
Physics Letters B 715 (2012) 278–281

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 
Contents lists available at SciVerse ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Antigravity and the big crunch/big bang transition

Itzhak Bars a, Shih-Hung Chen b,c, Paul J. Steinhardt d,∗, Neil Turok b

a Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-2535, USA
b Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5, Canada
c Department of Physics and School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1404, USA
d Department of Physics and Princeton Center for Theoretical Physics, Princeton University, Princeton, NJ 08544, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 July 2012
Accepted 31 July 2012
Available online 2 August 2012
Editor: M. Cvetič
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We point out a new phenomenon which seems to be generic in 4d effective theories of scalar fields
coupled to Einstein gravity, when applied to cosmology. A lift of such theories to a Weyl-invariant
extension allows one to define classical evolution through cosmological singularities unambiguously, and
hence construct geodesically complete background spacetimes. An attractor mechanism ensures that, at
the level of the effective theory, generic solutions undergo a big crunch/big bang transition by contracting
to zero size, passing through a brief antigravity phase, shrinking to zero size again, and re-emerging into
an expanding normal gravity phase. The result may be useful for the construction of complete bouncing
cosmologies like the cyclic model.

© 2012 Elsevier B.V. Open access under CC BY license.
Resolving the big bang singularity is one of the central chal-
lenges for fundamental physics and cosmology. At present, there
are diverse views about what form the resolution may take. A com-
mon idea is that the singularity was the beginning of space and
time. In this case, the universe is less than 14 billion years old,
and its large-scale structure must be set in place within the first
fraction of a second. This reasoning points to inflation [1] as the
only rapid means of achieving the observed large-scale conditions;
but then one is also forced to come to grips with the measure
problem, the entropy problem and the fine-tuning problem that
go hand-in-hand with inflation [2]. An alternative idea is that the
big bang was a bounce: a transition from contraction to expansion.
This idea underlies the cyclic model [3], in which the large-scale
structure of the universe is set during an ekpyrotic contraction
phase [4,5], well before the big bang, and then evolves through
a big crunch/big bang transition. One possibility for this bounce
is a non-singular transition, in which the cosmic scale factor a(t)
rebounds at a finite non-zero value [6]. Einstein general relativity
can describe the entire transition, but only at the price of intro-
ducing an energy component capable of violating the null energy
condition, with the risk of undesirable instabilities. Another possi-
bility is a singular bounce [3], in which a(t) shrinks to zero and
immediately rebounds [7–11].
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In this Letter, we present a novel third possibility for the
bounce, involving a brief effective antigravity phase between the
big crunch and the big bang. The purely classical, low-energy ef-
fective Einstein-scalar description we shall present should be taken
only as a first indication of what may be expected when a fun-
damental theory of quantum gravity is applied to cosmological
singularities. Nevertheless, we shall show that an antigravity phase
occurs generically, when we extend geodesically incomplete cos-
mological solutions to geodesically complete solutions of a Weyl-
invariant “lift” of the theory: see Eq. (7). (This approach for con-
structing cosmological solutions [8–11] is inspired by studies of
2T-physics [12,13].)

A case of special significance is when the big crunch is pre-
ceded by an ekpyrotic phase, a period of ultra-slow contraction
with equation-of-state w � 1. During an ekpyrotic phase, as the
universe contracts, the homogeneous and isotropic component,
represented, for example by a scalar field σ rolling down a steep,
negative potential, quickly dominates over the spatial curvature,
matter density or inhomogeneities. In this way, the ekpyrotic phase
smoothes the universe, resolving the cosmic horizon and flatness
problems, and exponentially dilutes the anisotropies, while gener-
ating a nearly scale-invariant spectrum of density perturbations.
The ekpyrotic phase ends at a finite value of the scale factor when
the scalar potential reaches a minimum. The universe continues to
contract but, from this point on, the energy density is dominated
by the scalar field kinetic energy, with a subdominant radiation
component. (Throughout this Letter, “radiation” refers to all forms
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of relativistic matter.) Non-relativistic matter, spatial curvature and
scalar potential energy (or dark energy) can be neglected the rest
of the way to the crunch.

In this Letter, we will take these to be the initial conditions for
our analysis of the big crunch/big bang transition, although more
general cases (with similar results) can be found in Ref. [10]. The
effective action is that for a scalar field minimally coupled to Ein-
stein gravity:

S =
∫

d4x
√−g

[
1

2κ2
R(g) − 1

2
(∂σ )2

]
, (1)

where κ2 ≡ 8πG , with G Newton’s constant. We shall also include
a radiation component, parameterized by a single constant, ρr .
The presence of the scalar field eliminates mixmaster chaos near
the cosmic singularity and ensures that the evolution becomes
smoothly ultralocal, meaning that spatial gradients become dynami-
cally negligible [14]. Although the spatial curvature and anisotropy
diverge as the crunch approaches, they are both overwhelmed by
the scalar field kinetic energy density. Nevertheless, the radiation
and anisotropy will each play an important role, as we shall ex-
plain. We use the Bianchi IX metric as an illustration, discussing
other cases in [10]. At each spatial point, the line element is:

ds2 = a2
E(τ )

(−dτ 2 + ds2
3

)
, (2)

where the Einstein-frame scale factor aE (τ ) is a function of con-
formal time τ and the 3-metric ds2

3 is given by

e−√
8/3κα1dσ 2

z + e
√

2/3κα1
(
e
√

2κα2dσ 2
x + e−√

2κα2dσ 2
y

)
(3)

where dσx,y,z are SU(2) left-invariant one-forms, and α1,2(τ ) pa-
rameterize the anisotropy [10,11]. As aE tends to zero, the dy-
namics simplifies. Terms involving the spatial curvature and scalar
potential are suppressed by powers of aE and, provided V (σ ) is
not too steep, become negligible. The four dynamical degrees of
freedom, aE(τ ),α1,2(τ ) and σ(τ ) obey the equations:

ȧ2
E

a4
E

= κ2

3

[
σ̇ 2 + α̇1

2 + α̇2
2

2a2
E

+ ρr

a4
E

]
, (4)

σ̈ + 2
ȧE

aE
σ̇ = 0, α̈i + 2

ȧE

aE
α̇i = 0, (5)

where dot denotes τ derivative and i = 1,2. Eqs. (4) and (5) follow
from the effective action∫

dτ

(
1

2e

[
− 6

κ2
ȧ2

E + a2
E

(
σ̇ 2 + α̇2

1 + α̇2
2

)] − eρr

)
, (6)

where e(τ ) is the lapse function.
The key to our approach is to “lift” the Einstein-scalar the-

ory described by (1) to one incorporating Weyl-invariance. This is
achieved by adding an extra scalar field and imposing Weyl sym-
metry so the new scalar degree of freedom can locally be gauged
away. The resulting “master” action is:
∫

d4x
√−g

[
1

2

(
(∂φ)2 − (∂s)2) + 1

12

(
φ2 − s2)R

]
, (7)

to which one may add, when needed, terms representing radiation,
the scalar potential and other fields and interactions. This Weyl-
invariant action initially emerged as a 3 + 1-dimensional shadow
of 2T-gravity in 4 + 2 dimensions [8–13]. While the new theory
is obtained from the Einstein-scalar theory by adding only gauge
degrees of freedom, it has an enlarged domain of field space, al-
lowing geodesically incomplete solutions to Einstein gravity to be
extended to geodesically complete solutions.
Specifically, the master action includes two conformally coupled
scalar fields and is invariant under the local gauge transformations
gμν → Ω2(xμ)gμν , φ → Ω−1(xμ)φ and s → Ω−1(xμ)s. The gravi-
tational coupling κ2 is replaced by 6/(φ2 − s2): for this to be pos-
itive, and the theory Weyl-invariant, one of the scalars, namely φ,
must have a wrong sign kinetic energy, potentially making it a
ghost. However, the local Weyl gauge symmetry compensates, thus
ensuring the theory is unitary. The gravitational anomaly in the
trace of the stress–energy tensor cancels because φ and s con-
tribute with opposite signs [15]. In addition, the Lagrangian (7)
possesses a global O (1,1) symmetry, i.e., the symmetry leaving
φ2 − s2 unchanged. We do not expect this symmetry to survive
quantum gravity corrections. However, it is interesting to observe
that in string theory, the low-energy effective action in fact pos-
sesses a closely related, purely classical, global symmetry under
shifts of the dilaton, to lowest order in the string coupling but to
all orders in α′ .

A special role is played, in our analysis, by the variable

χ ≡ κ2

6
(−g)

1
4
(
φ2 − s2), (8)

which is both Weyl- and O (1,1)-invariant and, as we shall see,
analytic at generic cosmological singularities.

We will discuss three gauge choices, in which we denote fields
by the subscripts c, E and γ respectively. In the constant-gauge
(c-gauge), we fix φc = φ0 = const [12]. The last term in (7) now
takes a form similar to that found in supergravity, including the
Kähler potential. The possibility that the coefficient of R might
switch sign was mildly noted in [16,17] but has so far been un-
explored. The c-gauge shows that the phenomena described here,
including effective antigravity, should also be expected in super-
gravity models and indeed, we find solutions to supergravity ex-
hibit this behavior [10].

The Einstein (E-gauge) description (1) is obtained from (7)
by fixing 1

12 (φ2
E − s2

E) = 1/2κ2 > 0, which corresponds to setting

φE = ±(
√

6/κ) cosh(κσ/
√

6 ) and sE = (
√

6/κ) sinh(κσ/
√

6 ). In
this gauge, the vanishing of χ as aE → 0 signifies the vanishing
of the determinant of the metric gE , and the complete failure of
the theory. Likewise, φE and sE typically diverge in E-gauge. How-
ever, in the “lifted” theory, the problem of g ’s vanishing may be
avoided by simply fixing a different conformal gauge, for example
one in which g = −1. In this gauge, which we denote γ -gauge, the
scale factor of the universe is unity, aγ = 1, and φγ and sγ remain
finite in all solutions. In γ -gauge, the master action reads

∫
dτ

(
1

2e

[
−φ̇2

γ + ṡ2
γ + κ2

6

(
φ2

γ − s2
γ

)(
α̇2

1 + α̇2
2

)] − eρr

)
. (9)

The E-gauge variables σ ,aE are given in terms of φγ , sγ as fol-
lows:

a2
E = |χ |, χ ≡ κ2

6

(
φ2

γ − s2
γ

)
, σ =

√
6

2κ
ln

∣∣∣∣φγ + sγ
φγ − sγ

∣∣∣∣. (10)

The cosmic singularity a2
E ∝ φ2

γ − s2
γ = 0 corresponds to the ±45

degree lines in the φγ –sγ plane, which form the “lightcones” in
Fig. 1. The singular solutions to the Friedmann equations ending
in a big crunch or beginning with a big bang correspond to tra-
jectories confined to φ2

γ − s2
γ > 0 on the left and right quadrants

of Fig. 1. The corresponding solutions for φγ and sγ , however, can
pass through all four quadrants [9–11], as shown in Fig. 1(a), in-
cluding regions corresponding to φ2 − s2 < 0, or negative Newton’s
constant; in other words, antigravity.

If the anisotropy is set precisely to zero and the curvature and
potential V (σ ) are non-negligible, the classical solutions typically
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Fig. 1. Trajectories in the φγ –sγ plane for (a) typical solution with no anisotropy;
(b) generic solution with anisotropy, which produces an attractor effect that draws
the trajectories to the origin, φγ = sγ = 0, at the big crunch, through a finite anti-
gravity loop, and out of the origin again in a big bang.

cross the light cone in the φγ –sγ plane at any point, as illustrated
Fig. 1(a). For a special subset of parameters and initial values, the
trajectory passes smoothly from the left quadrant, say, through the
origin φγ = sγ = 0 and onwards to the right quadrant [9–11]. The
universe shrinks to zero size (aE(τ ) = 0) at the singularity and re-
bounds without encountering any region with effective antigravity.
This zero-size bounce does not require any violation of the null
energy condition.

However, when anisotropy is included, no matter how small,
the solutions are qualitatively different. To see this, it is useful to
write the equations of motion (4) and (5) in terms of the canonical
momenta πσ = a2

E σ̇ , π1 = a2
E α̇1, π2 = a2

E α̇2. These are conserved
when the potential V and the curvature are negligible, taking con-
stant values (πσ ,π1,π2) → (pσ , p1, p2). Then the extension of the
Friedmann equation (4) to the full φ–s plane is

χ̇2 = 2κ2

3

(
p2 + 2ρrχ

)
, (11)

where p ≡
√

p2
σ + p2

1 + p2
2. Note that the p2 term, associated

with the scalar kinetic energy and anisotropy, dominates as
χ → 0. Generic solutions, with arbitrarily small but nonvanish-
ing anisotropy, are drawn to the origin, similar to the zero-size
bounces described above. However, instead of passing directly
through the origin to the right gravity region, they first undergo a
finite loop in the upper (or lower) antigravity quadrant before re-
turning to the origin and passing out to the right; see Fig. 1(b). The
special quantity χ , invariant under both Weyl and O (1,1) symme-
tries, obeys a regular equation, (11), and is analytic throughout.

To be precise, the solution for φγ (τ ) and sγ (τ ) is:

κ√
6
(φγ + sγ ) = √

T (p + ρrτ )

∣∣∣∣ τ

T (p + ρrτ )

∣∣∣∣
(p+pσ )/2p

, (12)

κ√ (φγ − sγ ) = 2τ√
∣∣∣∣ τ

∣∣∣∣
−(p+pσ )/2p

(13)

6 T T (p + ρrτ )
Fig. 2. Plots of χ(τ ) and σ(τ ) in a big crunch/big bang transition punctuated by a
brief period of antigravity between τ = τc and τ = 0 (thick portions of the curves).

where τ = κτ/
√

6 and T is an integration constant. Their prod-
uct gives χ(τ ) in both the gravity and antigravity portions of the
trajectory,

χ(τ ) = 2τ (p + ρrτ ), a2
E(τ ) = ∣∣χ(τ )

∣∣, (14)

and their ratio gives σ(τ ) through Eq. (10),

κ√
6
σ(τ ) = pσ

2p
ln

∣∣∣∣ τ

T (p + ρrτ )

∣∣∣∣. (15)

For the αi , the solution is the same as for σ except that pσ and
T are replaced by pi and Ti . The solutions for χ and σ are plot-
ted in Fig. 2. While σ and the αi diverge at the singularities, we
can construct a complete set of quantities which are finite every-
where. Returning to the effective action (6), we observe that near
the singularities the radiation term can, to a first approximation,
be neglected. Setting κα0 ≡ √

3/2 ln |χ | and σ ≡ α3, the master
action (9) becomes that for a massless relativistic particle in a
conformally flat spacetime, with line element χ(−dα2

0 + dα2
1 +

dα2
2 + dα2

3) ≡ χημνdαμdαν . This action is invariant under the
global conformal group O (4,2). As a consequence, when ρr = 0,
there are 15 conserved Noether charges, including the momenta
πμ = χημνα̇

μ/e, angular momenta Mμν = αμπν − ανπμ , dilata-
tion generator D = αμπμ and special conformal generators. These
quantities are all finite at the singularity. Continuing χ analytically
through the singularity (as in (14)), and matching the O (4,2) gen-
erators across it, uniquely determines the solution to be that given
above. In [10], we show that this solution is also selected by mini-
mizing the action, including variations of all parameters describing
the passage through the singularity. It is also the unique solution
which extends to the complex τ -plane.

Note that χ(τ ) ∝ φ2
γ (τ ) − s2

γ (τ ) has two zeroes: one at the

crunch τ = τc = −√
6p/(κρr) and one at the bang τ = 0. In be-

tween, the trajectory passes through a finite effective antigravity
phase (see Fig. 2), during which the scalar kinetic energy and ra-
diation densities contribute with opposite signs in the Friedmann
equation (11). The former redshifts away more rapidly and, when
the two are equal, the scale factor recontracts. The proper time

spent in the antigravity loop is
∫ 0
τc

aE(τ )dτ = √
3π p2/(4κρ

3
2

r ).
We emphasize that our results here are purely classical, based

on extending the Einstein equations in the most natural way con-
sistent with symmetries anticipated from string theory, quantum
gravity and relativity to apply near a big crunch/big bang tran-
sition. As mentioned above, our simple model is not an isolated
case: in models of supergravity coupled to matter [16,17], the ef-
fective gravitational coupling can also become negative, and we
have found analogous solutions with an antigravity phase in su-
pergravity models [10]. The antigravity phase should, we believe,
be taken as a manifestation, within the low-energy effective the-
ory, of new physical phenomena whose detailed interpretation will
require further technical developments. In this sense, it may be
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analogous to the Klein paradox in relativistic quantum mechanics,
which correctly signaled pair production from the vacuum even
before quantum field theory was developed. Although we are still
far from a complete theory of quantum gravity, we may neverthe-
less anticipate progress in understanding the implications of an ef-
fective antigravity phase based on currently available tools. The ob-
vious problem is that spin-2 gravitons (as well as space-dependent
fluctuations in the σ field) have wrong-sign kinetic terms in such
a phase, rendering the vacuum unstable to spontaneous production
of negative energy gravitons and positive energy matter particles.
However, our calculations suggest an interesting backreaction: the
production of massive particles results in a matter density that
overtakes the radiation density during the antigravity phase and
tends to shorten the duration of the antigravity loop. This suggests
a natural mechanism for cutting off the instability and at the same
time producing an enhanced radiation density when the universe
emerges in a big bang. A complete picture also requires inclusion
of quantum gravity effects. We have performed an analysis based
on the Wheeler–de Witt equation, in the ultralocal limit, and found
the same antigravity phase. To study similar phenomena in string
theory, including α′ corrections, we are investigating a Weyl-lifted
version of string theory. Calculations of particle production and the
evolution of classical perturbations across the bounce will also be
presented elsewhere [10].
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