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The study of thin structures is of great importance in physics (e.g. the study of thin pipes or
plates), but complicated from a mathematical point of view due to their two-scale nature. One way
to overcome this difficulty is trying to reduce the dimension of the problem by looking at the limit
problem on the structure we get as the thickness goes to zero. Independently, Sobolev inequalities and
the associated best Sobolev constants are known to be relevant for the study of nonlinear equations.
We are thus led to the study of the asymptotic behaviour of these best Sobolev constants on thin
domains as the thickness goes to zero. This problem has already been considered in the subcritical
case in [3] and [10] for open subsets of R

n , and in [11] for thin pipes of R
3. In this paper, we extend

these results to the Riemannian setting in both the subcritical and critical case.
We now describe precisely our problem. Let (N, ḡ) be a Riemannian manifold of dimension n,

and M an embedded compact manifold of N without boundary of codimension k ∈ [1,n − 1] which
does not intersect the boundary of N if any. We will deal with the case k = n, i.e. when M is a
point, later. We equipped M with the induced Riemannian metric g = i∗ ḡ , where i : M ↪→ N is the
canonical injection. Given a point y ∈ N and a tangent vector Y ∈ T y N , we denote by t → γy,Y (t) the
geodesic (for ḡ) starting from y with velocity Y , i.e. γy,Y (0) = y and γ̇y,Y (0) = Y . We assume that
there exists an orthonormal family {ν1, . . . , νk} of smooth vector-fields on N such that νi(x) ⊥ Tx M
for every x ∈ M and i = 1, . . . ,k. In the case k = 1 with N orientable, this amounts to assume that M
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is orientable. Given x ∈ M and t > 0, we denote by Sx(t) ⊂ Tx M⊥ the sphere of radius t and center x
given by

Sx(t) =
{
ν =

k∑
i=1

tiνi(x), t2
1 + · · · + t2

k = t2

}
.

Given a continuous function r : ⋃x∈M Sx(1) → (0,+∞), we then define, for a sufficiently small ε0 > 0,
the hypersurfaces Mt , 0 < t � ε0, by

Mt = {
γx,ν(x)

(
r
(
x, ν(x)

)
t
)
, x ∈ M, ν(x) ∈ Sx(1)

}
.

Then the Mt does not intersect ∂N for ε0 > 0 small enough. In the case k = 1 and r ≡ 1, Sx(1) =
{ν1(x),−ν1(x)}, and Mt is composed of two copies of M . We also consider the open subset Mε ,
ε ∈ (0, ε0), of N defined by

Mε =
⋃

0�t<ε

Mt = {
γx,ν(x)

(
r
(
x, ν(x)

)
t
)
, x ∈ M, ν(x) ∈ Sx(1), 0 � t < ε

}
.

Then Mε is an open subset of N with boundary ∂Mε = Mε .
We now deal with the case k = n, i.e. the case where M is a point that we denote by 0 ∈ N .

Let Ω be a smooth connected open subset of N containing 0 included in some geodesic ball B0(δ)

with δ less than the injectivity radius of (N, ḡ) at 0. We contract Ω at 0 by considering the open
subsets Ωε := exp0(εΩ̃), ε > 0, where exp0 denotes the exponential map at 0, and Ω̃ = exp−1

0 (Ω) ⊂
T0 N ≈ R

n .
Given p ∈ (1,n), we denote by H p

1 (Mε) the Sobolev space of the functions in L p(Mε) such that
their gradient is also in L p(Mε). It is well known that H p

1 (Mε) ↪→ Lq(∂Mε) continuously for any
q ∈ [1, p∗], where p∗ := p(n − 1)/(n − p). Moreover this embedding is compact when q < p∗ . We let
Sε(p,q) be the best constant for this embedding, namely

Sε(p,q) = inf
u∈H p

1 (Mε), u 
≡0 on ∂Mε

∫
Mε (|∇u|p

ḡ + |u|p)dv ḡ

(
∫
∂Mε |u|q dσḡ)

p/q
> 0,

when k � n − 1, and where dσḡ denotes the volume element induced by ḡ on ∂Mε . In the case k = n,
we define Sε(p,q) in the same way but with Ωε (resp. ∂Ωε) in place of Mε (resp. ∂Mε).

The aim of this paper is to describe the asymptotic behaviour of Sε(p,q) as ε → 0. This problem
was solved in [3] (resp. [4]) in the case of an open subset of R

n with q < p∗ and k � n − 1 (resp.
k = n).

Before stating our result, we let, when k � n − 1, K (p,q) be the best constant for the embedding
of H p

1 (M) into Lq(M) in the sense that

K (p,q) = inf
u∈H p

1 (M), u 
≡0

∫
M(|∇u|p

g + |u|p)|Bx(r(x))|ξ dv g(x)

(
∫

M |u|q|Sx(r(x))|ξ dv g(x))p/q
> 0, (1)

where |Sx(r(x))|ξ (resp. |Bx(r(x))|ξ ) denotes the volume for the Euclidean metric ξ of the sphere-
like subset Sx(r(x)) ⊂ Tx M⊥ (resp. the ball-like subset Bx(r(x)) ⊂ Tx M⊥) given in polar coordinate by
r = r(x, θ) (resp. r � r(x, θ)), θ ∈ Sx(1).

The result is the following:

Theorem 0.1. For 1 < p < n and 1 � q � p∗ , with p < n − k if q = p∗ , we have

lim ε
− k(q−p)+p

q Sε(p,q) = K (p,q), (2)

ε→0
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when k � n − 1, and for 1 < p < n and 1 � q � p∗ ,

lim
ε→0

ε
− k(q−p)+p

q Sε(p,q) = |Ω̃|ξ
|∂Ω̃|p/q

ξ

when k = n. Moreover, the extremals for Sε(p,q), suitably normalized and rescaled, converge to an extremal
for K (p,q) as ε → 0 when k � n − 1, and to a constant when k = n.

For example, if r is constant and k � n − 1,

lim
ε→0

ε
− k(q−p)+p

q Sε(p,q) = rk(1−p/q)+p/qω
1−p/q
k−1

k
inf

u∈H p
1 (M), u 
≡0

∫
M(|∇u|p

g + |u|p)dv g

(
∫

M |u|q dv g)p/q

= rk(1−p/q)+p/qω
1−p/q
k−1

k
Volg(M)1−p/q if q � p,

where ωk−1 is the volume of the standard sphere of R
k . The second equality follows by taking the

constant function equal to 1 as a test-function to get the � inequality, and by applying Hölder’s
inequality to

∫
M |u|q dv g to get the converse one.

As an application, consider the problem of finding a conformal metric to ḡ with zero scalar cur-
vature in the interior of Mε and constant mean curvature on ∂Mε . To prove the existence of such a
metric, it suffices to show that

λε := inf
u∈H2

1(Mε), u 
≡0 on ∂Mε

∫
Mε (|∇u|2ḡ + h|u|2)dv ḡ + ∫

∂Mε ku2 dσḡ

(
∫
∂Mε |u|2∗ dσḡ)

2/2∗ < K̃ (n,2), (3)

for some suitable smooth functions h and k, and where K̃ (n,2) is defined by (24) (see [8]). Various
works have been devoted to this problem. Existence of solutions are usually proved under geometric
conditions on ∂Mε . In contrast, the first part of the proof of Theorem 0.1 can easily be adapted to
λε to show that lim supε→0 ε−(k−1)/(n−1)λε = 0. Hence the problem of finding such a metric on a
sufficiently thin manifold always has a solution.

We can also describe in a similar way the asymptotic behaviour of the best Sobolev constant
Sε(p,q) corresponding to the embedding of H p

1 (Mε) into Lq(Mε), namely

Sε(p,q) = inf
u∈H p

1 (Mε)\{0}

∫
Mε (|∇u|p

ḡ + |u|p)dv ḡ

(
∫

Mε |u|q dv ḡ)
p/q

> 0

when k � n − 1. In the case k = n, we define Sε(p,q) in the same way but with Ωε in place of Mε .
The result is

Theorem 0.2. For 1 < p < n and 1 � q � p∗ , with p < n − k if q = p∗ , we have

lim
ε→0

ε
k(

p
q −1) Sε(p,q) = inf

u∈H p
1 (M), u 
≡0

∫
M(|∇u|p

g + |u|p)|Bx(r(x))|ξ dv g(x)

(
∫

M |u|q|Bx(r(x))|ξ dv g(x))p/q
, (4)

when k � n − 1, and for 1 < p < n and 1 � q � p∗ ,

lim εn(p/q−1) Sε(p,q) = |Ω̃|1−p/q
ξ

ε→0
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when k = n. Moreover, the extremals for Sε(p,q), suitably normalized and rescaled, converge to an extremal
for the minimization problem of the right-hand side of (4) as ε → 0 when k � n − 1, and to a constant when
k = n.

This result generalizes both [10] and [11] to the Riemannian setting.

1. Proof of Theorem 0.1

We first prove the theorem in the case k � n − 1. Let (x1, . . . , xn−k) be a coordinate system
of M at a point 0 ∈ M . The existence of the νi ’s allows us to consider global polar coordinates
(x1, . . . , xn−k, θ1, . . . , θk−1, t) around 0 in N , where the θi ’s form a coordinate system of each Sx(1),
and t is the parameter of a geodesic t → γx,r(x,θ)θ (t), θ ∈ Sx(1) (which has constant speed r(x, θ)2),
so that the Mt ’s are the level-sets of t . Since Sx(t) ⊂ Tx M⊥ for any x ∈ M and t > 0, and a geodesic
t → γx,r(x,θ)θ (t) intersects perpendicularly the Mt ’s, the metric ḡ in these coordinates takes the form

ḡ(x, t, θ) = gij(x, t, θ)dxi dx j + r(x, θ)2 dt2 + t2 f i j(x, θ)dθ i dθ j,

for some smooth functions gij , f i j , where σt(x) := t2 f i j(x, θ)dθ idθ j is the metric on the geodesic
sphere S̄x(t) := expx(Sx(t)), exp being the exponential mapping for ḡ , and gt := ḡ(., t, .) = gt,. + σt is
the metric induced by ḡ on Mt , with gt,θ (x) = gij(x, t, θ)dxi dx j . Note that g0 = g the metric induced
on M . We also let g⊥

t,θ (x) = r(x, θ)2dt2 + σt(x).
Let ε ∈ (0, ε0) and Rε : Mε0 → Mε be defined by

Rε

(
γx,r(x,ν(x))ν(x)(t)

) = γx,r(x,ν(x))ν(x)(εt/ε0), ν(x) ∈ Sx(1), 0 � t < ε0,

i.e. Rε(x, t, θ) = (x, εt/ε0, θ) in coordinates. We then have for (x, t, θ) ∈ Mε0 that

(
R∗

ε ḡ
)
(x, t, θ) = gij(x, εt/ε0, θ)dxi dx j + (ε/ε0)

2r(x, θ)2 dt2 + (ε/ε0)
2t2 f (x, θ)dθ2

= gεt/ε0,θ (x, θ) + (ε/ε0)
2 g⊥

t,θ (x). (5)

In particular,

dv(R∗
ε ḡ)(x,t,θ) = (ε/ε0)

k dv gεt/ε0,θ dv g⊥
t,θ

.

Given ū, φ̄ ∈ H p
1 (Mε), we let u and φ be the functions defined on Mε0 by

u = ū ◦ Rε, φ = φ̄ ◦ Rε.

We then have∫
Mε

|ū|p−2ūφ̄ dv ḡ =
∫

Mε0

|u|p−2uφ dv R∗
ε ḡ = (ε/ε0)

k
∫

Mε0

|u|p−2uφ dv gεt/ε0,θ dv g⊥
t,θ

, (6)

∫
Mε

|∇ū|p−2
ḡ (∇ū,∇φ̄)ḡ dv ḡ = (ε/ε0)

k
∫

Mε0

|∇u|p−2
R∗

ε ḡ (∇u,∇φ)R∗
ε ḡ dv gεt/ε0,θ dv g⊥

t,θ

= (ε/ε0)
k

∫
Mε0

{
(ε/ε0)

−2|∇t,θ u|2
g⊥

t,θ
+ |∇xu|2gεt/ε0,θ

} p−2
2

× {
(ε/ε0)

−2(∇t,θ u,∇t,θ φ)g⊥ + (∇xu,∇xφ)gεt/ε ,θ

}
dv gεt/ε ,θ dv g⊥ , (7)
t,θ 0 0 t,θ
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and eventually,

∫
∂Mε

|ū|q−2ūφ̄ dσḡ =
∫

Mε

|ū|q−2ūφ̄ dv gε = (ε/ε0)
k−1

∫
Mε0

|u|q−2uφ dσε0 dv gε,θ , (8)

since (R∗
ε ḡ)(x, ε0, θ) = ḡ(x, ε, θ) = gε,θ +(ε/ε0)

2σε0 on Mε0 . Taking φ = u in (6), (7) and (8), it follows
that

(ε/ε0)
− k(q−p)+p

q Sε(p,q)

= inf
u∈H p

1 (Mε0 ), u 
≡0 on Mε0

∫
Mε0 ({(ε/ε0)

−2|∇t,θ u|2
g⊥

t,θ
+ |∇xu|2gεt/ε0,θ

} p
2 + |u|p)dv gεt/ε0,θ dv g⊥

t,θ

(
∫

Mε0
|u|q dσε0 dv gε,θ )

p/q

� inf
u∈H̃ p

1 (Mε0 ), u 
≡0 on Mε0

∫
Mε0 (|∇xu|p

gεt/ε0,θ
+ |u|p)dv gεt/ε0,θ dv g⊥

t,θ

(
∫

Mε0
|u|q dσε0 dv gε,θ )

p/q
, (9)

where H̃ p
1 (Mε0 ) denotes the subspace of H p

1 (Mε0 ) of (t, θ)-independent functions. We identify
H̃ p

1 (Mε0 ) with H p
1 (M). Since ḡ is continuous, we get

lim sup
ε→0

(ε/ε0)
− k(q−p)+p

q Sε(p,q) � inf
u∈H̃ p

1 (Mε0 ), u 
≡0 on Mε0

∫
Mε0 (|∇xu|p

g + |u|p)dv g dv g⊥
t,θ

(
∫

Mε0
|u|q dv g dσε0)

p/q
. (10)

Independently, for a (t, θ)-independent function v ,

∫
Mε0

v dv g dv g⊥
t,θ

=
∫
M

v(x)

( ∫
expx(Bx(ε0r(x)))

dv g⊥
t,θ

)
dv g(x)

=
∫
M

v(x)

( ∫
Bx(ε0r(x))

dvexp∗
x ḡ

)
dv g(x),

where Bx(ε0r(x)) ⊂ Tx M⊥ is defined in polar coordinate by r = ε0r(x, θ), θ ∈ Sx(1), and expx denotes
the exponential map at x (for the metric ḡ) restricted to Tx M⊥ . Since dv(exp∗

x ḡ)(y) → dvξ as y → 0 in
Tx M⊥ , where ξ denotes the Euclidean metric, we have as ε0 → 0 that∫

Bx(ε0r(x))

dvexp∗
x ḡ ∼ εk

0

∣∣Bx
(
r(x)

)∣∣
ξ
,

so that ∫
Mε0

v dv g dv g⊥
t,θ

∼ εk
0

∫
M

v(x)
∣∣Bx

(
r(x)

)∣∣
ξ

dv g(x) (11)

for any (t, θ)-independent function v . In particular, given u ∈ H̃ p
1 (Mε0 ), applying (11) to v = |∇xu|p

g +
|u|p gives

∫
ε

(|∇xu|p
g + |u|p)

dv g dv g⊥
t,θ

∼ εk
0

∫ (|∇u|p
g + |u|p)∣∣Bx

(
r(x)

)∣∣
ξ

dv g (12)
M 0 M
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as ε0 → 0. In the same way we also have that

∫
Mε0

|u|q dv g dσε0 ∼ εk−1
0

∫
M

|u|q∣∣Sx
(
r(x)

)∣∣
ξ

dv g(x) (13)

as ε0 → 0. Plugging (12) and (13) into (10) yields

lim sup
ε→0

ε
− k(q−p)+p

q Sε(p,q) � K (p,q). (14)

We now prove the converse inequality by analyzing the behaviour as ε → 0 of the normalized ex-
tremal of Sε(p,q). Let ε ∈ (0, ε0). We first assume that q < p∗ . Then a standard variational argument
gives the existence of a nonnegative function ūε ∈ H p

1 (Mε) normalized by
∫
∂Mε ūq

ε dσḡ = εk−1 which
realizes the infimum in the definition of Sε(p,q). Then

∫
Mε

(|∇ūε|p−2
ḡ (∇ūε,∇φ̄ε)ḡ + ūp−1

ε φ̄ε

)
dv ḡ = ε

(k−1)
p−q

q Sε(p,q)

∫
∂Mε

ūq−1
ε φ̄ε dσḡ (15)

for every φ̄ε ∈ H p
1 (Mε). In particular, with φ̄ε = ūε , we get

ε
(k−1)p

q Sε(p,q) =
∫

Mε

(|∇ūε|p
ḡ + ūp

ε

)
dv ḡ . (16)

Let uε be the function defined on Mε0 by uε = ūε ◦ Rε. In view of (6)–(7), (16) can be rewritten as

∫
Mε0

({
(ε/ε0)

−2|∇t,θ uε|2g⊥
t,θ

+ |∇xuε|2gεt/ε0,θ

} p
2 + up

ε

)
dv gεt/ε0,θ dv g⊥

t,θ

= εk
0ε

− k(q−p)+p
q Sε(p,q) = O (1), (17)

where the last equality follows from (14). Since M̄ε0 = ⋃
0�t�ε0

Mt is compact and the gij ’s are con-
tinuous, there exists a positive constant C > 0 such that

C−1 dxi dx j � gt,θ (x) = gij(x, t, θ)dxi dx j � C dxi dx j

in the sense of bilinear forms. Thus

C ′−1 gt,θ (x) � gεt/ε0,θ (x) � C ′ gt,θ (x) (18)

in the sense of bilinear forms for any (x, θ, t) ∈ M̄ε0 . Hence

∫
Mε0

({
(ε/ε0)

−2|∇t,θ uε|2g⊥
t,θ

+ |∇xuε|2gt,θ

} p
2 + up

ε

)
dv ḡ = O (1). (19)

It follows that (uε) is bounded in H p
1 (Mε0 ). We then deduce the existence of a function u ∈ H p

1 (Mε0)

such that, up to a subsequence, uε → u weakly in H p
1 (Mε0 ), strongly in L p(Mε0 ) and in Lq(Mε0), and

a.e. In particular, u � 0 a.e.
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Since uε → u strongly in L p(Mε0 ) and in Lq(Mε0 ), we also have that ∇uε → ∇u weakly in
L p(Mε0 ). As a consequence, ∇xuε → ∇xu and ∇t,θ uε → ∇t,θ u weakly in L p . In particular, in view
of (19),

∫
Mε0

|∇t,θ u|p
g⊥

t,θ
dv ḡ � lim inf

ε→0

∫
Mε0

|∇t,θ uε|p
g⊥

t,θ
dv ḡ = 0. (20)

It follows that u does not depend on (t, θ), i.e. u = u(x). Independently, since gij(x, εt/ε0, θ) → gij(x)
as ε → 0 uniformly in (x, t, θ), and uε → u in L p(Mε0 ), we have that

lim
ε→0

∫
Mε0

up
ε dv gεt/ε0,θ dv g⊥

t,θ
=

∫
Mε0

up dv g dv g⊥
t,θ

.

Moreover, since ∇xuε → ∇xu weakly in L p ,

lim inf
ε→0

∫
Mε0

|∇xuε|p
gεt/ε0,θ

dv gεt/ε0,θ dv g⊥
t,θ

= lim inf
ε→0

∫
Mε0

|∇xuε|p
g dv g dv g⊥

t,θ
�

∫
Mε0

|∇u|p
g dv g dv g⊥

t,θ
.

Passing to the limit in (17), we obtain

∫
Mε0

(|∇u|p
g + up)

dv g dv g⊥
t,θ

� lim inf
ε→0

εk
0ε

− k(q−p)+p
q Sε(p,q).

Since u is (t, θ)-independent, we eventually get in view of (11) that

∫
M

(|∇u|p
g + up)∣∣Bx

(
r(x)

)∣∣
ξ

dv g � lim inf
ε→0

ε
− k(q−p)+p

q Sε(p,q). (21)

Recalling the normalization of ūε , (8) with ū = φ̄ = ūε gives

ε1−k
0

∫
Mε0

uq
ε dσε0 dv gε,θ = 1. (22)

Passing to the limit ε → 0 and then using the (t, θ)-invariance of u as previously, we obtain

1 = ε1−k
0

∫
Mε0

uq dv g dσε0 ∼
∫
M

uq
∣∣Sx

(
r(x)

)∣∣
ξ

dv g

as ε0 → 0. Inserting this into (21) yields

K (p,q) �
∫

M(|∇u|p
g + up)|B̄x(r(x))|ξ dv g

(
∫

M uq|Sx(r(x))|ξ dv g)p/q
� lim inf

ε→0
ε

− k(q−p)+p
q Sε(p,q).

This together with (14) proves (2) in the subcritical case q < p∗ .
We now assume that q = p∗ . The only difficulty in proving (2) in the critical case comparing to

the subcritical one lies in the existence of the uε ’s and in their strong convergence to u in L p∗(∂Mε0 ).
All the other steps of the proof are identical.
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According to [12] (see also [8]), Sε(p, p∗) is attained as soon as

Sε(p, p∗) < K̃ (n, p), (23)

where K̃ (n, p) denotes the best constant for the embedding of D p
1 (R+

n ) into L p∗ (∂R
+
n ), namely

K̃ (n, p) = inf
u∈Lp∗ (∂R

+
n )\{0},∇u∈Lp(R+

n )

∫
R

+
n

|∇u|p dx

(
∫
∂R

+
n

|u|p∗ dσ)p/p∗ > 0. (24)

The value of K̃ (n, p) is explicitely known (see [8] for p = 2 and [6] for the general case p ∈ (1,n)).
According to (14), which is still valid when q = p∗ , this condition holds for small ε. This proves
the existence of the ūε . We will now prove the strong convergence of uε to u in H p

1 (Mε0) for ε0
sufficiently small.

Consider on Mε0 the metric ĝ(x, t, θ) = gij(x)dxi dx j + g⊥
t,θ (x). We have C−1 ĝ � ḡ � C ĝ in the

sense of bilinear forms. Hence (uε) is bounded in H p
1 (Mε0 , ĝ) and thus converges to some û weakly

in H p
1 (Mε0 , ĝ) and strongly in L p(Mε0 , ĝ). Since L p(Mε0 , ĝ) = L p(Mε0 , ḡ) and uε → u strongly in

L p(Mε0 , ḡ), we have u = û. Independently, according to [2], for any η > 0 there exists Cη > 0 such
that

( ∫
∂Mε0

|v|p∗ dv g dσε0

)p/p∗

�
(

K̃ (n, p)−1 + η
) ∫

Mε0

(|∇t,θ v|2
g⊥

t,θ
+ |∇x v|2g

)p/2
dv g dv g⊥

t,θ
+ Cη

∫
Mε0

|v|p dv g dv g⊥
t,θ

(25)

for every v ∈ H p
1 (Mε0 ). Using Lions’ concentration–compactness principle [9], we then deduce the

existence of two measures μ and ν supported in ∂Mε0 , a sequence of points (pi)i∈I ∈ ∂Mε0 , and two
sequences of positive real numbers (μi)i∈I and (νi)i∈I such that

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(|∇t,θ uε|2g⊥
t,θ

+ |∇xuε|2g
)p/2

dv g dv g⊥
t,θ

→ μ � |∇xu|p
g dv g dv g⊥

t,θ
+

∑
i∈I

μiδpi ,

up∗
ε dv g dσε0|∂Mε0 → ν = up∗ dv g dσε0|∂Mε0 +

∑
i∈I

νiδpi ,

ν
p/p∗
i � K̃ (n, p)−1μi ∀i ∈ I,

(26)

where the convergence holds in the sense of measures. We consider a point p = pi appearing in
this decomposition with coordinates (xp, ε0, θp), and let ψδ ∈ C∞

c (Bxp (2δ)) be such that 0 � ψδ � 1,
ψδ ≡ 1 in Bxp (δ), and ‖∇ψδ‖∞ = O (1/δ), where Bxp (2δ) ⊂ M is the geodesic ball for the metric g
centered at xp of radius 2δ. We extend ψδ to Mε0 as a (t, θ)-independent function. We rewrite (15)
using (6)–(8) as

∫
Mε0

(|∇uε|p−2
R∗

ε ḡ

(
(ε/ε0)

−2(∇t,θ uε,∇t,θ φε)g⊥
t,θ

+ (∇xuε,∇xφε)gεt/ε0,θ

) + up−1
ε φε

)
dv gεt/ε0,θ dv g⊥

t,θ

= ε0ε
− k(p∗−p)+p

p∗ Sε(p, p∗)
∫

Mε0

up∗−1
ε φε dσε0 dv gε,θ ,

where φε = φ̄ε ◦ Rε . With φε = uεψδ , we get
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∫
Mε0

ψδ |∇uε|p
R∗

ε ḡ dv gεt/ε0,θ dv g⊥
t,θ

− ε0ε
− k(p∗−p)+p

p∗ Sε(p, p∗)
∫

Mε0

up∗
ε ψδ dσε0 dv gε,θ

�
∫

Mε0

|∇uε|p−1
R∗

ε ḡ uε|∇xψδ |gεt/ε0,θ dv g⊥
t,θ

dv gεt/ε0,θ .

We estimate the right-hand side of this inequality using Hölder’s inequality and (17) which gives that∫
Mε0 |∇uε|p

R∗
ε ḡ dv g⊥

t,θ
dv gεt/ε0,θ = O (1). We obtain

∫
Mε0

ψδ

{|∇t,θ uε|2g⊥
t,θ

+ |∇xuε|2gεt/ε0,θ

} p
2 dv gεt/ε0,θ dv g⊥

t,θ
− ε0ε

− k(p∗−p)+p
p∗ Sε(p, p∗)

∫
Mε0

up∗
ε ψδ dσε0 dv gε,θ

� O (1/δ)

( ∫
supp ψδ

up
ε dv g⊥

t,θ
dv gεt/ε0,θ

) 1
p

,

where suppψδ denotes the support of ψδ . Since gεt/ε0,θ → g uniformly in M̄ε0 as ε → 0, and uε → u
in L p(Mε0 ), we can pass to the limit in this equality using (26) to get

∫
Mε0

ψδ dμ − A

∫
Mε0

ψδ dν � O (1/δ)

( ∫
suppψδ

up dv g dv g⊥
t,θ

) 1
p

� O (1/δ)

( ∫
Bxp (2δ)

up dv g

) 1
p

, (27)

where A = ε0 limε→0 ε
− k(p∗−p)+p

p∗ Sε(p, p∗), which exists up to a subsequence in view of (14), and the
last inequality follows from the fact that u is (t, θ)-independent. Remark that

lim
ε→0

ε
− k(p∗−p)+p

p∗ Sε(p, p∗) > 0

since otherwise we would have uε → 0 in H p
1 (Mε0) according to (17), which contradicts the normal-

ization condition
∫

Mε0
uq

ε dσε0 dv gε,θ = εk−1
0 (see (22)). In view of (21), u ∈ H p

1 (M) and thus u ∈ L p∗
(M)

with p∗ = (n − k)p/(n − k − p) if p < n − k. Hence in that case

∫
Bxp (2δ)

up dv g �
( ∫

Bxp (2δ)

up∗
dv g

) p
p∗ ∣∣Bxp (2δ)

∣∣ p∗−p
p∗ = o(1)O

(
δp) = o

(
δp)

.

Letting δ → 0 in (27) then gives μi � Aνi , from which we get using (26) that

μi � A− n−p
p−1 K̃ (n, p)

n−1
p−1

for any i ∈ I . We now pass to the limit in (17) and obtain

εk−1
0 A � μ

(
Mε0

)
�

∑
μi � |I|A− n−p

p−1 K̃ (n, p)
n−1
p−1 ,
i∈I
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i.e. |I|(A−1 K̃ (n, p))
n−1
p−1 � εk−1

0 . Since A = O (ε0) < K̃ (n, p) for ε0 small enough, and k � 1, we must
have I = ∅, i.e. uε → u strongly in H p

1 (Mε0 ). As said above, this ends the proof of Theorem 0.1 in the
critical case.

On what concerns the remark (3) about the problem of finding a conformal metric to ḡ with zero
scalar curvature in the interior of Mε and constant mean curvature on ∂Mε , we note that (6)–(8)
gives

λε = inf
u∈H2

1(Mε0 ), u 
≡0 on Mε

(ε/ε0)
k Iε + (ε/ε0)

k−1
∫

Mε0
k(x, ε)u2 dσε0 dv gεt/ε0,θ

((ε/ε0)k−1
∫

Mε0
|u|2∗ dσε0 dv gεt/ε0,θ )

2/2∗
,

where

Iε =
∫

Mε0

(
(ε/ε0)

−2|∇t,θ u|2
g⊥

t,θ
+ |∇xu|2gεt/ε0,θ

+ h(x, ε, θ)|u|2)dv gεt/ε0,θ dv g⊥
t,θ

.

Hence

lim sup
ε→0

ε−(k−1)(1−2/2∗)λε � inf
u∈H2

1(M), u 
≡0

∫
M k|M u2|Bx(r(x))|ξ dv g

(
∫

M |u|2∗ |Bx(r(x))|ξ dv g)2/2∗ = 0,

where the second equality follows by taking uη(x) = ηu(η−1 exp−1
y (x)), with η → 0, as a test-function

to estimate the inf, for some point y ∈ M and function u ∈ C∞
c (Rn−k), u 
≡ 0.

We now prove the theorem when k = n. Using the constant function equal to 1 in the definition
of Sε(p,q), we get

Sε(p,q) � |Ωε|ḡ

|∂Ωε|p/q
ḡ

= |Ω̃ε|g̃

|∂Ω̃ε|p/q
g̃

, (28)

where Ω̃ε = εΩ̃ , so that Ωε = exp0(Ω̃ε), and g̃ = exp∗
0 ḡ . Letting Rε : R

n → R
n , Rε(x) = x/ε, we have

|Ω̃ε|g̃ =
∫
Ω̃

dv
(R−1

ε )∗ g̃ = εn
∫
Ω̃

dv g̃(εx) ∼ εn|Ω̃|ξ

as ε → 0, since g̃(0) = ξ the Euclidean metric. In the same way,

|∂Ω̃ε|g̃ ∼ εn−1|∂Ω̃|ξ

as ε → 0. We can thus rewrite (28) as

lim sup
ε→0

ε
− (q−p)n+p

q Sε(p,q) � |Ω̃|ξ
|∂Ω̃|p/q

ξ

. (29)

In the subcritical case q < p∗ , the standard variational method implies that Sε(p,q) is attained by
some nonnegative function vε ∈ H p

1 (Ωε) such that
∫
∂Ωε

vq
ε dσḡ = 1. In the critical case q = p∗ , this

method does not work anymore since the embedding H p
1 (Ωε) ↪→ L p∗(∂Ωε) is not compact. However,

according to (29), we have Sε(p, p∗) → 0 as ε → 0. In particular

Sε(p, p∗) < K̃ (n, p)
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for ε > 0 sufficiently small, where K̃ (n, p) is given by (24). It then follows that Sε(p, p∗) is attained
by some nonnegative function vε ∈ H p

1 (Ωε) such that
∫
∂Ωε

v p∗
ε dσḡ = 1 (see for example [5,6]).

We let ṽε and ũε be the functions defined in Ω̃ε and Ω̃ respectively by

ṽε(x) = vε

(
exp0(x)

)
, x ∈ Ω̃ε,

and

ũε(x) = ε
n−1

q ṽε(εx), x ∈ Ω̃.

We then have

∫
Ω

|ũε|p dv g̃ = ε
(n−1)p

q

∫
Ω̃ε

|ṽε|p dv R∗
ε g̃ = ε

(p−q)n−p
q

∫
Ω̃ε

∣∣ṽε(x)
∣∣p

dv g̃(x/ε),

and

∫
Ω

|∇ũε|p
g̃ dv ḡ = ε

(n−1)p
q

∫
Ω̃

∣∣∇(
ṽε(εx)

)∣∣p
g̃ dv g̃ = ε

(n−1)p
q

∫
Ω̃

|∇ ṽε|p
R∗

ε g̃ dv R∗
ε g̃

= ε
(p−q)n+(q−1)p

q

∫
Ω̃ε

|∇ ṽε|p
g̃(x/ε)

dv g̃(x/ε).

Independently, there exists C > 0 such that for every x ∈ Ω̃

C−1δi j � g̃(x) � Cδi j (30)

in the sense of bilinear forms. Thus

∫
Ω̃ε

∣∣ṽε(x)
∣∣p

dv g̃(x/ε) � C

∫
Ω̃ε

∣∣ṽε(x)
∣∣p

dv g̃ ,

and

∫
Ω̃ε

|∇ ṽε|p
g̃(x/ε)

dv g̃(x/ε) � C

∫
Ω̃ε

|∇ ṽε|p
g̃ dv g̃ .

Hence

ε−p
∫
Ω̃

|∇ũε|p
g̃ dv g̃ +

∫
Ω̃

ũp
ε dv g̃ � Cε

(p−q)n−p
q

∫
Ω̃ε

(|∇ ṽε|p
g̃ + ṽ p

ε

)
dv g̃

= Cε
(p−q)n−p

q

∫
Ωε

(|∇vε|p
ḡ + v p

ε

)
dv ḡ

= Cε
(p−q)n−p

q Sε(p,q). (31)
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We then deduce with (29) that (ũε) is bounded in H p
1 (Ω̃) and that ∇ũε → 0 in L p(Ω̃). There thus

exists a nonnegative function ũ ∈ H p
1 (Ω̃) such that ũε → ũ weakly in H p

1 (Ω̃), strongly in L p(Ω̃) and
strongly (resp. weakly) in Lq(∂Ω̃) if q < p∗ (resp. q = p∗), and a.e. We have

∫
Ω̃

|∇ũ|p dv g̃ � lim inf
ε→0

∫
Ω̃

|∇ũε|p dv g̃ = 0

according to (31) and (29). Hence ũ is a nonnegative constant, and ũε → ũ strongly in H p
1 (Ω̃). As a

consequence ũε → ũ strongly in Lq(∂Ω̃) for any q � p∗ . To find the value of ũ, we write that

1 =
∫

∂Ωε

vq
ε dσḡ =

∫
∂Ω̃ε

ṽq
ε dσg̃ =

∫
∂Ω̃

ũq
ε dσg̃(εx) → ũq|∂Ω̃|ξ

as ε → 0, i.e. ũ = |∂Ω̃|−q
ξ . Eventually,

Sε(p,q) �
∫
Ω̃ε

ṽ p
ε dv g̃ = ε

− (n−1)p
q

∫
Ω̃

ũp
ε dv

(R−1
ε )∗ g̃ = ε

(q−p)n+p
q

∫
Ω̃

ũp
ε dv g̃(εx),

which gives

lim inf
ε→0

ε
− (q−p)n+p

q Sε(p,q) � ũp|Ω̃|ξ = |Ω̃|ξ
|∂Ω̃|p/q

ξ

.

Together with (29), this proves the result.

2. Proof of Theorem 0.2

The proof of Theorem 0.2 is similar to the one of Theorem 0.1 so that we briefly outline it. We
first assume that k � n − 1. In view of (6) and (7), we have

(ε/ε0)
k(p/q−1) Sε(p,q)

= inf
u∈H p

1 (Mε0 ), u 
≡0

∫
Mε0 ({(ε/ε0)

−2(∇t,θ u)2
g⊥

t,θ
+ |∇xu|2gεt/ε0,θ

} p
2 + |u|p)dv gεt/ε0,θ dv g⊥

t,θ

(
∫

Mε0 |u|q dv gεt/ε0,θ dv g⊥
t,θ

)p/q

� inf
u∈H̃ p

1 (Mε0 ), u 
≡0

∫
Mε0 (|∇xu|p

gεt/ε0,θ
+ |u|p)dv gεt/ε0,θ dv g⊥

t,θ

(
∫

Mε0 |u|q dv gεt/ε0,θ dv g⊥
t,θ

)p/q
.

Using (11) we then obtain

lim sup
ε→0

ε
k(

p
q −1) Sε(p,q) � inf

u∈H p
1 (M), u 
≡0

∫
M(|∇u|p

g + |u|p)|Bx(r(x))|ξ dv g(x)

(
∫

M |u|q|Bx(r(x))|ξ dv g(x))p/q
.

As in the proof of Theorem 0.1, Sε(p,q), q < p∗ , is attained by some nonnegative ūε ∈ H p
1 (Mε)

normalized by
∫

Mε ūq
ε dv ḡ = εk . We then have
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∫
Mε

(|∇ūε|p−2
ḡ (∇ūε,∇φ̄ε)ḡ + ūp−1

ε φ̄ε

)
dv ḡ = εk(p/q−1) Sε(p,q)

∫
Mε

ūq−1
ε φ̄ε dv ḡ

for every φ̄ε ∈ H p
1 (Mε). In particular, with φ̄ε = ūε ,

εkp/q Sε(p,q) =
∫

Mε

(|∇ūε|p
ḡ + ūp

ε

)
dv ḡ .

Let uε be the function defined on Mε0 by uε = ūε ◦ Rε. We then rewrite the previous equality as

∫
Mε0

({
(ε/ε0)

−2|∇t,θ uε|2g⊥
t,θ

+ |∇xuε|2gεt/ε0,θ

} p
2 + up

ε

)
dv gεt/ε0,θ dv g⊥

t,θ

= εk
0ε

k(p/q−1) Sε(p,q) = O (1), (32)

from which we deduce that the uε ’s converge to some nonnegative (t, θ)-independent u ∈ H p
1 (Mε0 )

weakly in H p
1 (Mε0 ) and strongly in L p(Mε0) and Lq(Mε0 ) when q < p∗ . Moreover the normalization

of the ūε gives
∫

Mε0 uq|Bx(r(x))|ξ dv g = 1. Passing to the limit ε → 0 in (32) and then using (11)
eventually yields

lim inf
ε→0

ε
k(

p
q −1) Sε(p,q) � inf

u∈H p
1 (M), u 
≡0

∫
M(|∇u|p

g + |u|p)|Bx(r(x))|ξ dv g(x)

(
∫

M |u|q|Bx(r(x))|ξ dv g(x))p/q
,

which ends the proof of Theorem 0.2 in the subcritical case q < p∗ .
To deal with the critical case q = p∗ , we introduce the best constant K (n, p) for the embedding of

D p
1 (Rn) into L p∗

(Rn) namely

K (n, p) = inf
u∈C∞

c (Rn), u 
≡0

∫
Rn |∇u|p dx

(
∫

Rn |u|p∗ dx)p/p∗ > 0.

Since Sε(p, p∗) = O (εk(1−p/p∗)) = o(1) < K (n, p), Sε(p, p∗) is attained by some nonnegative ūε ∈
H p

1 (Mε) normalized as previously (see e.g. [1] or [7]). To get the strong convergence of the ūε ’s to u

in L p∗
(Mε0 ), we consider the inequality

( ∫
Mε0

|v|p∗
dv g dv g⊥

t,θ

)p/p∗

�
(

K (n, p)−1 + η
) ∫

Mε0

(|∇t,θ v|2
g⊥

t,θ
+ |∇x v|2g

)p/2
dv g dv g⊥

t,θ
+ Cη

∫
Mε0

|v|p dv g dv g⊥
t,θ

,

which holds for every v ∈ H p
1 (Mε0 ) (see [1,7]). We then obtain that

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(|∇t,θ uε|2g⊥
t,θ

+ |∇xuε|2g
)p/2

dv g dv g⊥
t,θ

⇀ μ � |∇xu|p
g dv g dv g⊥

t,θ
+

∑
i∈I

μiδpi ,

up∗
ε dv g dv g⊥

t,θ
⇀ ν = up∗ dv g dv g⊥

t,θ
+

∑
i∈I

νiδpi ,

ν
p/p∗

� K (n, p)−1μ ∀i ∈ I.
i i
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As in the proof of Theorem 0.1, we obtain μi � Aνi for every i ∈ I , where
A = limε→0 εk(p/p∗−1) Sε(p, p∗). Hence μi � A(A−1 K (n, p))n/p . Passing to the limit in (32), we ob-
tain εk

0 A �
∑

i∈I μi , and thus εk
0 � |I|(A−1 K (n, p))n/p for any ε0 > 0 with k � 1. It follows that I = ∅,

and thus that uε → u strongly in H p
1 (Mε0 ). We can end the proof as previously.

We now assume that k = n. Using the constant function equal to 1, we get

Sε(p,q) � |Ωε|1−p/q
ḡ ∼ ε−n(p/q−1)|Ω̃|1−p/q

ξ

as ε → 0, so that

lim sup
ε→0

εn(p/q−1) Sε(p,q) � |Ω̃|1−p/q
ξ . (33)

As before, Sε(p,q), q � p∗ , is attained by some nonnegative vε ∈ H p
1 (Ωε) such that

∫
Ωε

vq
ε dv ḡ = 1.

We then consider ũε(x) = εn/q ṽε(εx), x ∈ Ω̃ , where ṽε(x) = vε(exp0(x)), x ∈ Ω̃ε . We then have

∫
Ω̃

ũp
ε dv g̃ = εn(p/q−1)

∫
Ω̃ε

ṽ p
ε dv g̃(x/ε),

and

∫
Ω̃

|∇ũε|p
g̃ dv g̃ = εn(p/q−1)+p

∫
Ω̃ε

|∇ ṽε|p dv g̃(x/ε),

so that, with (30),

∫
Ω̃

ε−p(|∇ũε|p
g̃ + ũp

ε

)
dv g̃ � Cεn(p/q−1)

∫
Ω̃ε

(|∇ ṽε|p + ṽ p
ε

)
dv g̃ � Cεn(p/q−1) Sε(p,q) � C .

We then deduce as above that the ũε ’s converge strongly in H p
1 (Ω̃) to some nonnegative constant ũ.

In fact ũ = |Ω̃|−1/q
ξ since

1 =
∫
Ωε

vq
ε dv ḡ =

∫
Ω̃

ũq
ε dv g̃(εx) → ũq|Ω̃|ξ

as ε → 0. From

Sε(p,q) �
∫
Ωε

v p
ε dv ḡ = εn(1−p/q)

∫
Ω̃

ũp
ε dv g̃(εx) ∼ εn(1−p/q)ũp |Ω̃|ξ ,

we obtain

lim inf
ε→0

εn(p/q−1) Sε(p,q) � |Ω̃|1−p/q
ξ ,

which ends the proof of Theorem 0.2.
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