=

View metadata, citation and similar papers at core.ac.uk brought to you by i CORE

provided by Elsevier - Publisher Connector

J. Differential Equations 246 (2009) 2876-2890

Contents lists available at ScienceDirect

Journal of Differential Equations PO

www.elsevier.com/locate/jde

Asymptotics of best Sobolev constants on thin manifolds

Nicolas Saintier -P-*

2 Departamento de Matemdtica, FCEyN UBA (1428), Buenos Aires, Argentina
b Universidad Nacional de General Sarmiento, .M. Gutierrez 1150, C.P. 1613 Los Polvorines, Pcia de Bs. As., Argentina

ARTICLE INFO ABSTRACT
Article history: We study the asymptotic behaviour of best Sobolev constants on a
Received 4 June 2008 compact manifold with boundary that we contract in k directions

Revised 21 October 2008

! . or to a point. We find in the limit best Sobolev constants for
Available online 3 December 2008

weighted Sobolev spaces of the limit manifold.
© 2008 Elsevier Inc. All rights reserved.

The study of thin structures is of great importance in physics (e.g. the study of thin pipes or
plates), but complicated from a mathematical point of view due to their two-scale nature. One way
to overcome this difficulty is trying to reduce the dimension of the problem by looking at the limit
problem on the structure we get as the thickness goes to zero. Independently, Sobolev inequalities and
the associated best Sobolev constants are known to be relevant for the study of nonlinear equations.
We are thus led to the study of the asymptotic behaviour of these best Sobolev constants on thin
domains as the thickness goes to zero. This problem has already been considered in the subcritical
case in [3] and [10] for open subsets of R", and in [11] for thin pipes of R>. In this paper, we extend
these results to the Riemannian setting in both the subcritical and critical case.

We now describe precisely our problem. Let (N, g) be a Riemannian manifold of dimension n,
and M an embedded compact manifold of N without boundary of codimension k € [1,n — 1] which
does not intersect the boundary of N if any. We will deal with the case k =n, i.e. when M is a
point, later. We equipped M with the induced Riemannian metric g =i*g, where i : M < N is the
canonical injection. Given a point y € N and a tangent vector Y € TyN, we denote by t — yy y(t) the
geodesic (for g) starting from y with velocity Y, i.e. ¥, y(0) =y and yy y(0) =Y. We assume that
there exists an orthonormal family {vq,..., vk} of smooth vector-fields on N such that v;(x) L TyM
for every xe M and i =1,...,k. In the case k=1 with N orientable, this amounts to assume that M
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is orientable. Given x € M and t > 0, we denote by Sx(t) C TyM~ the sphere of radius t and center x
given by

k
Sx(t) = VZZQU,'(X), t%"‘"'-l—t,%:tz )
i=1

Given a continuous function r : {_,cpy Sx(1) = (0, +-00), we then define, for a sufficiently small &9 > 0,
the hypersurfaces M, 0 <t < &g, by

Mt = { Vo (r(x, v(®))t), x€ M, v(x) € Sx(D}.

Then the M; does not intersect dN for &y > 0 small enough. In the case k=1 and r=1, Sx(1) =
{v1(x), —v1(¥)}, and M; is composed of two copies of M. We also consider the open subset M¢,
€ € (0, &), of N defined by

ME = U Me = {yxvoo (r(x, v®)t), x€ M, v(x) € Sx(1), 0<t <¢e}.
ot<e

Then M¢ is an open subset of N with boundary dM?¢ = M,.

We now deal with the case k =n, i.e. the case where M is a point that we denote by 0 € N.
Let 2 be a smooth connected open subset of N containing 0 included in some geodesic ball By(§)
with § less than the injectivity radius of (N, g) at 0. We contract £2 at 0 by considering the open
subsets 2, :=expy(€£2), & > 0, where exp, denotes the exponential map at 0, and Q2= expg @) c
ToN ~R".

Given p € (1,n), we denote by Hf(M*’) the Sobolev space of the functions in LP(M¢) such that
their gradient is also in LP(M?). It is well known that Hf(ME) < L1(0M¥?) continuously for any
q €1, p«], where p, :=p(n —1)/(n — p). Moreover this embedding is compact when q < p,. We let
S¢(p, q) be the best constant for this embedding, namely

(IVul? + |ulP)dvg
S*(p,q) = inf o (Vg )
ueH?(M#), uz0 on ame  (fype U|9dog)P/d

when k <n—1, and where do denotes the volume element induced by g on dM°®. In the case k =n,
we define S¢(p, q) in the same way but with §2. (resp. 3§2;) in place of M? (resp. dM?®).

The aim of this paper is to describe the asymptotic behaviour of S(p,q) as € — 0. This problem
was solved in [3] (resp. [4]) in the case of an open subset of R" with ¢ < p, and k <n — 1 (resp.
k=n).

Before stating our result, we let, when k <n — 1, K(p, q) be the best constant for the embedding
of HY (M) into LY(M) in the sense that

. Ju(Vul + [ulP)By(r(x)]e dvg(x)
K(p,q) = f 0, 1
. uer}rA}l),mo (Jyr 1191 Sx(r(x))|e dv g (x))P/4 - W

where [Sy(r(x))|s (resp. [Bx(r(x))|¢) denotes the volume for the Euclidean metric £ of the sphere-
like subset Sx(r(x)) C TxM~ (resp. the ball-like subset By(r(x)) C TxM=) given in polar coordinate by
r=r(x,0) (resp. r <r(x,0)), 0 € Sx(1).

The result is the following:

Theorem 0.1. For 1 < p <nand 1< q < ps With p <n —kif g = ps, we have

k@=p)+p P)

lim e~ *S¢(p.q) = K(p.q). (2)

e—0
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whenk<n—1,andfor1 <p <nand1<q<p*

. _kg=p)tp |{2|E
lim & T S5°(p.q =— 7
£—0 |8~Q‘g q

when k = n. Moreover, the extremals for S¢(p, q), suitably normalized and rescaled, converge to an extremal
for K(p,q) as € - 0 when k <n — 1, and to a constant when k =n.

For example, if r is constant and k <n —1,

’  gpp S0 rk(l—P/tJ)+D/qw’1:f/q . fM(Wulf; + u|P)dvg
1m & 4q p.q)=
>0 k uer(M),u#O (fM [uld dvg)p/q

tk(=p/@)+p/a,,1-P/a

= P k=1 Volg(M)l’p/q ifqg<p,

where wjy_1 is the volume of the standard sphere of R¥. The second equality follows by taking the
constant function equal to 1 as a test-function to get the < inequality, and by applying Holder’s
inequality to f;, [u|?dvg to get the converse one.

As an application, consider the problem of finding a conformal metric to g with zero scalar cur-
vature in the interior of M® and constant mean curvature on dM¢. To prove the existence of such a
metric, it suffices to show that

c(Vulz +hlu?)dvg + [, ku*dog .
he = inf Ju g 8 1 Jow £ k.2, (3)

ueH?(M#), u0 on IM¢ (fye Iul? dog)2/2

for some suitable smooth functions h and k, and where K (n,2) is defined by (24) (see [8]). Various
works have been devoted to this problem. Existence of solutions are usually proved under geometric
conditions on dM¢. In contrast, the first part of the proof of Theorem 0.1 can easily be adapted to
Ae to show that limsup,_,oe~*~1D/@=D) = 0. Hence the problem of finding such a metric on a
sufficiently thin manifold always has a solution.

We can also describe in a similar way the asymptotic behaviour of the best Sobolev constant
Se(p, q) corresponding to the embedding of Hf(MS) into LY(M?), namely

Jue (VUlg + ulP)dvg

in
ueHP o0} (fye 1ul9dvg)P/d

Se(p.q) =

when k <n — 1. In the case k =n, we define S;(p,q) in the same way but with £2; in place of M?.
The result is

Theorem 0.2. For 1 < p <nand 1< q < p*, withp <n —kifq= p*, we have

Vulb P)|B d
lim sk(%q)sg(p,q): inf Ju(IVulg + u|P)[Bx(r(x)) | V/g(x)’ (@)
£—0 ueh? My, uz0  (fyy U191 Bx(r(x)|e dvg(x)P/d

whenk<n—1,andfor1 <p <nand1<q<p*

lim £"P/9Vs, (p, q) =2,
e—0
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when k = n. Moreover, the extremals for S:(p, q), suitably normalized and rescaled, converge to an extremal
for the minimization problem of the right-hand side of (4) as ¢ — 0 when k <n — 1, and to a constant when
k=n.

This result generalizes both [10] and [11] to the Riemannian setting.

1. Proof of Theorem 0.1

We first prove the theorem in the case k <n — 1. Let (xq,...,X,_x) be a coordinate system
of M at a point 0 € M. The existence of the v;’s allows us to consider global polar coordinates
(X1, ..., Xn—k,01,...,0k_1,t) around O in N, where the 6;’s form a coordinate system of each Sx(1),

and t is the parameter of a geodesic t — ¥x,rx,0)0 (£), @ € Sx(1) (which has constant speed r(x, 6)2),
so that the M;'s are the level-sets of t. Since Sx(t) C TxM~ for any x e M and t > 0, and a geodesic
t — Yxrix.0)0(t) intersects perpendicularly the M;’s, the metric g in these coordinates takes the form

g(x,t,0) = gij(x, t,0)dx dx) +1(x,0)* dt? + ¢ fij(x, 0) do' do/,
for some smooth functions gjj, fij, where o¢(x) := tzfij(x,e)deidef is the metric on the geodesic
sphere Sx(t) := expy(Sx(t)), exp being the exponential mapping for g, and g; := g(.,t,.) = g, + o; is
the metric induced by g on M;, with g¢ o (x) = g;j(x, t, 0)dx! dxJ. Note that go = g the metric induced

on M. We also let g, (x) =1(x,0)%dt?> + ot ().
Let € € (0, &0) and R, : M®© — M? be defined by

Re (Vx,r(x,v(x))v(x) (t)) = Varxv)vx (EL/€0), v(X) € Sx(1), 0t < &,
i.e. Ra(x,t,0) = (x, et/ep, 0) in coordinates. We then have for (x,t,0) € M0 that
(REE)(x.t,0) = gij(x. £t /g0, 0) dx' dx! + (¢ /£0)’r(x, 0)* dt* + (¢/£0)** f (x.0) d6?
= Zet/e0.0 (X, 0) + (€/€0)* 81y (X). (5)
In particular,
k
AV Rz xt.0) = (€/€0) AVgyy o o Vgl -
Given ii, ¢ € Hf(Ms). we let u and ¢ be the functions defined on M*° by
u=1uoRg, ¢):q_boR8.

We then have

- p_2-7 -2 K -2
‘/‘|u|’J updvg = / [ulP~*u¢dvsz = (¢/€0)* | |ulP updvg, . dvg#ﬁ, (6)
MS MFO EO

M

/|Vﬂ|g_2(vﬁ,V¢;)gdv§:(S/SO)k f |Vu|‘,§gg2(w,v¢)R;gdvgm€0,gdvgég
Mé M¢o

—e/eof [ {(e/e0) 2Veguls + V2, )T
= 0 0 t.6 gtJ,_fJ X get/e0.0
Méo

x {(8/0) 2 (Ve ot Veo®)gr, + (Vaths Velgersegs ) WVgersego Vgt (7)
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and eventually,

aMe

/ |ﬂ|q_2ﬁq_>dag=f|ﬂ|q_2ﬁ¢_7dvg£=(8/80)k_1 / [ul2u¢ dog, dvg, ,, (8)
M,

Mg,

since (R}g)(x,€0,0) =8(X,£,0) =80 +(8/80)2(T£0 on Mg,. Taking ¢ = u in (6), (7) and (8), it follows
that

_k@=p)+p e
(e/€0) 1 S°(p.q@

-2 2 2 ?
Jueo ((/60) 2IVegull, + IVattlg, )2 + 1P AV, o Vg,

= inf
ueH? (M#0), u0 on Mg, (sto [u|d daao dVggﬁ )P/
p
) [M50 (|qu‘gsz/s0,9 + |u|p) dvgst/so.e dvg[ig
< inf ; =, 9
ueA? (M#0), u£0 on Mg, (fME0 [ul9dog, dvg, ,)P/1

where HY(M®) denotes the subspace of HP(M) of (t,6)-independent functions. We identify
HY (M) with HY (M). Since g is continuous, we get

_ k@=p)+p /M80(|VX”|§+ |u|p)dvgdvg[¢9
lim sup(&/&o) e S%(p,q) < inf : 2. (10)
£—0 ue? (M#0), u0 on Mg, (/M£0 |u|qdvg dUSU)p/q

Independently, for a (t, )-independent function v,

/ vdvgdvgfﬁ :/v(x)( / dvg#ﬁ)dvg(x)

M#o M expy (Bx(gor(x)))
=fv(x)< / dvexp;;g> dvg(x),
M Bx(gor(x))

where By(gor(x)) C TyM* is defined in polar coordinate by r = ggr(x, 6), 6 € Sx(1), and exp, denotes
the exponential map at x (for the metric g) restricted to TyM-.. Since dV(expz g)(y) — dve as y — 0 in
TxM~L, where ¢ denotes the Euclidean metric, we have as &g — 0 that

dVexp; g ~ £6|Bx(r)] .

Bx(eor(x))
so that
/ vdvgdv,. NSS/v(x)|BX(r(x))|§dvg(x) (11)
Méo M

for any (t, #)-independent function v. In particular, given u € I:If(MEO). applying (11) to v = |qu|§ +
|ulP gives

/(leu|§+|u|p)dvgdvg[+H ~8’6/(|Vu|§+|u|p)|Bx(r(x))|§dvg (12)
M¢o M
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as &g — 0. In the same way we also have that

/ |u|qdvgdo£0~e’5*1/|u|q|sx(r(x))|$dvg(x) (13)
M

Mg,

as €9 — 0. Plugging (12) and (13) into (10) yields

. _k(@a=p)+p
limsupe™ ¢  S%(p,q) < K(p,q). (14)

e—0

We now prove the converse inequality by analyzing the behaviour as ¢ — 0 of the normalized ex-
tremal of Sé(p, q). Let € € (0, &9). We first assume that q < p,. Then a standard variational argument
gives the existence of a nonnegative function i, € Hf (M®) normalized by [;,,. ¢ dog = =1 which
realizes the infimum in the definition of S¢(p, q). Then

— — — - —p—1- —1)b=4 —_ag—1-
/(Wuag 2(Vilg, Voe)g + 18 ¢e) dvg =“"V T s¥(p, q) f i1l g dog (15)
Mée IME

for every ¢, € HY (M®). In particular, with ¢, = il;, we get
(k=1p

g @ Ss(p,q):f(|Vﬁ5|g+ﬁ€)dv§. (16)
ME

Let u, be the function defined on M?° by u, =iz o R,. In view of (6)—(7), (16) can be rewritten as

({(e/60) IV oue|®, + |Viuel? }%+up)dv dv,.
0 t,0Ue g[J_H xUelgetsen.o & 8et/eg.0 7 gy

M®0

Kk .— k(@=p)+p

=g 1 S°(p,)=0(Q), (17)

where the last equality follows from (14). Since M% = U0<t<50 M is compact and the g;;'s are con-
tinuous, there exists a positive constant C > 0 such that

Cldxdx! > 8t.o(X) = gij(x, t, G)dxi dxi > cdx dx!

in the sense of bilinear forms. Thus

C' 8o (0) > Zet/eg.0 () > C'gro(x) (18)
in the sense of bilinear forms for any (x, 6,t) € Mé0. Hence
p
f ({(8/80)‘2|Vf,eug|§#0 +IVxuel? )2 +ub)dvg = 0(D). (19)
M¢o '
It follows that (u,) is bounded in Hf(MaU). We then deduce the existence of a function u € Hf(MSU)

such that, up to a subsequence, u, — u weakly in Hf(MEO), strongly in L? (M?®°) and in LY(Mg,), and
a.e. In particular, u >0 a.e.
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Since ug — u strongly in LP(M®°) and in L9(M,), we also have that Vu, — Vu weakly in
LP(M?®0). As a consequence, Viug — Vyu and V;gpu, — Vi gu weakly in LP. In particular, in view

of (19),

[Veoul?, dvg <liminf |Veguel?, dvy =0.
’ 8o =0 ’ 8t
M¢o M¢o

(20)

It follows that u does not depend on (¢, 9), i.e. u = u(x). Independently, since g;;(x, &t/&o,0) — gij(x)

as & — 0 uniformly in (x,t,0), and ug — u in LP(M®°), we have that

; p — p
slf}) ugdvgm/goygdvgtlﬁ_ / u dvgdvgb.
Méo Méo

Moreover, since Vyu, — Vyu weakly in LP,

P P — Tl P p
llgﬂ_)l(r)lf/ |qu8|g€[/2019dvgst/goﬁdvgb_llgn_)l(r)lf‘/‘ |qu8|gdvgdvgr+0> / |Vu|gdvgdvgtﬁ.

M?o M?o M?o
Passing to the limit in (17), we obtain
_ k@=p)+p
/ (IVul} +uP)dvgdv,, <liminfefe™ 1 S°(p.q).

Mé0

Since u is (t, #)-independent, we eventually get in view of (11) that

k(g—

[ (9ult ) Ba(rc0)] v < timinfe ™ F 50 .

M

Recalling the normalization of i, (8) with &t = ¢ = u, gives

1—k q _
& fugdcrgodvgm9 =1.

Mg,

Passing to the limit € — 0 and then using the (t, 0)-invariance of u as previously, we obtain

1:88_k / uqdvgdago~/u"|5x(r(x))}é dvg

Mey M
as &y — 0. Inserting this into (21) yields
Vulg 4 uP)|By(r(x))|e dv kg-p)
K(p.q < JuVUls HUDB Tl dvg (oo bepee o
([ U9ISx(r(x)) [ dv g)P/a mir

This together with (14) proves (2) in the subcritical case g < p..

(22)

We now assume that q = p,. The only difficulty in proving (2) in the critical case comparing to
the subcritical one lies in the existence of the u.’s and in their strong convergence to u in LP* (9 M*°).

All the other steps of the proof are identical.
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According to [12] (see also [8]), S¢(p, ps) is attained as soon as

S€(p, px) < K(n, p). (23)

where K(n, p) denotes the best constant for the embedding of Df(Rf{) into LP+(dR;"), namely

- + |Vu|Pdx
R, p)= inf Jr;

—_— > (24)
uelPx IR\ (0}, VueLP (R (faR;f [u|P+ dor)P/P«

The value of K(n, p) is explicitely known (see [8] for p =2 and [6] for the general case p € (1,n)).
According to (14), which is still valid when q = p,, this condition holds for small ¢. This proves
the existence of the u.. We will now prove the strong convergence of u, to u in Hf(MSO) for &g
sufficiently small.

Consider on M® the metric g(x,t,0) = gij(x)dx dx/ + gy (). We have C71g < g < Cg in the
sense of bilinear forms. Hence (u.) is bounded in Hf(MEU, £) and thus converges to some i weakly
in Hf(MSO,f,r) and strongly in LP(M?®0, g). Since LP(M?®,g) = LP(M®°, g) and u, — u strongly in
LP(M*®°, g), we have u = ii. Independently, according to [2], for any 1 > O there exists C, > 0 such

that
p/p«
< f [v[Pxdvg d080>

aMeo

> — 2
< (Ko, p~" +n) /('V”V'ziﬁ'v“’lé)p/ dvgdvg. +Cy / V[P dvgdvg. (25)
M¢o Méo

for every v € Hf(MgO). Using Lions’ concentration-compactness principle [9], we then deduce the
existence of two measures @ and v supported in dM*°, a sequence of points (p;)ic; € 9M®°, and two
sequences of positive real numbers (i4i)ie; and (v;)ic; such that

2 2\p/2 p )
(|Vt,9u5|g[%” + |qug|g) dvgdvg#ﬁ — [ > |Vyul} dvgdvg#ﬁ + Z;ulép,.,
1e
Predvedog, ame =uPdvyd , i8p: (26)
Ug" AVgdOg |ameo — V = U dVgdOg;ameo + ) Vidp;,
iel

VPP <R, p) T Viel,

where the convergence holds in the sense of measures. We consider a point p = p; appearing in
this decomposition with coordinates (xp, €0, 0p), and let s € CZ°(By, (28)) be such that 0 < s < 1,
¥s =1 in By, (8), and ||V{slleo = 0(1/8), where By, (25) C M is the geodesic ball for the metric g
centered at xp of radius 25. We extend s to M® as a (t, 0)-independent function. We rewrite (15)
using (6)-(8) as

-2 - -1
f (|Vu5|£;;g ((e/€0) 2(Ve g, Vt,9¢€)gtiﬁ + (Vxle, VX¢€)get/50,9) +ug ¢€)dvger/so,9 dvgrle
Méo

_ kpx—p)+p

=go& P S%(p, py) / uél?*q‘i’s dog, dvg, ,.
Mg,

where ¢y = @5 o Re. With ¢, = ugs, we get
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p l<(p* p)+p e
Vs Vite [ Vg AV gl — S¢(p, p*) “Ysdog, dvg,
M¢#o

-1
< [ |Vu€|£;g Ue [Va¥slger/eq.o dvg[i_e dVge/eq0-
M¢o
We estimate the right-hand side of this inequality using Holder’s inequality and (17) which gives that
Jueo Vel dvgs dvg,, , = 0(1). We obtain

g k(p* p)+p

2 2 £
/ \lfﬁ{lvt,@u&lg[iﬁ + |qu5 |gg[/g[]_9 } dvgst/eo,H dvgtl.(_) —&o¢€ N (p p*) / uE 5 dGEO dvgs 0
Méo Mg

1
P
<0(1/8)< f ué’dvgfnggs[/go.e))’

supp ¥rs

0

where supp s denotes the support of 5. Since get/e,,0 — g uniformly in Mé® as ¢ - 0, and uy — u
in LP(M¥®0), we can pass to the limit in this equality using (26) to get

/%du—A/%dng(l/a)( / upclvgdvgb)p
JYEN) M¢Eo '

supp ¥s

<0(1/8) /updvg>p, (27)
By, (28)

k(p* p) P

where A =¢gglimg_0&™ S¢(p, p«), which exists up to a subsequence in view of (14), and the
last inequality follows from the fact that u is (t,0)-independent. Remark that

_ k@ * P)+P

lim e

e—0

s¢ (p,psx) >0

since otherwise we would have u; — 0 in H f (M¥#0) according to (17), which contradicts the normal-

ization condition fM ul dog,dvg, , = sg (see (22)). In view of (21), u € Hf(M) and thus u € LP* (M)
€0

with p* =M —k)p/(n —k — p) if p <n —k. Hence in that case

2 .
/ uPdvg<< / u?’ dvg>p By, 26)] 7 =0(1)0(67) = o(s).
Bup 20) By 20

Letting § — 0 in (27) then gives u; < Av;, from which we get using (26) that

n—

ni=A -

n—1

K(n,p)r

s

for any i € I. We now pass to the limit in (17) and obtain

g6 AZp(M®) >y i > AT K, p)7

iel



N. Saintier / . Differential Equations 246 (2009) 2876-2890 2885

i.e. |I|(A*11~<(n,p))gTi < 85_1. Since A = O(gg) < K(n, p) for gy small enough, and k > 1, we must
have [ =, i.e. ug — u strongly in Hf(MEO). As said above, this ends the proof of Theorem 0.1 in the
critical case.

On what concerns the remark (3) about the problem of finding a conformal metric to g with zero
scalar curvature in the interior of M® and constant mean curvature on dM¢, we note that (6)-(8)
gives

(e/€0)¥Is + (g/80)k 1 sto k(x, &)u? dog, AV ger/en

Ae = inf )
ueH?(M#0), u0 on M, ((e/&0)k1 sto [u)?+ dog, d\,gmeoﬁ)z/z*
where
Ip = / ((8/80)_2|V[’9u|2é(9 + |Vx“|§emo.9 +hx, e, 0)ul?)dvg,, , dvg. .
M0
Hence
kimu?|By(r(x))|e dv
limsup e~ *=D1-2/2; < inf Ju \;\/1 [Bx(r®)lg 2gz =0,
e—0 ueh2(M), uz0 (fyy 1|2 |Bx(r(x))|g dvg)2/2+

where the second equality follows by taking u; (x) = nu(n~!

to estimate the inf, for some point y € M and function u € C R, u=£0.
We now prove the theorem when k = n. Using the constant function equal to 1 in the definition
of S°(p,q), we get

exp;l (%)), with n — 0, as a test-function

192 | 1215

- el (28)
982:12/7 198212/

S¥(p, @) <

where £2; = ££2, so that £2; = expy(£2;), and g = exp &. Letting R, :R" — R", R;(x) = x/&, we have

'Q€|§:/ d"(Rg1>*§:£n/ dvgexn ~ "2

2 2

as € — 0, since g(0) =& the Euclidean metric. In the same way,
1082615 ~ e" 082

as € — 0. We can thus rewrite (28) as

@g=p

) _fa=pnep |Q|E
limsupe T S%(p,q) < — Tk
£—0 |ag\§ a

(29)

In the subcritical case q < ps, the standard variational method implies that Sé(p, q) is attained by
some nonnegative function v, € Hf(QS) such that fms ve dog = 1. In the critical case q = p., this

method does not work anymore since the embedding Hf(Qg) < LP+(3£2,) is not compact. However,
according to (29), we have Sé(p, p,) — 0 as ¢ — 0. In particular

S€(p, p») < K(n, p)
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for & > 0 sufficiently small, where K(n, p) is given by (24). It then follows that S¢(p, p,) is attained
by some nonnegative function v, € Hf(Qg) such that faszg vP dog =1 (see for example [5,6]).

We let ¥, and {i, be the functions defined in 2, and §2 respectively by
Ve(x) = ve(expo(®)), x€ 2,
and
o (x) = e Ve(ex), xe£2.
We then have

= p (UED) =~ p (p—q@n—p - P
|ig|Pdvg=¢ @ [VelPdvgsz =€ ¢ [Ve@)|" dvgeye).
Q2 o 2

3

and

(n—=1)p (n—=1)p

/|Vﬁg|ngg=8 7 /}V(f/s(sx)ﬂngg:s 7 /|V178|§zgdv,g;§
2 & &

(—q@n+@-p ~ P
=€ ! ‘VVSlg(x/s) dVg@ye)-
2

&€

Independently, there exists C > 0 such that for every x € £2

C 18 < g(x) < €85 (30)

in the sense of bilinear forms. Thus

/m(x)\pdvg(x/g) <C/|vs(x)!"dvg,

2¢ $2¢
and
/|v\78|g(x/£)dvg(x/5) <C/|V\78|£dv§.
2 2
Hence
-p Vii pd ~ ~pd _<C (pqu)n—p v p ~p dvs
I3 Vit|gdvg + | iz dvg < Ce { v8|g+v€) Vg
2 2 IR
(P=@n—p
— p P\ dv-
=Ce ¢ /(|Vv5|g+vs)dvg
2
(p—@)n—p

=Ce 1 S°(p,q). )
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We then deduce with (29) that (ii;) is bounded in Hf(fZ) and that Vii, — 0 in LP(£2). There thus

exists a nonnegative function il € HY (£2) such that i, — @i weakly in HY (£2), strongly in LP(£2) and
strongly (resp. weakly) in LI(382) if g < p. (resp. g = p,), and a.e. We have

/lVﬁP’dvégliminf/Wﬁg\pdvE:O
e—0
2 Q

according to (31) and (29). Hence i is a nonnegative constant, and i, — i strongly in Hf(fZ). As a
consequence ii; — i strongly in L9(d£2) for any q < p«. To find the value of ii, we write that

1= / vidog = / ﬁgdag:/ﬂgdog(gx)aﬂqwélg
082 992 02

ase—0,ie o= |3f2|;q. Eventually,

. ~p _(m-1p _p @=pin+p ~p
S(p. = | Vdvg=¢" @ ity d"(R;1)*g=8 a Ug dVg(ex),
2e 2 2
which gives
_g=pnp . 2
liminfe™ 52 58 (p. q) > 1P| 3] = ks
e—0

Together with (29), this proves the result.
2. Proof of Theorem 0.2

The proof of Theorem 0.2 is similar to the one of Theorem 0.1 so that we briefly outline it. We
first assume that k <n — 1. In view of (6) and (7), we have

(e/€0)*P1=Vs.(p, q)

_ p
. Jueo (€ /60) 2 (Vegwg, + [Vxtl,, )7 + P dve,, o dvey
= 1n -

ueHP (M?0), u£0 (Syeo lul¥dvg,,,. dvg#ﬁ)P/q
p
< . f fM"U (lVXulgst/goyg + |u|P) dvg£t/£g.9 dVg[Lg
< in :
uEHf(MsO)vL'?éO (IMSO |u|qug“/€0.H dvgtlﬂ)l?/q

Using (11) we then obtain

Vul? + [u|P)|Bx(r(x))|e dv o (x
limsupsk(gq)sg(p,q)g i Ju(IVulg + ulP)|Bx(r(x) |z dvg(x)
£—0 ueH? My, uz0  (fyy U191 Bx(r(x)]e dvg(x)P/d

As in the proof of Theorem 0.1, S¢(p,q), q < p*, is attained by some nonnegative i, € Hf(M"B)
normalized by fMS il dvg = k. We then have
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/ (IVitel 2> (Vite, Voe)g +al ™ ge) dvg = PV, (p, q) / i~ g dvg
Mé Mé

for every ¢, € HY (M?). In particular, with ¢, = i,

9115 (p, q) = / (IVitel} +1z) dvg.
MS

Let u. be the function defined on M® by u, =i, o R,. We then rewrite the previous equality as

b
—2 2 2 2 p
/({(8/80) Veottely, +1Vttelg, o} +uf)dve.,dve
M¢#o

=gkekP/1=Ds, (p,q) = 0(1), (32)

from which we deduce that the u,'s converge to some nonnegative (t,0)-independent u € Hf(MEO)
weakly in Hf(MEO) and strongly in LP (M*°) and L9(M®0) when q < p*. Moreover the normalization
of the il; gives [y u9|Bx(r(x))|gdvg = 1. Passing to the limit & — 0 in (32) and then using (11)
eventually yields
k(g_l)ss(p,q) > inf fM(IVUIfé+|u|p)|3x(T(X))|s dvg(x)
ueH? (M), u0 (S 1ul9]Bx(r(x))|e dv g (x))P/9

)

liminfe
e—0

which ends the proof of Theorem 0.2 in the subcritical case q < p*.
To deal with the critical case g = p*, we introduce the best constant K(n, p) for the embedding of
Df(R”) into LP" (R") namely

. Jn IVUIP dx
Kn,py= inf R
ueCe® (&M, uz0 ( [pn [ulP" dx)P/P

Since S¢(p, p*) = 0(ek=P/P)y = 0(1) < K(n, p), Se(p, p*) is attained by some nonnegative i, €
Hf(MS) normalized as previously (see e.g. [1] or [7]). To get the strong convergence of the u.’s to u
in LP* (M®0), we consider the inequality

. p/p«
(/|v|p dngVg(J}))
Méo

_ 2
< (K, p) 1+r;)/(|vt,9v\§#9+|vxv|§)"/ dvgdv,. +Cy / |v|Pdvgdvg[+0,
M¢o ' M¢Eo

which holds for every v € Hf(MgO) (see [1,7]). We then obtain that

2 2\p/2
(|Vt,9u6‘g#ﬁ + |qu8|g)

N p .
dvgdvgt%g M= | Villg dvgdvg#ﬂ + Z;L,Spi,
iel
p*
ug dvgdvg. —v=uP*dvg dvg + > sy,
iel

vip/p* gl((n,p)_l,ui Viel.
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As in the proof of Theorem 0.1, we obtain w; < Avy; for every i € I, where
A = limg_, o e¥®P/P* =D S, (p, p*). Hence w; > A(A~1K(n, p))"/P. Passing to the limit in (32), we ob-
tain éKA > ", wi, and thus &f > |I[(A"1K (n, p))"/P for any & > 0 with k > 1. It follows that [ =,
and thus that ug — u strongly in Hf(MgO). We can end the proof as previously.

We now assume that k = n. Using the constant function equal to 1, we get

1- — - = 1—
Se(p, @) < ||y P~ eTMP/D| 3 TP/

as € — 0, so that

limsupe"®/4"Vs, (p, q) < |21~ (33)

e—0

As before, S¢(p.q), g < p*, is attained by some nonnegative v, € H‘l’(a’?g) such that ng v dvg =1.
We then consider i (x) = £"/47,(ex), x € §2, where V¢ (x) = Ve (€Xpg (X)), X € Q.. We then have

/ﬁngg:Sn(p/q_])/ngng(x/e),

2 $2¢
and
/ |Vile|} dvg = e"P/a=D+P / Vel dviee).

so that, with (30),

/a—l’(|vag|g +uf)dvg < ce"P/amh /(|v\75|P +vE)dvg < Ce"P/1Ds, (p,q) < C.

2 Qe

We then deduce as above that the ii;’s converge strongly in H f (£2) to some nonnegative constant ii.
In fact il = |S§|g1/q since

1= / Vg dVg =/l~lg dvé(sx) — l~lq|.é|§
foR b
as € — 0. From
Se(p,q) > / vg dV;g — gh(1-p/a) / ﬁé’ d"g(sx) ~ Sn(l—P/Q)ﬁP‘[}k,
Q¢ o
we obtain

liminf&"?/5=Vs, (p, q) > 121,777,

e—0

which ends the proof of Theorem 0.2.
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