between two vector spaces is polynomial if it is described by polynomials
in the coordinates for some (and hence any) pair of bases. A polynomial coordinate map for G
is a diffeomorphism ¢ : R” — G, such that logo¢ and ¢! o exp are polynomial maps. We start
by defining a useful polynomial coordinate map on G.

Let g be a nilpotent Lie algebra and let g=g' > g*>’>---Dg
series. We define a basis which respects this filtration of g.

k+1 — ( be its lower central

Definition 4.1 (Triangular basis). Let {X{, ..., X,} be an ordered basis for g with [X;, X ;] =
Y i—; aijiX;. The basis is triangular if o;j; = 0 when [ < max{i, j}.

Example. For the three-dimensional Heisenberg Lie algebra (generated by X, Y and Z, where
[X, Y] = Z and all other brackets are trivial), the ordered sets {X,Y,Z} and {X + Z, Y, Z} are
triangular bases, while the sets {Y, Z, X} and {X, Y, X + Z} are not.

A triangular basis can be constructed by starting with an ordered basis for g and then suc-
cessively pulling back ordered bases for the factors g’ /g’ !, for i < k. If g has an inner product,
then the triangular basis can be chosen to be orthonormal.

Definition 4.2 (Coordinate map on G). Let {X1, ..., X, } be a triangular basis for g. Define a
map ¢ :R" — G by

A1, ..., 8n) = (expspXy) -+ - (exps1 X1) =exp(sp Xpn * -+ - x851X1).

See [5, Proposition 1.2.7] for a proof of the fact that ¢ defines a polynomial coordinate map
on G.

Each vector V in g is assigned a weight W/, which specifies the smallest group in the lower
central series which contains V:

W(V)=max{i |Veg}

Example. In the Heisenberg Lie algebra, with triangular basis {X, Y, Z}, we have W(X) =
W()=1and W(Z) =2.

In a triangular basis for g, there are exactly rank (g’ /g’ T!) vectors which have weight i. With
this in mind we fix the following notation.
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Notation. Let g be k-step nilpotent and let p; = rank (g’ /g'*!). A triangular basis for g will be
written as {X;;} ={X;; |1 <i <k; 1< j < p;i}, where W(X;;) =i. We will assume that {X;;}
has the “dictionary order.” Sometimes we will write the basis as {X1, ..., Xx}, where X; will
mean X;i, ..., Xy, .

We will identify G with its preimage under the polynomial coordinate map ¢ from Defini-
tion 4.2. Thus the element s = exp(sgp, Xp, * - - - ¥ 511X 11) of G will be written either as (s;;),
where it is assumed that 1 <i <kand 1 < j < p;, oras (s1,...,s), where s; =s;1, ..., 8, for
all i.

Finally, we will use s; - X; to denote s;p, Xy, * - - % 51 X;1.

5. Geometry of nilpotent Lie groups

Let G be endowed with a left-invariant Riemannian metric. The Ball-Box Theorem of Gro-
mov and Karidi (Theorem 5.2) says that in certain polynomial coordinates, the ball of radius r
about the identity in G is bounded by certain boxes with sides parallel to the coordinate axes.

Let {X;; | 1<i<k; 1< j< p;}be an orthonormal triangular basis for the Lie algebra g
of G, where p; = rank (g¢ /g’ T!). Identify G with its preimage under the corresponding polyno-
mial coordinate map, and let Bg (1, r) denote the ball of radius r about the identity in G.

Definition 5.1. In the above coordinates, for any / > 0, define Box(/) C G by
Box(1) = {(sij) | Isij| < () for 1 <i <k 1<j < pif.

This is a box in G with sides parallel to the coordinate axes. For each i, it has p; sides of
length 2/°. Note that the Lebesgue measure of this box is 2"/, where n = > 1<i<k Pi 1s the
dimension of G,andd =}, ; <, ipi-

Theorem 5.2 (Ball-Box Comparison Theorem [9,13]). There exists a > 1, which depends only
on G, such that for every r > 1,

Box(r/a) C Bg(l,r) C Box(ra).

The Ball-Box Theorem can be used to estimate the volume of B (1, r) and the distances of
elements of G from the identity. First we make the following definition.

Definition 5.3. Two functions f; and f>, from a set S to R are said to be comparable, denoted
by f1(x) ~ f>(x), if there exists M > 1 such that for all x € S,

%fz(X) < f1(x) < Mfr(x).

There is a unique left-invariant volume form on G, up to a scalar multiple. Also, the left-
invariant measure on G pulls back to Lebesgue measure on R” under the polynomial coordinate
map. (See [5].) This yields the following corollary.
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Corollary 5.4 (Polynomial growth [9,13]). Retaining the above notation, if volg denotes the
left-invariant volume on G, we have

volg [BG(l, r)] ~rd.

Let ||s||¢ denote the distance of s € G from the identity, in the left-invariant metric on G. The
following corollary is proved in [2].

Corollary 5.5 (Distances in nilpotent groups [2]). Let s € G, with s = (sij) in polynomial coor-
dinates. Then

O
||s||c~rrl_13x{|sij| s

If G! is a group in the lower central series of G, the metric on G induces a left-invariant
metric on G/G". (The inner product at the identity is obtained by identifying g/g’ with g*). The
corresponding distances are related as follows:

Corollary 5.6 (Distances in quotients). Let 1;: G — G/G' be the projection map. Then there
exists a constant 6 = §(G, 1), such that for any s € G,

”m(s)”G/Gz <dllsllg-

Proof. If {X;; |1 <i <k; 1< j< p;}isan orthonormal triangular basis for g then {dm;(X;;) |
1<i<Il-1; 1<j<p}is an orthonormal triangular basis for g/g/, in the induced
left-invariant metric on G/G'. In the corresponding polynomial coordinates, 7; is given by
(1, ..., 8k) — (s1,...,8—1), and the result follows from Corollary 5.5. O

6. More on polynomial coordinates

In this section we show that various functions associated with G, in particular, the group oper-
ations and automorphisms, are polynomial maps which preserve certain suitably defined weights.
(See Proposition 6.3.) These results are well known (cf. [5,10] or [20]) but proofs are provided
here for completeness. In Lemma 6.4 we obtain a bound on the amount that such weight preserv-
ing polynomial maps can stretch distances. These results are used in the proof of Proposition 7.2.

We start with an example:

Example. Consider the Heisenberg group with polynomial coordinates associated to the triangu-
lar basis {X, Y, Z}. Group multiplication and inversion expressed in these coordinates are given
by

x,y, 201, y1,21) = +x1,y +y1, 2+ 21 + x)1), 5)
(x, 3,207 = (=x, =y, =z +xV). (6)

Recall that W(X) = W(Y) = 1 and W(Z) = 2. If we assign the weight 1 to the variables x, y, xq,
and y; and the weight 2 to z and z1, then on the right-hand side of both (5) and (6), the X- and
Y-coordinates are sums of terms of weight 1, and the Z-coordinates are sums of terms such that
the total weight of each term is 2.
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Motivated by this example, we make the following definition. Let y = {y;} be a set of variables
and let W be a function assigning a weight to each y;. Then polynomials in {y;} can be assigned
weights as follows:

Wiay;, - vi,)) =W(i) +---+W(y,), wherea isany constant,
W(P () = max{W(ayi, -~ yi,) | @i, -+~ yi, is aterm of P(y)}.

Observe that W(P + Q) < max{W(P), W(Q)} and W(P Q) < W(P) + W(Q).

Definition 6.1 (Weight-preserving map). Let V and V' be vector spaces with bases B =
{X1,..., X5} and B' = {X],..., X|,}, respectively. A polynomial map f:V — V' can be
written, with respect to these bases, as f(v) = (P1(v), ..., Py(v)), where v = (v1,...,v5) =
Y i_viX; €V, and the P;’s are polynomials. Let W (respectively V') be a function assign-
ing weights to the X;’s (respectively le’s) and define W(v;) = W(X;). As described above,
this induces a weight function WV on the polynomials P;. Then f is weight-preserving if
W(P) < W' (X)) forall .

Observation 6.2. Finite sums and composites of weight-preserving polynomial maps are weight-
preserving polynomial maps.

Proposition 6.3. Let G be endowed with a polynomial coordinate system corresponding to the
triangular basis {X;; |1 <i <k, 1< j < pi} of its Lie algebra g, where W(X;j) =i. Then the
bracket, x, exp, multiplication and inversion in G, and all automorphisms of G, when expressed
in these coordinates, are weight-preserving polynomial maps.

Proof. Itis easy to see that the bracket is a polynomial map. To prove that it is weight-preserving,
it is enough to show that for given i, j, [, and m, if « and B are polynomials With W(a) <i and
W(B) <1, then [« X;;, BX;m] is weight-preserving. Observe that [X;;, X;;n] € g"”, so that

[aXij, BXim]= ) apasX.

s=i+l

where the ay, are structure constants which depend on X;; and X;;,. This is weight-preserving,
since W(aBay) <i+1<sforall sand¢?.

Now, the Baker—Campbell-Hausdorff Formula (4) expresses * as a finite sum involving brack-
ets. So * is a weight-preserving polynomial map as well, by Observation 6.2.

To prove that exp is a weight-preserving polynomial map, we produce polynomials Q;;, with
W(Q;;) < i, such that when expressed in coordinates,

exp(v) = (Q11(v), ..., Ok, (V) (7N
for all v € g. Recall that Q;(v) - X; denotes Qyp, (V) Xy, * - - - * Q1(v) X;1. Define

Yi() = Qi) - Xy ---x Q1(v) - Xy
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for all /. We prove that v = ¥ (v) (where gk‘"1 is trivial), i.e. expv = exp ¥ (v). By Defini-
tion 4.2, this is equivalent to Eq. (7). The Q;’s are chosen inductively so that W(Q;;) <! and
Y1 (v) — v e gt for all v.

Letv= Zvinij be an element of g. Set Q1 (v) = vy, for 1 < j < p1. Clearly, W(Q1;) =1
and W] (U) — V= Zi>1 U,‘inj (S] gz.

Now assume the Q;;’s for i <[ have been chosen, with ;1 (v) —v € gl, say

Vi-1(v) —v =g W) X1 + -+ qip, (v) Xy, + an element of gt (8)

Equivalently, ¥;_1(v) —v=(0,...,0,q1, ..., qip,, - ..) (this follows from the Baker-Campbell-
Hausdorff formula). Observe that ¢;_1(v) — v is a weight-preserving polynomial map, as it is
defined in terms of *. Thus W(qg;;) <!. Choose Q;; = —¢;; for 1 < j < p;. Then W(Qy;) <.
Moreover, using the Baker—Campbell-Hausdorff formula again, we have

Yi(v) = Qi (V) Xip, * -+ - Q1 (V) X1 * Y1—1(v)

=0nWX; + - +0i1, (W) Xy, + ¥1—1(v) + an element of gl+1

= —gnW)Xi1 + - —qup (V) X1p + ¥1-1(v) + an element of g/ 9)
Equations (8) and (9) imply that y; (v) — v € g/*!, completing the induction. Since gF*! is trivial,
we have v = ¥ (v) as required.

Now let s = (s;;) and t = (#;;) € G. Using Definition 4.2, multiplication and inversion can be
written in terms of * and exp as follows:
st =exp(sk - Xk x---%81 - X1 xtg- Xg*x---xt1 - Xq),

s = exp[—(sk . CE TEEE T ~X1)].
If A is an automorphism, d A preserves the bracket, and hence *. Thus

A(s) =A(exp(skkakpk koo xkSp Xpl k00 S1p, Xp, * H-*SUXH))
=expdA(Skp, Xkpy * -+ % Sk1 Xg1 % -+ %8519, X1p, * - 511 X11)

= exp(Sip dAX kg * - x Sp1d AXp1 % - %8510, dAX1p, % - % s11dAX11).

Now for each i and j, we have dA(X;;) € gi, so that

sijdAX;j = Z 8;ij0m Xim,

1>i
I<m< o

where the o;,,’s are constants depending on A. Thus s — s;;d AX;; is a weight-preserving poly-
nomial map.

It follows from Observation 6.2 that multiplication inversion and all automorphisms are
weight-preserving polynomial maps. O

We now obtain a bound on the amount that a weight-preserving polynomial map can stretch
distances.
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Lemma 6.4. If P:G — G is a weight-preserving polynomial map, then there exists a constant
A =A(P) > 0 such that forall y € G,

1P| < Aiylle-

Proof. By Corollary 5.5 we know that there exists & > 1 such that
1 ; 1 ;
e <maxly !} <ulyllg and [P0 < max{[ Py} <l PO g

Let ay;, j, - -~ yi,j; be a term occurring in P;; for some i and j. We omit the second subscript for
convenience. The weight-preserving condition, W(P;;) < i, implies that i; +--- +i; <i.Lets
be such that |y; '/’ = max{|y;, |1, ..., |y;|""}. Then

layiy -yl YT = lal Y (i 1Y) (L) VY
A [N T L R

. . .. . . 1 : . . .
= Joe| /1y, |G+ oV iy 1V < Yl g

This, combined with the fact that |P;; ()"’ < Y erms of Py () 12Viy -+-y;,|"/1, enables us to

choose a constant v such that |Pl~j(y)|1/i <vulyllg forall i and j. Thus ||P|g < M2v||y||(;,
and we can take A = u2v. O

7. The relation between I' and G

We now return to the set-up in Theorem 1.1. Let I” be a discrete, cocompact subgroup
of Isom G = G x C, with maximal normal nilpotent subgroup A and finite quotient F = I"/A,
which we identify with its image in Aut(G) under the map & defined in Section 3.

Let S be a finite generating set for I" and let Eg(r) be the set of finite-order elements of length
less than or equal to 7 in the word metric.

Every finite-order isometry of G has a fixed point (see Section 2.1.1). The following lemma
will allow us to estimate the cardinality of Eg(r) by counting fixed sets of elements in Eg(r) that
intersect a certain ball in G.

Lemma 7.1. Let G, I', S and Eg(r) be as above. Then there exists a positive constant k such
that if (g, A) € Eg(r), then the fixed set of (g, A) in G intersects Bg(1, kr).

The proof relies on the following proposition, which establishes a relation between the dis-
placement of a point under the action of a finite-order isometry fixing the identity of G, and the
distance of that point from the fixed set of the isometry.

Proposition 7.2. Let A be a finite-order isometry of G fixing the identity, with fixed subgroup H.
Then there exists K = K(A, G), such that for all v > 0, if t € G satisfies ||tA(t_1)||G <r, then
there exists h € H such that ||th| g < Kr.
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Proof of Lemma 7.1. Let £5 denote the distance from the identity in I". Since the map I" — G
given by y = y (1) is a quasi-isometry (Theorem 2.2), there exist positive constants A and C,
such that for all (g, A) e I',

1
Xes((g, A)) - C<liglle < Ms((g, A) +C.

Soif (g, A) is an element of Eg(r), then || gllg < Ar4+C < (A+ C)r (sincer > 1).

Let H be the fixed subgroup of A. As discussed in Section 2.1.1, if (g, A) fixes tg, then its
fixed setis t, H, and g = tgA(tg’l). Thus ||tgA(tg’])||G < (A + C)r. So by Proposition 7.2 there
exists K = K(A, G), and an element 2 € H such that

lzghllc < K(A+ C)r.

In other words, the fixed set of (g, A) intersects Bg (1, kr), where k = K (A + C). Since F is
finite, K can be chosen to work simultaneously forall A€ F. O

Proof of Proposition 7.2. The proof is by induction on the lower central series of G. Firstly,
if G is abelian, we may write the condition on ¢ as ||t — A(¢)||g < r, where A € O(n). In this
case, let H' be the orthogonal complement of H in G. There exists & € H such thatt +h € H.
Since 4 is a fixed point of A, we have

l¢+h) —Ac+n)|,=]t—A®)|;<r (10)
The map A leaves H invariant and has no fixed points on the compact set
[xeH |lIx|g =1}.

Thus the function ||x — A(x)||¢ attains a positive minimum, say m, on this set. Now,

t+h A( t+h )
It +nhlc It +hlc

Inequality (10) now implies that ||z 4 h||g < (%)r.

Now let G be k-step nilpotent with an orthonormal polynomial coordinate system as in Sec-
tion 5. Let7:G — G/Gk be the canonical projection, i.e. w(xq, ..., xx) = (x1,...,Xk—1), and
let A be the automorphism of G/G* induced by A.

Let t € G with [[tA(t~!)||g < r. For the rest of the proof, we use < to mean less than, up to
a constant factor that depends only on G and A. We produce h € H such that |[th| g <.

Corollary 5.6 on distances in quotients implies that

[ +h) —AGC+m)|; =t +hlc

zmllt+h|c.
G

|7 OAEO ™) g = 17 ACT) [ g)6x < 1A <7

By Lemma 2.1 the fixed set of A is 7w (H). So by the induction hypothesis, there exists ~; € H
such that || (&) (h)ll g gr < -
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We may write th] = yz, where y = (y1,..., Yk—-1,0) and z = (0,...,0,2) € Gk. Note that
w(y)=m(th)) =m(t)mw(hy), so that |7 (y) ||G/Gk < r. Further, Corollary 5.5 implies that

Iylle ~ 70 g)gx <7

However, ||z||g, and hence ||tk || g, may be arbitrarily large. This will be fixed by correcting ¢/
by an element of H N GX.

We first show that ||zA(z~!)||g < r. Note that z is in the centre of G, which is preserved by A,
so that

vzA(lyzl ™) = yzA(z ) = yA(y)zA (). (11)

Proposition 6.3 and Observation 6.2 imply that x > xA(x~!) is a weight-preserving poly-
nomial map. Lemma 6.4 now implies that ||yA(y_1)||G < |Iyllg < r. Further, yzA([yz]_l) =
thiA([th1]™Y) = tA@™"), so that |lyzA([yz] Y|l < r. Equation (11) now implies that
lzAGDllg <.

Corollary 5.5 implies that ||x || gx ~ ||x||kG for all x € G¥. Thus [|zA(z™1) lgx < rk. By the first
step of the induction, (since Gk is abelian) there exists i, € H N G*, such that lzh2llgr < rk,
which means ||zh;||g < r. Setting & = h1hy completes the inductive step:

lthllc = lithihz2llc = llyzhz2llc <yl + llzhzllc <. a
8. Volume estimates in G

In this section we fix an element A in the finite quotient F', and obtain an upper bound for
|7 ~1(A) N Es(r)|. Let H be the collection of fixed sets in G of finite-order elements in 7 ~! (A).
Then Lemma 7.1 says that every element of H intersects Bg (1, R), where R = «r.

If H is the fixed subgroup of A, then H consists of cosets of H in G. We will use a volume
argument to count the number of elements of H intersecting Bg (1, R). We first obtain disjoint
neighbourhoods of the submanifolds in H and intersect them with Bg (1, R). Then we use the
fact that the volume of Bg (1, R) is greater than the sum of the volumes of these disjoint pieces
contained in it.

Lemma 8.1. Let H and 'H be as above. Then there exists € > 0 such that the €-neighbourhoods
of cosets in 'H are pairwise disjoint.

Proof. We first show that if + ¢ H, then H and t H have disjoint §-neighbourhoods for some
& > 0. If there is no such §, we can find sequences {h;} and {rk;}, with h;, k; € H, such that
d(h;, tk;) — 0, which means {hi_ltki} is a sequence converging to 1. We now have

A(h; 'th;) — A(D) h Ak — 1
ki'AE Y — 1

(h; ' thi) (kP AT HRg) — 1

LU el

h7 A Yk — 1
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Set g =tA(t~!). Suppose g € G/. Then {hl._lgh,-} = {g(g_lhl._lgh,-)} is a sequence in gG/*!
converging to 1. Since gG/T! is closed set, the limit, 1, is in gG/*!. Thus ¢ € G/*!. This
inductive argument shows that g = 1. This means that ¢ is a fixed point of A, contradicting the
fact thatt ¢ H.

Since H is a discrete collection of cosets of H, the above implies the existence of € > 0
such that for any t H € 'H, the e-neighbourhoods of H and ¢t H are disjoint. It follows that the
e-neighbourhoods of any two cosets in H are disjoint. O

We denote the e-neighbourhood of a set ¥ by Nbd, (Y). We will need to estimate the vol-
umes of intersections of e-neighbourhoods of elements of H with Bg (1, R). Since Nbd. (tH) =
t Nbd, (H), we will focus on estimating the volume of Nbd. (H) N Bg (1, R).

The following lemma relates the volume of Nbd.(H) N Bg(1, R) to the volume of H N
Bg (1, R) with respect to the left-invariant measure on H.

Lemma 8.2. Let volg and voly denote the left-invariant volumes in G and H, respectively. Let
€ be the constant obtained in Lemma 8.1. There exists a constant Ve > 0, which is independent
of R, such that

volg[Nbde (H) N B (1, R)] > Vevoly[H N Bg (1, R)].

Proof. For any R, there exists a finite set Ag of points in H N Bg (1, R — €) which satisfies the
following two conditions:

(1) Balls of radius € in G, centred at points in Ag are disjoint.
(2) Balls of radius 3¢ in G, centred at points in A cover H N Bg(1, R).

Note that each e-ball as in (1) is contained in Nbd (H) N Bg (1, R) and has volume equal to
V{ =volg[Bg (1, €)]. Thus we have

volg [Nbde (H) N Bi (1, R)] > V| Agl. (12)

If h € H, then Bg(h,3¢) N H=h(Bg(1,3€) N H). Thus, the volume in H of the intersection
of H with a 3e-ball as in (2) is a constant, V5 = voly[Bg (1, 3¢) N H]. Since the collection of
balls in (2) covers H N Bg(1, R), we have

V5| Agl > voly[H N Bg(1, R)]. (13)

Set Ve = “j—;: Combining inequalities (12) and (13) yields the result. O

The next step is to estimate voly[H N Bg (1, R)]. Note that the distance between two points
in H measured in the metric on G may be less then their distance in the induced metric on H. If
By (1, R) denotes the ball of radius R in the induced metric on H, then By (1, R) is, in general,
a subset of H N Bg(1, R).
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8.1. Polynomial coordinates compatible with H

We will define a new polynomial coordinate system on G, such that the preimage of H under
the polynomial coordinate map is a subspace of R” parallel to the coordinate axes. We will
then be able to use the ball-box technique from Theorem 5.2 to estimate volumes in H and G
simultaneously.

Let b be the Lie algebra of H. We choose a triangular basis for g, such that a subset of the
basis is a triangular basis for h. This can be done as follows.

Letg=g' D g?>>--- D g"*! =0 be the lower central series of g. Let

pi = rank(gi/gi+l) and n; = rank(h N gi/[) N gH‘l).

For each i, pick X;1,..., X, to be a pullback of a basis for g’ /g’ ™!, such that X;1,..., X,
projects to a basis for h N g’ /h N giT!. Give {Xij | 1<i<k; 1< j< p;} the dictionary-order.

It is easy to see that this gives a triangular basis for g. Since H is a Lie subgroup, b is a
subalgebra. In particular, it is closed under the bracket, so that {X;; |1 <i <k; 1< j<n;}isa
triangular basis for b.

Now define a polynomial coordinate map ¢:R" — G as in Definition 4.2. Observe that
¢_1(H) is the set of points {(s;;) € R" | s;; =0if n; < j < p;}, which is a plane spanned by
a subset of the coordinate axes for G.

We now endow G with a new left-invariant metric that makes the above basis orthonormal.
Note that, up to a constant factor, there is only one left-invariant volume form on a Lie group.
Since we are only interested in the degree of growth, we may use this new metric to estimate
volume.

Recall that the symbol ~ denotes comparable functions. (See Definition 5.3.)

Lemma 8.3. Retaining the above notation, let p = Z{-Czl in;. Then
voly[H N Bg(1, R)| ~ RP.

Proof. Theorem 5.2 tells us that in the coordinate system defined above, Bg(1, R) can be
bounded by two boxes (one contained in it and one containing it) which have sides parallel
to the coordinate axes. In particular, there exists a > 1 such that for R > 1,

{(sij) | Isij1 < (R/a) foralli} C BG(1, R) C {(sij) | Isij| < (@R)' forall i}.

For each i, the outer box has p; sides of length 2(a R)!. The intersection of this box with H is a
box parallel to the coordinate axes in H, with n; sides of length 2(a R)!, foreach i. The Lebesgue
measure of this intersection is therefore a constant multiple of R”, where p = Zle in;. A sim-
ilar statement holds for the inner box. Moreover, H N B (1, R) is contained in the outer box
and contains the inner box. This proves the lemma, since the Lebesgue measure on o Y (H) is
comparable to the left-invariant measure on H. O

We can now prove inequality (1) in Theorem 1.1.

Lemma 8.4. There exists ¢ > 0 such that |7~ (A) N Es(r)| < crd=P, where d = Zf;l ip; and
ko
pP= Zi:] In;.
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Proof. In Lemma 8.1 we obtained disjoint e-neighbourhoods of the cosets in . For every t H €
‘H which intersects Bg (1, R), choose an element p; in the intersection. Observe that Nbd, (t H) =
p:(Nbde (H)), so that the sets p;(Nbd:(H) N Bg (1, R)) corresponding to distinct cosets in H
are disjoint. Since || p;]l¢ < R, we have

p(Nbde (H) 0 B (1, R)) € B (1, 2R).
Let M be the number of elements of H intersecting Bg (1, R). Then

volg[Bg(1,2R)] > volG[ J  p(Nbde(H)N Bs(1, R)):|
tHNBg (1,R)£D

= M volg[Nbde (H) N Bg (1, R)]
> MVevoly[H N Bg(1,R)] (Lemma8.2),

so that

y (1) volg[Bg(1,2R)]
V. ) voly[H N Bg(1, R)]

Corollary 5.4 and Lemma 8.3 now imply the existence of a constant ¢’ > 0 such that M <
¢'RI~P_ Now by Lemma 7.1, M is an upper bound for |7~1(A) N Eg(r)|, so that |7 ~1(A) N
Es(r)| <cr?=P,where c =kc'. O

9. Finishing the proof

To complete the proof we will need the following theorem of Pansu on the growth of balls in
virtually nilpotent groups.

Theorem 9.1. (See [18].) Let I' be a finitely generated, virtually nilpotent group with finite
generating set S. Let d =Y 70, i rank(I"' /"' 1), Then lim,_ IBE# exists.

In particular, |Bs(r)| ~ r¢. Together with Lemma 8.4, this implies that if 1 is an eigenvalue
of dA, then

iy TN Es(] _
m =
00 |Bs(r)]

0. (14)

This is because in this case, the fixed set H of A has dimension at least 1, which implies that
p=>landhenced — p <d.
On the other hand if 1 is not an eigenvalue of d A, we have the following.

Lemma 9.2. Let A be a finite-order isometry fixing the identity, such that 1 is not an eigenvalue
of dA. Then (g, A) has finite-order for every g € G.

Proof. We prove in Lemma 9.3 below, that for every g € G, there exists € G with g =rA (™).
Now (t, 1)(1, A)@~', 1) = tA(t™"), A) = (g, A). In other words, (g, A) is conjugate in Isom G
to (1, A), and hence has finite-order. O
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Lemma 9.3. Let A be a finite-order isometry fixing the identity, such that 1 is not an eigenvalue
of dA. The map ¥ : G — G defined by ¥ (t) =t A(t™") is surjective.

Proof. The proof is by induction on the lower central series. If G is abelian, we can write ¥ (1) =
t —A(t)=( — A)t, where A =dA is linear. Since 1 is not an eigenvalue of A, there is no non-
zero v with (I — A)v =0. Thus I — A is invertible and the equation ¥ (¢) = b has a solution for
every b.

Now let G = G! 5 G2 > --- > G¥*! = 15 be the lower central series for G. Then v leaves
G' invariant for all i, since A does. Assume Ylgi ‘Gl — Glis surjective.

The automorphism A induces an automorphism A; on G'~!/G'. It follows from Lemma 2.1
that d A; does not have 1 as an eigenvalue. The map v;, induced by ¥ on G'~!/G', is given by
Vi(tGH =tAt~)G! = tGHA; ([tG']™1). Since GI~1 /G is abelian, v; is surjective.

To prove the surjectivity of ¥|si-1, let b € G'~!. Then there exists w € G'~! with bG' =
Vi (wG") = wA(w~")G". This means A(w)w~'b, and hence w~'bA(w) is an element of G'.
Now the surjectivity of v¥|s: implies that there exists y € G' such that ¥(y) = yA(y™!) =
w~ b A(w). Then we have

l[’(w)’)=wyA(y_1)A(w_1) =ww_1bA(w)A(w_l) =b. O

Thus every element of the coset 7~ 1(A) has finite order if 1 is not an eigenvalue of dA. The
asymptotic density of a coset is computed in the following corollary.

Corollary 9.4. If 1~ (A) is any coset of A in T, then

. mTN AN Bs(r)| 1
lim = —.
r—o00 |Bs(r)| |F|

Proof. Pick a set of coset representatives {yp | B € F; yp € P (B)} and let L = max{£s(yp) |
B € F}.Forany A € F, there is a bijective map 7~ (A) — A given by x > xyA_l. Then for any
r > 0, we have

|ANBs(r — L)| < |7~ (A) N Bs(r)| < |AN Bs(r + L)|. (15)
Since |Bs(r)| =Y oo |71 (A) N Bs(r)], it follows that
|Bs(r — L)| < |F||AN Bs(r)| < |Bs(r + L)|. (16)

A simple consequence of Theorem 9.1 is that lim,_, » |Bs(r + N)|/|Bs(r)| =1, forany N € Z.
Now Eq. (16) implies that lim,_, |A N Bs(r)|/|Bs(r)| = 1/|F| and the result follows from
Eq.(15). O

Putting together the different pieces yields the formula for D(I, S):
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End of proof of Theorem 1.1. The inequality (1) was proved in Lemma 8.4. Now let m be
the number of elements of p(F) which do not have 1 as an eigenvalue. Combining Eq. (14),
Lemma 9.2, and Corollary 9.4 we have

Z lm"(A)NEs(r)| . [m'(ANBs(r)|  m
=m lim — O

DI, S) = lim -
r—oo |Bs(r)l r—0o0 |Bs(r)l |F|

.~ Inotan
eigenvalue of A

10. Arbitrary virtually nilpotent groups

In this section we prove Corollary 1.2. Let I" be any finitely generated virtually nilpotent
group. As discussed in Section 3, I” has a unique maximal finite normal subgroup, say Q, and
I'/ Q is almost crystallographic. We wish to show that D(I", §) = D(I"/Q) for any generating
set Sof I'.

Proof of Corollary 1.2. Let S ={yy, ..., 1} be a generating set for I". Then S={(00,....,y10}
generates I'/Q. Let £5 and {5 denote the corresponding length functions on I" and I"/Q, re-
spectively.

Let g € I'. Clearly, £5(gQ) < £s(g). Moreover, if y;, QO ---¥;, Q is a geodesic word repre-
senting gQ, then g =y;, - -+ ¥;,¢’ for some ¢’ € Q. If M = max{€s(q) | ¢ € Q}, then £5(g) <
05(80)+ M.

Let Br(r) and Br/o(r) denote the balls of radius r in I" and I"/ Q, respectively. Let E(r)
and Er;o(r) represent the corresponding sets of finite-order elements. The above inequalities
yield:

|Br(r)]
10|
Since Q is finite, an element of I" has finite order if and only if its projection in I"/Q has finite
order. Thus we have
|Er(r)]
|0

|Br(r + M)
10|

<|[Brjo(| and [Brjo(]|<

|[Er(r+ M)
10|

<|Erjo| and |Epjo(r)|<

Putting together the above information, we have

|EF/Q(r_M)|<|EF(”)|< [Er/o(r)l
|Brjom)|  ~ |Br(| ~ |Brjor—M)|’

Theorems 1.1 and 9.1 can now be used to conclude that

DI, §) = lim ELO!_
r—oo |Bp(r)|

D/ Q). O

11. Examples

Crystallographic groups are groups which act properly discontinuously and cocompactly on
Euclidean space. They are virtually abelian, and hence virtually nilpotent. The results of the
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computation of D(I") for the crystallographic groups in dimensions 2, 3, and 4, computed using
GAP, are summarised in Appendix A.
The study of D(I") for crystallographic groups leads to a number of questions:

e Given a rational number r € [0, 1), is there a crystallographic group I" with D(I") =r?
More generally, for every k, is there a k-step nilpotent group I” with D(I") =r?

What is the highest density that can occur in crystallographic groups of a given dimension?
What is the smallest dimension that a given density occurs in?

Is there an interesting explanation for the spectrum of densities in a given dimension?

In this section we answer the first of these by constructing examples to show that in fact,
every rational number in [0, 1) occurs as D(I") for some crystallographic group I". We also give
a partial answer to the third question, and finally we investigate D(I") for some virtually nilpotent
groups which are not virtually abelian.

11.1. Constructing examples

The finite quotient F' = I/ A is called the holonomy group of I". The holonomy group of a
crystallographic group can be realised as a finite subgroup of Gl (n, Z). On the other hand, if F
is a finite subgroup of Gl(n, Z), an averaging argument can be used to show that F' preserves an
inner product on R”. Equivalently, there exists M € Gl(n, R) such that F/ = MFM “Lcom).
Then the lattice A = MZ" is preserved by F' and I’ = A x F’ defines a crystallographic group.

The following Lemma is useful for constructing many examples.

Lemma 11.1. Let Iy and I'> be virtually nilpotent groups. Then
D(I x I2) =DU1)DU?).

Proof. In light of Corollary 1.2, we may assume [ acts geometrically on a nilpotent Lie
group G;, fori =1, 2. In this case I} x I> acts geometrically on G| x G. If I] fits into

0> A —>T;—> F,— 1,
where A; is maximal normal nilpotent, then we have
0> A xA—>TNxIL—>F xFKh—>1,

and A X Aj is the maximal normal nilpotent subgroup of I} x I>.

If A= (A1, Ay) € F1 x F3, then the set of eigenvalues of d A is the union of the eigenvalues
of dA1 and d A,. In particular, 1 is not an eigenvalue for d A if and only if neither d A nor d A»
has 1 as an eigenvalue. Thus D(I] x I[3) =D)D%). O

Proof of Theorem 1.3. We start by constructing, for any m € Z, a crystallographic group [,
such that D(I},) = " L Let ¢ be a primitive mth root of unity. If & denotes the Euler function,
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then {1,¢,¢%,...,¢®™~1} is a basis for Z[¢], and we have ¢®(™ = Z?:(g’)*l

a; € Z. The matrix T, representing multiplication by ¢ on Z[¢] is given as follows:

a;i¢', where

0 ap
1 0 a
0 as
T =
1
0 aem—2
1 apum)—1

The characteristic polynomial of T is x®(™ — Z;p:((';’ -1 a;x', which is also the minimal poly-
nomial of ¢. The eigenvalues of T are exactly the @ (m) primitive mth roots of unity. Thus 7 has
order m and the matrices 7' do not have 1 as an eigenvalue, for i < m.

Let F € O(n) be conjugate to (T') and let A >~ Z" be the lattice preserved by F. Then I}, =
A x F is the desired group.

Now let g € [0, 1) and note that g = #ﬁ—ié e qq;l. Appealing to Lemma 11.1 we can
construct an example of a group I" with D(I") = g m|

The above construction gives a very high-dimensional crystallographic group if p is much
smaller than ¢. It would be nice to obtain a more efficient example.

11.2. Highest densities

As seen in the tables in Appendix A, the highest values of D(I") in two-, three- and four-
dimensional crystallographic groups are 5/6, 1/2, and 23/24, respectively. The fact that the
highest density in three dimensions is 1/2 is part of a more general phenomenon:

Proposition 11.2. If I" is an odd-dimensional crystallographic group, D(I") < 1/2.

Proof. The holonomy group F of I" can be realised as a finite subgroup of Gl(n,Z). Since
elements of F have finite order, all their eigenvalues are roots of unity. Thus if » is odd and
A € F C Gl(n,Z) is orientation preserving (i.e. A has determinant 1), then 1 is necessarily
an eigenvalue of A. Thus at least half the elements of F have 1 as an eigenvalue, proving the
result. O

The upper bound is attained, for example by Z" x Z,, where the non-trivial element of Z, is
the automorphism 7 of Z" defined by 7 (v) = —v for all v.

11.3. Almost crystallographic groups

We now investigate D(I”) for some virtually nilpotent (but not virtually abelian) groups which
act geometrically on nilpotent Lie groups. For these, the holonomy group can be realised as a
finite group of automorphisms of the associated Lie algebra. We first show that in three and four
dimensions, this turns out to be too restrictive, and D(I") is always 0.
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Recall that the complexification of g, denoted by gc, is g®gr C. Any inner product on g extends
to a positive definite hermitian form on gc. Any inner-product-preserving automorphism 7 of g
extends to a unitary operator with the same eigenvalues. Further, if A is an eigenvalue of T, then
there is an eigenvector (or a generalised eigenspace of the appropriate dimension) corresponding
to Ain gc.

Lemma 11.3. Let T be an automorphism of a 3- or 4-dimensional nilpotent, non-abelian Lie
algebra g. If all eigenvalues of T have absolute value 1, then 1 is an eigenvalue of T.

Proof. In each case below, we pass to the complexification of g to ensure the existence of eigen-
vectors or generalised eigenspaces.

If g is 3-dimensional, it is isomorphic to the Heisenberg Lie algebra. If Z generates g2, then
T(Z) = %Z. Thus we may assume that 7(Z) = —Z and that the eigenvalues of T are —1, A
and X,, where A1 and X, are either both real, or complex conjugates of each other.

If A1 and A, are distinct, there exist linearly independent eigenvectors vy and v; in gc. Then
[vi, v2] = ¢Z for some ¢ € C. Since T preserves the bracket, [Tv, Tvy] = T(cZ) = —cZ.
On the other hand, [Tvy, Tvy] = [A1v1, Aav2] = A1Az[v, v2] = A1AacZ. We conclude that
A1Az = —1. This cannot happen if A1 and A, are complex conjugates, so the two eigenvalues
have to be 1 and —1.

If A1 = Ao = A, then there exist vectors v; and vy in gc such that T (vy) = Avy and Tvp =
Avy +avq, for some «. Let [vq, v2] = ¢Z for some ¢ € C. Then —cZ = [T vy, Tva] = [Avy, Avp +
avy] = Az[vl, n] = A12cZ, which is impossible, since A is real.

If g is 4-dimensional and 2-step nilpotent, then g is necessarily 1-dimensional. If Z generates
gl, then T(Z) = +Z. Assuming T(Z) = —Z, so that —1 is an eigenvalue, at least one of the
other eigenvalues must be real. Thus we may assume the set of eigenvalues is {—1, —1, A1, A2}
and proceed as above.

If g is 3-step nilpotent, g> and g?/g> are 1-dimensional. Let g*> = (Z) and g> = (W, Z). Then
T(Zy=xZand T(W)=+£W 4 aZ, for some a € R. We may assume the set of eigenvalues is
{—1, —1, A1, A2}. An argument similar to the above completes the proof. O

Remark 11.4. If T is an inner-product-preserving automorphism of g, then every eigenvalue
of T has absolute value 1.

Theorem 1.1, Lemma 11.3, and Remark 11.4 imply the following corollary.

Corollary 11.5. If I" is a group acting geometrically on a 3- or 4-dimensional nilpotent (non-
abelian) Lie group, then D(I") = 0.

We now construct a class of almost crystallographic groups I, such that D(I”) is non-zero.

Definition 11.6 (Generalised Heisenberg Lie algebras). Define by, to be the Lie algebra generated
by {X1,..., Xn, Y1,..., Yy, Z} such that [X;, Y;] = Z for 1 <i < n, and all other brackets are 0.

The following construction can be done for any generalised Heisenberg Lie algebra by, of
dimension 4n 4 1. We give the construction for ha:
Define an automorphism 7" on b by

X1 Xp, YI> =Y, Z— —Z, Xo—> —X, Yo Y.
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It is easy to check that T preserves the bracket. The matrix of 7 with respect to the basis
{X1, X3,Y1,Ys, Z} is given by

Thus T is an automorphism of order 4 whose eigenvalues are £i and —1. ~
Let H, be the connected, simply connected nilpotent Lie group corresponding to hy. Let T

be the automorphism of H, with d T=Tand N = exp(Z°) be the lattice in H, preserved by T.
Then I = N x (T) is an almost-crystallographic group with D(I") = %

Note that for any group acting on a Lie group with 1-dimensional centre, the maximum value
of Dis % since the square of any automorphism fixes the central direction. The groups I" defined

above attain this maximum value.
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Appendix A

The computations summarised below were done using the computer algebra software
GAP [19] and the software package “Cryst,” which contains libraries of 2-, 3- and 4-dimensional
crystallographic groups.

Table 1 gives the values of D(I") for all the 2-dimensional crystallographic groups. See [17]
for a description of the notation. In Tables 1 and 2, A/(g) denotes the number of groups I" for
which D(I") =gq.
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Table 1
Dimension two Dimension three
r D) r D) g N@
wil o Wy | 3/4 0 | 113
wil o Wil 3/8 1/8 | 28
Wil o wz| 3/8 1/6 | 4
Wil o 3/16| 20
Wyl 172 5/24| 4
Ws!| 5/6 Wi 1/4 1/4| 30
Wi s/2 Wil 1/4 5/16| 10
Wi 1/4 13| 1
ws| 2/3 Wi 1/4 3/8| 13
wi 2/3 5/12| 2
wi| 1/3 12] 5
Table 2
Dimension four
g N g N g N g N
0 |1875| | 37/144 | 3 9/20 | 1 11/16 | 4
1/16 | 605 33/128 | 16 1124 | 1 25/36 | 3
1/12 | 64 35/128 | 8 15/32 | 4 17/24 | 1
3/32 | 426 5/18 9 172 6 205/288| 1
5/48 | 48 9/32 | 34 37/72 | 2 137/192| 2
1/9 | 25 23/80 | 2 33/64 | 10 13/18 | 2
1/8 | 558 85/288 | 1 25/48 | 1 35/48 | 3
5/36 | 5 5/16 | 91 17/32 | 7 3/4 3
9/64 | 50 21/64 | 20 35/64 | 5 55/72 | 2
5/32 | 193 1/3 20 5/9 7 19/24 | 1
1/6 | 38 | [385/1152| 1 9/16 | 17 4/5 1
25/144| 2 49/144 | 2 23/40 | 2 77/96 | 4
13/72 | 7 25/72 | 2 85/144 | 1 13/16 | 4
3/16 | 229 | |205/576 | 2 43/72 | 1 5/6 1
1/5 | 10 13/36 | 6 5/8 | 14 41/48 | 3
13/64 | 23 3/8 27 91/144 | 1 31736 | 1
5/24 | 31 2/5 6 21/32 | 13 7/8 4
2/9 | 31 13/32 | 9 2/3 4 9/10 | 1
9/40 | 2 5/12 4 385/576| 1 /12 | 2
15/64 | 11 7/16 2 65/96 | 2 23/24 | 4
1/4 | 125 4/9 12 49/72 | 1
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