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Abstract

We present new static axially symmetric solutions of $rang—Mills—Higgs theory, representing chains of monopoles and
antimonopoles in static equilibrium. They correspond to saddlepoints of the energy functional and exist both in the topologically
trivial sector and in the sector with topological charge one.

0 2003 Elsevier B.V. Open access under CC BY license.

1. Introduction tions all zeros of the Higgs field are superimposed at
a single point. Multimonopole solutions of the Bogo-
mol’nyi equations which do not possess any rotational

Magnetic monopole solutions are a generic pre- v 101 h v b ructed
diction of grand unified theories. Such solutions pos- symme ry [10], have recently been constructed numer-

sess a topological charge proportional to their mag- |f:ally [11]. In these solution; the zeros of Fhe Higgs
netic charge. In Yang-Mills—Higgs (YMH) theory field are no longer all supenmposed_at a single point
with gauge group S(2) the simplest solution with but are located at several |§0Iated points. .

unit topological charge is the spherically symmetric AS Show_” by jl'gubes, o ea_ch topological se_ctor
't Hooft—Polyakov monopole [1,2]. S2) monopoles there exist in addltlor_I smooth, _f|n|te energy solutions
with higher topological charge cannot be spherically of the second order field equations, which do not sat-

symmetric [3] and possess at most axial symmetry isfy the Bogomol'nyi equations [12]. ConsequentI’y, .
[4-7]. the energy of these solutions exceeds the Bogomol'nyi

bound. The simplest such solution resides in the topo-
logically trivial sector and forms a saddlepoint of the
energy functional [13]. It possesses axial symmetry,
and the two zeros of its Higgs field are located sym-
metrically on the positive and negatiyexis. This so-
lution corresponds to a monopole and antimonopole in
static equilibrium [14,15].

In this Letter we present new axially symmetric
 E-mail address Kleihaus@marvin.physik.uni-oldenburg.de saddlepoint solutions, where the Higgs field vanishes
(B. Kleihaus). atm > 2 isolated points on the symmetry axis. These

In the Bogomol'nyi—-Prasad—Sommerfield (BPS)
limit of vanishing Higgs potential spherically symmet-
ric monopole and axially symmetric multimonopole
solutions, which satisfy the first order Bogomol'nyi
equations [8] as well as the second order field equa-
tions, are known analytically [5-7,9]. For these solu-
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configurations represent chains of monopoles and cb:qﬁlr,(m)+q§2r9(’"),

antimonopoles, in alternating order. Chains with an
equal number of monopoles and antimonopates;

2k, reside in the topologically trivial sector, whereas
chains withk + 1 monopoles and antimonopoles
reside in the sector with topological charge one.

After briefly reviewing SU2) Yang—Mills—Higgs
theory in Section 2, we discuss the axially symmetric
ansatz in Section 3 together with the boundary con-
ditions. We present the numerical results in Section 4
and our conclusions in Section 5.

2. Yang-Mills-Higgstheory

The Lagrangian of S{2) Yang—Mills—Higgs the-
ory is given by

—L= /{%Tr(F,wF“”) + %Tr(DuqﬁD“qﬁ)

T~ )] }dSr, (1)
with su2) gauge potentialt, = A”TT, field strength
tensor F,,, = 9, A, — 0,A, + ie[A,, Ay], and co-
variant derivative of the Higgs field,® = 9,9 +
ie[A,, @]. e denotes the gauge coupling constant,
the vacuum expectation value of the Higgs field and
the strength of the Higgs selfcoupling.

The field equations are derived from the Lagrangian

B. Kleihaus et al. / Physics Letters B 570 (2003) 237-243

®)

which generalizes the axially symmetric ansatz em-
ployed in [14,15] for the monopole—antimonopole pair
solution. Here the s@) matricesr™ re(”’), andz, are
defined as

" = sin(m)t, + cosmo) .,
7™ = cogmé)z, — sin(mé)z,,
Ty = —SiNQT, + COSPTy,

wheret, = cospt, + singt,, andm is an integer to
which we refer a® winding number.

The profile functionsk1—K4 and @1, @, depend
on the coordinates and 6, only. With this ansatz
the general field equations (2) and (3) reduce to six
PDEs in the coordinatesandf. The ansatz possesses
a residual W1l) gauge symmetry. To fix the gauge
we impose the conditiomd, K13 — dgK2 = 0. For
convenience we change to dimensionless coordinates
by rescaling: — r/(en) and® — no.

To obtain regular solutions with finite energy and
energy density we have to impose appropriate bound-
ary conditions. Regularity at the origin requires

K1(0,6)=0,  K2(0,0)=1,

K3(0,0)=0,  K4(0,0)=1,

sin(m)®1(0, 0) + cogmO)P2(0, ) =0,

3 [cogmO) ®1(r, 6) — sin(mO) D2(r, 0)]|,_, = 0.

as the variational equations with respect to the gauge To obtain the boundary conditions at infinity we

potential and the Higgs field,

1
Dy F" — Jiel®, D'®] =0, 2)

D, D"® — 1(®? — n?)® =0. @)

3. Ansatz and boundary conditions

We parametrize the gauge potential and the Higgs
field by the ansatz

K
Ay dxt = (-1 dr+(1— K2)d6> L
r 2e

(m)
Ty
+(1- K4)—>d<p,
2e

4

7
—sind| K3 !
2

4

require that solutions in the vacuum sectar £ 2k)
tend to a gauge transformed trivial solution,

®»->Ur U, A,—idUU",

and that solutions in the sector with unit topological
charge fn = 2k + 1) tend to

»—->UoPut,  A,—>UAB U +is,UUT,

where

(€3]

T . T
oD =7 AD gyt = E“’ do — sm@"T do

JLOO

is the asymptotic solution of a monopole, abtid=
exp{—ik0t,}, both for even and odet. Consequently,
solutions with evem have vanishing magnetic charge,
whereas solutions with od@ possess unit magnetic
charge.
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In terms of the function&1—K4, @1 and®; these
boundary conditions read

K1— 0, Ko—1—m, (6)
cosd — cogmo
K3 — —E(m) m odd
siné
1—co9gmo)
K - eve 7
37— m even (7
sin(mo)
K 1-— , 8
47 sing (®)
D1 — 1, Do — 0. 9)

Regularity on the-axis requires
K1=K3z3=9,=0,

09 K2 =09Ka=109®P1 =0,

foro6 =0and 6=r.

4. Results

We have constructed numerically axially symmet-
ric solutions of the Yang—Mills—Higgs theory in the
BPS limitA = 0 for & winding number X m < 6.

Thesem-chains possess: nodes of the Higgs
field on thez-axis. Due to reflection symmetry, each
node on the negative-axis corresponds to a node
on the positivez-axis. The nodes of the Higgs field
are associated with the location of the monopoles and
antimonopoles. For odeéh (m = 2k + 1) the Higgs
field possesses nodes on the positive-axis and one
node at the origin. The node at the origin corresponds
to a monopole ifk is even and to an antimonopole if
k is odd. For evem: (m = 2k) there is no node of the
Higgs field at the origin.

The m = 1 solution is the well-known 't Hooft—
Polyakov monopole [1,2]. Thes = 3 (M-A-M) and
m =5 (M—A-M—A-M) chains represent saddlepoints
with unit topological charge. The: = 2 chain is
identical to the monopole—antimonopole (M-A) pair
discussed in [14,15]. The M-A pair as well as the
m =4 (M—A-M-A) andm = 6 (M—A—-M-A-M-A)
chains form saddlepoints in the vacuum sector.

In Table 1 we present the dimensionless energy
E /4w n, the dimensionless magnetic dipole moment
and the nodes; of the Higgs field for the solutions
with 6 winding number < m < 6.
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Table 1
The dimensionless energy, the dipole momgantthe estimated

dipole momenwé";t), and the nodes; are given for then-chains

withm=1,..., 6

m El4mn] M Hest Zi

1 1.00 00 0.0 0.0

2 170 472 418 +2.09

3 244 00 0.0 0.0 +4.67

4 312 986 921 +2.39 +6.99

5 378 00 0.0 0.0 +4.79 +9.61

6 4.40 1606 1540 +2.46 +7.57 +1263

We observe that the enerds/™ of anm-chain is
always smaller than the energymfsingle monopoles
or antimonopoles (with infinite separation between
them), i.e.,E"™ < E,, = 4rnym. On the other hand
E™ exceeds the minimal energy bound given by the
Bogolmol'nyi limit Emin/47n = 0 for evenm, and
Emin/4mn = 1 for oddm. We observe an (almost) lin-
ear dependence of the ener@y™ on m. This can
be modelled by taking into account only the energy
of m single (infinitely separated) monopoles and the
next-neighbour interaction between monopoles and
antimonopoles on the chain. Defining the interac-
tion energy as the binding energy of the monopole—
antimonopole pair,

AE =2(47n) — E@,

we obtain as energy estimate for thechain
ES jan =m + (m — )AE /4.

In Fig. 1 we show this estimate for the energy,

Eé’gt)/4nn, together with the exact energy for chains
with 6 winding numberm =1, ...,6. We note that
the deviation of the estimated energy from the exact
energy is indeed very small.

In Table 2 we list the possible decompositions
of the m-chains into subchains of smaller length
together with the total energy of the subchains (at
infinite separation). We observe that the energetically
most favourable state is the-chain. This supports
our interpretation of then-chain as an equilibrium
state ofm monopoles and antimonopoles. We note,
however, that there are other possible decompositions
not included in Table 2. For example, the M—A-M-A-
chain could be decomposed into a pair of a charge 2
multimonopole and a charge2 antimultimonopole.
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1 2 3 4 5 6
m

To define the magnetic dipole moment for solutions
with evenm, we first transform to a gauge where
the Higgs field is constant at infinitgp = t,. From
the asymptotic expansion [16], we obtdiz — (1 —
cogm#h))/sin(®) + Czsind/r. Thus the gauge field
assumes the asymptotic form

Sinf 6

r

Apdx"=C3 7, dg, (10)

from which we read off the (dimensionless) magnetic
dipole momenty = C3. Solutions with oddn have
vanishing magnetic dipole moment, since in this case
the function K3 is odd under the transformation
z < —z. Consequently, the asymptotic form of the

Fig. 1. The exact energy (asterisks) and the estimate for the energy gauge potential cannot contain terms like the r.h.s. of

(crosses) are shown for chains with=1,...,6. The solid line
demonstrates the linear dependencé?b;ft) onm.

Eq. (10).

The magnetic dipole moment also increases with
increasingn, as seen in Table 1. To obtain an estimate
for the dipole moment we consider the magnetic
charges as point charges located at the nodes of the

Table 2
The decompositions of the-chains into subchains and their energies are givemferl, ..., 6
m Chain E[47n] Decomposition E[47n]
2 M-A E@ =170 (M) + (A) 2ED =2.00
M-A) + (M) E@4+EDM=27
3 M-A-M E® =244 (
(M) + (A) + (M) 3EM =3.00
(M-A) + (M-A) 2E@ =340
M—-A—M) + (A) E® +ED =344
4 M-A-M-A E® =312 (
3 (M-A) + (M) + (A) E® 426D 370
(M) + (A) + (M) + (A) 4EM = 4.00
(M=A-M-A) + (M) E@+ED =412
(M=A—=M) + (A-M) E® +E@ =414
M—A) + (M=A) + (M) 2E@ + EMW =4.40
5 M—A-M—-A-M E® =378 (
(M=A—M) + (A) + (M) E® + 28D =444
(M=A) + (M) + (A) + (M) E@ 4+3ED =47
(M) + (A) + (M) + (A) + (M) 5EM =500
(M—A-M-A-M) + (A) E® +ED =478
(M=A-M-A) + (M—A) E®+E® =482
(M=A—M) + (A—M—A) 2E® =488
(M=A) + (M=A) + (M-A) 3E@ =510
5 MA_MA_M_A E© _ 440 (M-A-M-A) + (M) + (A) E® +2EW =512

(M=A-M) + (A-M) + (A)
(M=A) + (M-A) + (M) + (A)
(M=A-M) + (A) + (M) + (A)
(M=A) + (M) +(A) + (M) + (A)
(M) +(A) + (M) + (A) + (M) + (A)

E®@+E@ 4+ ED =514
2E@ 4 2EM =540

E® 43D =544

E@ 44D =570

6ED =6.00
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Higgs field, yielding

nest = Z zi Pi,
i=1m
with chargesP; = 1 for monopoles andP; = —1

for antimonopoles, respectively. For comparison the
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by twice the Coulomb force when the charges are
unequal, and vanishes when the charges are equal,
provided the monopoles are at large distances. Thus,
monopoles and antimonopoles can only be in static
equilibrium, if they are close enough to experience a
repulsive force that counteracts the attractive Coulomb

estimated magnetic dipole moments are also given in force. In other words-chains are essentially non-

Table 1. The deviation from the exact values is on the
order of 10%.

Concerning the nodes of the Higgs field we observe
that the distances between the nodes increase withE =

increasingn. Remarkably, the distances between the
nodes do not vary much within a chain. For example,
denoting the location of the nodes byin decreasing
order we find for the chain wit® winding number

m =6 from Table 1]z1 — z2| #5.06,|z2 — z3] & 5.11
and|z3 — z4| =~ 4.92.

In Fig. 2 we present the dimensionless energy
density for the solutions with¥ winding number
m=1,...,6. The energy density of the-chain
possesses maxima on the-axis, and decreases with
increasingp. The locations of the maxima are close
to the nodes of the Higgs field, which are indicated
by asterisks. For a givenn the maxima are of similar

BPS solutions. To see this in another way let us rewrite
the energy in the form

1
/{ZTr((gi,/kFij + Dk<1§)2)

T %g,-jk Tr(F;; Dkq§)}d3r. (11)
The second term is proportional to the topological
charge and vanishes when is even. The first term
is just the integral of the square of the Bogolmol'nyi
equations. Thus, for even the energy is a measure
for the deviation of the solution from selfduality.

So far we have considered only solutions in the vac-
uum sector or the sector with unit topological charge.
Generalizing the ansatz tp winding numbem > 1
leads to new solutions, which carry topological charge
n if m is odd, and to solutions in the vacuum sector

magnitude, but their height decreases with increasing if m is even [18]. Recently, the = 2, m = 2 solution

m. (Note that the scale for the: = 1 solution is
different compared to the > 2 solutions, and that the
contour lines are distorted due to the different scaling
of the p- andz-axis.)

5. Conclusion

We have obtained new static axially symmetric so-
lutions of the SWY2) Yang—Mills—Higgs theory which

has been constructed in an extended model [19], which
includes the YMH theory as a special case. Chains of
n = 2 multimonopoles and antimultimonopoles will
be presented elsewhere [18]. ot 2 a new phenom-
enon occurs. The zeros of the Higgs field no longer
form a set of isolated points. Instead the Higgs field
vanishes on rings around theaxis [18]. (For oddn
the node at the origin persists.)

Dyonic solutions can be readily obtained from the
m-chains [16,20], as outlined in [21,22]. Interestingly,

represent monopole—antimonopole chains. They arethese solutions carry electric charge even for solutions

characterized by the® winding numberm, which

equals the number of nodes of the Higgs field, and
the total number of monopoles and antimonopoles.

Solutions with evenn carry no magnetic charge but

in the vacuum sector.

When the gravitational interaction is included, we
anticipate a different behaviour fat-chains with fi-
nite magnetic charge and those with vanishing mag-

possess a non-vanishing magnetic dipole moment, netic charge. For magnetically charged solutions a de-

whereas solutions with odg: carry unit magnetic

generate horizon may form at a critical value of the

charge but possess no magnetic dipole moment. Thegravitational parameter, as observed for monopoles

energy of thesen-chains increases (almost) linearly
with m.

We interpret them-chains as equilibrium states
of m monopoles and antimonopoles. As shown long
ago [17], the force between monopoles is given

[23] and multimonopoles [24]. On the other hand, no
formation of a horizon was found for the gravitating
monopole—antimonopole pair [25].

We expect that solutions analogous to #hxehains
exist in Weinberg—Salam theory [26—28], generalizing
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Fig. 2. The dimensionless energy density is shown as functignamfdz for m =1, ..., 6. The asterisks indicate the nodes of the Higgs field.
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