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Abstract

We present new static axially symmetric solutions of SU(2) Yang–Mills–Higgs theory, representing chains of monopoles
antimonopoles in static equilibrium. They correspond to saddlepoints of the energy functional and exist both in the topo
trivial sector and in the sector with topological charge one.
 2003 Elsevier B.V. Open access under CC BY license.
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1. Introduction

Magnetic monopole solutions are a generic p
diction of grand unified theories. Such solutions p
sess a topological charge proportional to their m
netic charge. In Yang–Mills–Higgs (YMH) theor
with gauge group SU(2) the simplest solution with
unit topological charge is the spherically symmet
’t Hooft–Polyakov monopole [1,2]. SU(2) monopoles
with higher topological charge cannot be spherica
symmetric [3] and possess at most axial symme
[4–7].

In the Bogomol’nyi–Prasad–Sommerfield (BP
limit of vanishing Higgs potential spherically symme
ric monopole and axially symmetric multimonopo
solutions, which satisfy the first order Bogomol’n
equations [8] as well as the second order field eq
tions, are known analytically [5–7,9]. For these so
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tions all zeros of the Higgs field are superimposed
a single point. Multimonopole solutions of the Bog
mol’nyi equations which do not possess any rotatio
symmetry [10], have recently been constructed num
ically [11]. In these solutions the zeros of the Hig
field are no longer all superimposed at a single po
but are located at several isolated points.

As shown by Taubes, in each topological sec
there exist in addition smooth, finite energy solutio
of the second order field equations, which do not s
isfy the Bogomol’nyi equations [12]. Consequent
the energy of these solutions exceeds the Bogomo
bound. The simplest such solution resides in the to
logically trivial sector and forms a saddlepoint of t
energy functional [13]. It possesses axial symme
and the two zeros of its Higgs field are located sy
metrically on the positive and negativez-axis. This so-
lution corresponds to a monopole and antimonopol
static equilibrium [14,15].

In this Letter we present new axially symmet
saddlepoint solutions, where the Higgs field vanis
atm> 2 isolated points on the symmetry axis. The
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configurations represent chains of monopoles
antimonopoles, in alternating order. Chains with
equal number of monopoles and antimonopoles,m=
2k, reside in the topologically trivial sector, where
chains withk + 1 monopoles andk antimonopoles
reside in the sector with topological charge one.

After briefly reviewing SU(2) Yang–Mills–Higgs
theory in Section 2, we discuss the axially symme
ansatz in Section 3 together with the boundary c
ditions. We present the numerical results in Sectio
and our conclusions in Section 5.

2. Yang–Mills–Higgs theory

The Lagrangian of SU(2) Yang–Mills–Higgs the-
ory is given by

(1)

−L=
∫ {

1

2
Tr

(
FµνF

µν
) + 1

4
Tr

(
DµΦD

µΦ
)

+ λ

8
Tr

[(
Φ2 − η2)2]}

d3r,

with su(2) gauge potentialAµ = Aaµτ
a

2 , field strength
tensorFµν = ∂µAν − ∂νAµ + ie[Aµ,Aν], and co-
variant derivative of the Higgs fieldDµΦ = ∂µΦ +
ie[Aµ,Φ]. e denotes the gauge coupling constantη
the vacuum expectation value of the Higgs field anλ
the strength of the Higgs selfcoupling.

The field equations are derived from the Lagrang
as the variational equations with respect to the ga
potential and the Higgs field,

(2)DµF
µν − 1

4
ie[Φ,DνΦ] = 0,

(3)DµD
µΦ − λ

(
Φ2 − η2)Φ = 0.

3. Ansatz and boundary conditions

We parametrize the gauge potential and the Hi
field by the ansatz

(4)

Aµ dx
µ =

(
K1

r
dr + (1−K2) dθ

)
τϕ

2e

− sinθ

(
K3
τ
(m)
r

2e
+ (1−K4)

τ
(m)
θ

2e

)
dϕ,
(5)Φ =Φ1τ
(m)
r +Φ2τ

(m)
θ ,

which generalizes the axially symmetric ansatz e
ployed in [14,15] for the monopole–antimonopolep
solution. Here the su(2)matricesτ (m)r , τ (m)θ , andτϕ are
defined as

τ (m)r = sin(mθ)τρ + cos(mθ)τz,

τ
(m)
θ = cos(mθ)τρ − sin(mθ)τz,

τϕ = −sinϕτx + cosϕτy,

whereτρ = cosϕτx + sinϕτy , andm is an integer to
which we refer asθ winding number.

The profile functionsK1–K4 andΦ1, Φ2 depend
on the coordinatesr and θ , only. With this ansatz
the general field equations (2) and (3) reduce to
PDEs in the coordinatesr andθ . The ansatz possess
a residual U(1) gauge symmetry. To fix the gaug
we impose the conditionr∂rK1 − ∂θK2 = 0. For
convenience we change to dimensionless coordin
by rescalingr → r/(eη) andΦ → ηΦ.

To obtain regular solutions with finite energy a
energy density we have to impose appropriate bou
ary conditions. Regularity at the origin requires

K1(0, θ)= 0, K2(0, θ)= 1,

K3(0, θ)= 0, K4(0, θ)= 1,

sin(mθ)Φ1(0, θ)+ cos(mθ)Φ2(0, θ)= 0,

∂r
[
cos(mθ)Φ1(r, θ)− sin(mθ)Φ2(r, θ)

]∣∣
r=0 = 0.

To obtain the boundary conditions at infinity w
require that solutions in the vacuum sector (m = 2k)
tend to a gauge transformed trivial solution,

Φ → UτzU
†, Aµ → i∂µUU

†,

and that solutions in the sector with unit topologic
charge (m= 2k + 1) tend to

Φ → UΦ(1)∞ U†, Aµ → UA(1)µ∞U† + i∂µUU
†,

where

Φ(1)∞ = τ (1)r , A(1)µ∞ dxµ = τϕ

2
dθ − sinθ

τ
(1)
θ

2
dϕ

is the asymptotic solution of a monopole, andU =
exp{−ikθτϕ}, both for even and oddm. Consequently
solutions with evenm have vanishing magnetic charg
whereas solutions with oddm possess unit magnet
charge.
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In terms of the functionsK1–K4, Φ1 andΦ2 these
boundary conditions read

(6)K1 → 0, K2 → 1−m,

K3 → cosθ − cos(mθ)

sinθ
m odd,

(7)K3 → 1− cos(mθ)

sinθ
m even,

(8)K4 → 1− sin(mθ)

sinθ
,

(9)Φ1 → 1, Φ2 → 0.

Regularity on thez-axis requires

K1 =K3 =Φ2 = 0,

∂θK2 = ∂θK4 = ∂θΦ1 = 0,

for θ = 0 and θ= π .

4. Results

We have constructed numerically axially symm
ric solutions of the Yang–Mills–Higgs theory in th
BPS limitλ= 0 for θ winding number 1�m� 6.

Thesem-chains possessm nodes of the Higgs
field on thez-axis. Due to reflection symmetry, ea
node on the negativez-axis corresponds to a nod
on the positivez-axis. The nodes of the Higgs fie
are associated with the location of the monopoles
antimonopoles. For oddm (m = 2k + 1) the Higgs
field possessesk nodes on the positivez-axis and one
node at the origin. The node at the origin correspo
to a monopole ifk is even and to an antimonopole
k is odd. For evenm (m= 2k) there is no node of th
Higgs field at the origin.

The m = 1 solution is the well-known ’t Hooft–
Polyakov monopole [1,2]. Them = 3 (M–A–M) and
m= 5 (M–A–M–A–M) chains represent saddlepoin
with unit topological charge. Them = 2 chain is
identical to the monopole–antimonopole (M–A) p
discussed in [14,15]. The M–A pair as well as t
m = 4 (M–A–M–A) andm = 6 (M–A–M–A–M–A)
chains form saddlepoints in the vacuum sector.

In Table 1 we present the dimensionless ene
E/4πη, the dimensionless magnetic dipole momenµ
and the nodeszi of the Higgs field for the solution
with θ winding number 1�m� 6.
Table 1
The dimensionless energy, the dipole momentµ, the estimated

dipole momentµ(m)est , and the nodeszi are given for them-chains
with m= 1, . . . ,6

m E[4πη] µ µest zi

1 1.00 0.0 0.0 0.0
2 1.70 4.72 4.18 ±2.09
3 2.44 0.0 0.0 0.0 ±4.67
4 3.12 9.86 9.21 ±2.39 ±6.99
5 3.78 0.0 0.0 0.0 ±4.79 ±9.61
6 4.40 16.06 15.40 ±2.46 ±7.57 ±12.63

We observe that the energyE(m) of anm-chain is
always smaller than the energy ofm single monopoles
or antimonopoles (with infinite separation betwe
them), i.e.,E(m) < E∞ = 4πηm. On the other hand
E(m) exceeds the minimal energy bound given by
Bogolmol’nyi limit Emin/4πη = 0 for evenm, and
Emin/4πη= 1 for oddm. We observe an (almost) lin
ear dependence of the energyE(m) on m. This can
be modelled by taking into account only the ene
of m single (infinitely separated) monopoles and
next-neighbour interaction between monopoles
antimonopoles on the chain. Defining the inter
tion energy as the binding energy of the monopo
antimonopole pair,

$E = 2(4πη)−E(2),

we obtain as energy estimate for them-chain

E
(m)
est /4πη=m+ (m− 1)$E/4πη.

In Fig. 1 we show this estimate for the energ
E
(m)
est /4πη, together with the exact energy for chai

with θ winding numberm = 1, . . . ,6. We note that
the deviation of the estimated energy from the ex
energy is indeed very small.

In Table 2 we list the possible decompositio
of the m-chains into subchains of smaller leng
together with the total energy of the subchains
infinite separation). We observe that the energetic
most favourable state is them-chain. This support
our interpretation of them-chain as an equilibrium
state ofm monopoles and antimonopoles. We no
however, that there are other possible decomposit
not included in Table 2. For example, the M–A–M–
chain could be decomposed into a pair of a charg
multimonopole and a charge−2 antimultimonopole.
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Fig. 1. The exact energy (asterisks) and the estimate for the en
(crosses) are shown for chains withm = 1, . . . ,6. The solid line

demonstrates the linear dependence ofE
(m)
est onm.
To define the magnetic dipole moment for solutio
with evenm, we first transform to a gauge whe
the Higgs field is constant at infinity,Φ = τz. From
the asymptotic expansion [16], we obtainK3 → (1 −
cos(mθ))/sin(θ) + C3 sinθ/r. Thus the gauge field
assumes the asymptotic form

(10)Aµ dx
µ = C3

sin2 θ

2r
τz dϕ,

from which we read off the (dimensionless) magne
dipole momentµ = C3. Solutions with oddm have
vanishing magnetic dipole moment, since in this c
the function K3 is odd under the transformatio
z ↔ −z. Consequently, the asymptotic form of t
gauge potential cannot contain terms like the r.h.s
Eq. (10).

The magnetic dipole moment also increases w
increasingm, as seen in Table 1. To obtain an estim
for the dipole moment we consider the magne
charges as point charges located at the nodes o
Table 2
The decompositions of them-chains into subchains and their energies are given form= 1, . . . ,6

m Chain E[4πη] Decomposition E[4πη]
2 M–A E(2) = 1.70 (M)+ (A) 2E(1) = 2.00

3 M–A–M E(3) = 2.44
(M–A) + (M)
(M) + (A) + (M)

E(2) +E(1) = 2.7
3E(1) = 3.00

4 M–A–M–A E(4) = 3.12

(M–A) + (M–A)
(M–A–M) + (A)
(M–A) + (M) + (A)
(M) + (A) + (M) + (A)

2E(2) = 3.40
E(3) +E(1) = 3.44
E(2) + 2E(1) = 3.70
4E(1) = 4.00

5 M–A–M–A–M E(5) = 3.78

(M–A–M–A) + (M)
(M–A–M) + (A–M)
(M–A) + (M–A) + (M)
(M–A–M) + (A) + (M)
(M–A) + (M) + (A) + (M)
(M) + (A) + (M) + (A) + (M)

E(4) +E(1) = 4.12
E(3) +E(2) = 4.14
2E(2) +E(1) = 4.40
E(3) + 2E(1) = 4.44
E(2) + 3E(1) = 4.7
5E(1) = 5.00

6 M–A–M–A–M–A E(6) = 4.40

(M–A–M–A–M) + (A)
(M–A–M–A) + (M–A)
(M–A–M) + (A–M–A)
(M–A) + (M–A) + (M–A)
(M–A–M–A) + (M) + (A)
(M–A–M) + (A–M) + (A)
(M–A) + (M–A) + (M) + (A)
(M–A–M) + (A) + (M) + (A)
(M–A) + (M) + (A) + (M) + (A)
(M) + (A) + (M) + (A) + (M) + (A)

E(5) +E(1) = 4.78
E(4) +E(2) = 4.82
2E(3) = 4.88
3E(2) = 5.10
E(4) + 2E(1) = 5.12
E(3) +E(2) +E(1) = 5.14
2E(2) + 2E(1) = 5.40
E(3) + 3E(1) = 5.44
E(2) + 4E(1) = 5.70
6E(1) = 6.00
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Higgs field, yielding

µ
(m)
est =

∑
i=1,m

ziPi,

with chargesPi = 1 for monopoles andPi = −1
for antimonopoles, respectively. For comparison
estimated magnetic dipole moments are also give
Table 1. The deviation from the exact values is on
order of 10%.

Concerning the nodes of the Higgs field we obse
that the distances between the nodes increase
increasingm. Remarkably, the distances between
nodes do not vary much within a chain. For examp
denoting the location of the nodes byzi in decreasing
order we find for the chain withθ winding number
m= 6 from Table 1,|z1 − z2| ≈ 5.06,|z2 − z3| ≈ 5.11
and|z3 − z4| ≈ 4.92.

In Fig. 2 we present the dimensionless ene
density for the solutions withθ winding number
m = 1, . . . ,6. The energy density of them-chain
possessesmmaxima on thez-axis, and decreases wi
increasingρ. The locations of the maxima are clo
to the nodes of the Higgs field, which are indicat
by asterisks. For a givenm the maxima are of simila
magnitude, but their height decreases with increas
m. (Note that the scale for them = 1 solution is
different compared to them� 2 solutions, and that th
contour lines are distorted due to the different sca
of theρ- andz-axis.)

5. Conclusion

We have obtained new static axially symmetric
lutions of the SU(2) Yang–Mills–Higgs theory which
represent monopole–antimonopole chains. They
characterized by theθ winding numberm, which
equals the number of nodes of the Higgs field, a
the total number of monopoles and antimonopo
Solutions with evenm carry no magnetic charge b
possess a non-vanishing magnetic dipole mom
whereas solutions with oddm carry unit magnetic
charge but possess no magnetic dipole moment.
energy of thesem-chains increases (almost) linear
with m.

We interpret them-chains as equilibrium state
of m monopoles and antimonopoles. As shown lo
ago [17], the force between monopoles is giv
by twice the Coulomb force when the charges
unequal, and vanishes when the charges are e
provided the monopoles are at large distances. T
monopoles and antimonopoles can only be in st
equilibrium, if they are close enough to experienc
repulsive force that counteracts the attractive Coulo
force. In other words,m-chains are essentially non
BPS solutions. To see this in another way let us rew
the energy in the form

(11)

E =
∫ {

1

4
Tr

(
(εijkFij ±DkΦ)

2)

∓ 1

2
εijk Tr(FijDkΦ)

}
d3r.

The second term is proportional to the topologi
charge and vanishes whenm is even. The first term
is just the integral of the square of the Bogolmol’n
equations. Thus, for evenm the energy is a measu
for the deviation of the solution from selfduality.

So far we have considered only solutions in the v
uum sector or the sector with unit topological char
Generalizing the ansatz toϕ winding numbern > 1
leads to new solutions, which carry topological cha
n if m is odd, and to solutions in the vacuum sec
if m is even [18]. Recently, then= 2,m= 2 solution
has been constructed in an extended model [19], w
includes the YMH theory as a special case. Chain
n = 2 multimonopoles and antimultimonopoles w
be presented elsewhere [18]. Forn > 2 a new phenom
enon occurs. The zeros of the Higgs field no lon
form a set of isolated points. Instead the Higgs fi
vanishes on rings around thez-axis [18]. (For oddm
the node at the origin persists.)

Dyonic solutions can be readily obtained from t
m-chains [16,20], as outlined in [21,22]. Interesting
these solutions carry electric charge even for soluti
in the vacuum sector.

When the gravitational interaction is included, w
anticipate a different behaviour form-chains with fi-
nite magnetic charge and those with vanishing m
netic charge. For magnetically charged solutions a
generate horizon may form at a critical value of t
gravitational parameter, as observed for monop
[23] and multimonopoles [24]. On the other hand,
formation of a horizon was found for the gravitatin
monopole–antimonopole pair [25].

We expect that solutions analogous to them-chains
exist in Weinberg–Salam theory [26–28], generaliz
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Fig. 2. The dimensionless energy density is shown as function ofρ andz for m= 1, . . . ,6. The asterisks indicate the nodes of the Higgs field.
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the sphaleron–antisphaleron pair [27]. The axia
symmetric ansatz withϕ winding numbern and θ
winding numberm [28] allows for (multi)sphaleron–
anti(multi)sphaleron chains and solutions with rings
zeros.
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