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Abstract

We construct, in ZFC, a hereditarily collectionwise normal, hereditarily metaLindelöf, hereditarily
realcompact Dowker space. This answers a question of R. Hodel (also asked by S. Watson and
D. Burke) and another question of M.E. Rudin. 2001 Elsevier Science B.V. All rights reserved.
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Introduction

This paper was motivated by two problems.

1. Back in 1972, R. Hodel [3] raised

Problem 1. Is every metaLindelöf, collectionwise normal space paracompact?

A space2 X is called metaLindelöf, if every open cover ofX has a point-countable open
refinement.X is collectionwise normal, if every discrete collection〈Fi〉i∈I of closed sets
can be expanded to a pairwise disjoint open collection, i.e., if there is a pairwise disjoint
collection〈Ui〉i∈I of open sets such thatUi ⊃ Fi for everyi ∈ I .

The question was also asked by Watson [8] and Burke [2]. Watson [8] points out that
the only known counterexample is a consistent example of a screenable Dowker space by
Rudin [6] constructed in 1983.

2. In her 1971 paper constructing a Dowker space in ZFC, Rudin [5] asks
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Problem 2. Is there a realcompact Dowker space?

A spaceX is realcompact if everyz-ultrafilter onX with the countable intersection
property is fixed.X is a Dowker space, ifX is a normal space which is not countably
paracompact.

Again, consistent examples of realcompact Dowker spaces are known [4].
The aim of this paper is to show that both of these questions can be answered in ZFC

(“no” to Problem 1 and “yes” to Problem 2). Moreover, the answers can be consolidated
into a single example such that all subspaces of the construction have the desired properties
(except the Dowker property).

Main Theorem. There is a hereditarily collectionwise normal, hereditarily metaLindelöf,
hereditarily realcompact Dowker space X.

Sections 1–5 of this paper are devoted to the proof of the Main Theorem. The
technique we use is in the same family as the technique of constructing a screenable
Dowker space [2], i.e., we construct a natural default hereditarily collectionwise normal,
metaLindelöf (and realcompact) space and build in enough diagonalization (through
countable elementary submodels) to make the outcome space not countably paracompact.
The reflection tricks, however, are different from those in [2].

Sections 1 and 2 deal with the construction and the basic properties of the spaceX.
These sections are relatively easy to read, even without pencil and paper, and will give the
reader an idea of what the space looks like. The hard part is to show thatX is not countably
paracompact. Readers who want to construct examples with a similar technique may want
to work through Sections 3–5 containing the proof thatX is not countably paracompact.
The use of countable structures, the technique of complete neighborhoods and the way the
reflection works for open separations of uncountable relatively closed discrete collections
are the main ideas.

Our terminology and notation are the standard ones used in set theory and set-theoretic
topology. In particular,[Y ]�κ is the set of all subsets ofY of cardinality� κ . We are going
to use the following characterization of a Dowker space.

Proposition. A space X is a Dowker space if and only if X is normal and there is an
increasing open cover 〈Wn〉n∈ω of X with no countable closed refinement.

1. The construction of X

The set of points ofX is c× ω. Let us fix the notationWn = c× n for the union of the
first n rows andCβ = {β}×ω for theβ th column (n ∈ ω,β ∈ c). Letπ : c×ω→ c denote
the natural projection, let{qn: n ∈ ω} be an open base for the Cantor space topology on
c= 2ω. We are going to start with the simple topology onX = c×ω generated by

B0=
{
Wn: n ∈ ω

} ∪ {
X \ {x}: x ∈X

} ∪ {
π←(qn): n ∈ ω

}
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as a subbase. This topology isT1, and it would be easy to show that it is realcompact.
Furthermore,{Wn: n ∈ ω} is an increasing open cover ofX with no point-finite closed
refinement in this topology. Unfortunately, this initial topology is not even Hausdorff, let
alone (hereditarily collectionwise) normal. To achieve that we need 2c more steps. In each
step we consider either a potential relatively closed discrete collection to be separated by
disjoint open sets, or an open collection to be given a point-countable open refinement.
These collections will show up as Type I, respectively Type II sequences. Let us say that
S = 〈O, 〈Fρ〉ρ<c〉 is aType I sequence if O ⊂ X and〈Fρ〉ρ<c is a sequence of pairwise
disjoint subsets ofO . S = 〈Uρ〉ρ<c will be called aType II sequence if Uρ ⊂X for every
ρ < c.

If A⊂X, then let

S�A= 〈
O ∩A, 〈Fρ ∩A〉ρ∈π(A)

〉
if S is Type I,

and let

S�A= 〈Uρ ∩A〉ρ∈π(A) if S is Type II.

We are going to define our separations and refinements from countable chunksS�A of S
via control triples defined below. LetS(A)= {S�A: S is Type I}.

Definition 1.1. 〈A,D,u〉 is a control triple if and only if the following conditions are
satisfied:

(C1) A ∈ [X]ω;
(C2) D ∈ [S(A)]�ω;
(C3) u is a function with dom(u) ∈ [A]ω such thatu(x) ∈ [S(A) \ D]�ω for every

x ∈ dom(u);
(C4) x �= x ′ in dom(u) impliesu(x)∩ u(x ′)= ∅.

Let 〈Aβ, Dβ, uβ〉β<c list all control triples mentioning eachc times.
Now, let 〈Sξ 〉ξ<2c list all Type I and Type II sequences mentioning each 2c times.
We will construct an increasing sequence〈Bτ 〉τ<2c of subbases for topologies onX.

Subsets ofX which are open in the topology generated byBτ will be calledτ -open.
B0 has already been constructed.
If τ < 2c is a limit ordinal, then setBτ =⋃

ξ<τ Bξ .
If τ = ξ + 1< 2c, then we consider several cases according to whatSξ is.
Case 1. Suppose thatSξ = 〈Oξ , 〈Fρ

ξ 〉ρ<c〉 is a Type I sequence, thatOξ is ξ -open, that

〈Fρ
ξ 〉ρ<c is a relatively discrete sequence of relatively closed sets in the subspaceOξ of the

spaceX with the topology generated byBξ , and thatξ is minimal in 2c to satisfy all of the
above conditions. Then we will define a pairwise disjoint expansion〈Bρ

ξ 〉ρ<c of 〈Fρ
ξ 〉ρ<c

by subsets ofOξ and we will set

Bτ = Bξ+1= Bξ ∪
{
B

ρ
ξ : ρ < c

}
.

To do this, let us introduce the following notation:

Fξ =
⋃
ρ<c

F
ρ
ξ ; Bξ =

⋃
ρ<c

B
ρ
ξ ;
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if x ∈ Fξ then x̄(ξ) is the uniqueρ < c with x ∈ F
ρ
ξ ; if x ∈ Bξ thenx(ξ) is the unique

ρ < c with x ∈ B
ρ
ξ for the setsBρ

ξ to be constructed at stepξ .

Which 〈β, j 〉 ∈Oξ goes to whichBρ
ξ (or to noB

ρ
ξ at all) will be decided by induction

onβ . So suppose thatβ < c, we have decided on points of
⋃

α<β Cα , and consider theβ th
columnCβ = {β} ×ω.

Subcase 1.1. If Sξ �Aβ ∈Dβ , then we decide on points ofOξ ∩Cβ in the following way.
(a) If Fξ ∩Cβ = ∅, thenBξ ∩Cβ = ∅ (i.e., set〈β, j 〉 /∈B

ρ
ξ for eachρ < c andj ∈ ω).

(b) If Fξ ∩ Cβ �= ∅, then pick the smallestj ∈ ω such that〈β, j 〉 ∈ Fξ ∩ Cβ . Then for
every〈β, i〉 ∈Oξ ∩Cβ ,

(i) if 〈β, i〉 ∈ Fξ \F 〈β,j〉(ξ)ξ , then let〈β, i〉 ∈B
〈β,i〉(ξ)
ξ ;

(ii) if 〈β, i〉 ∈ (Oξ \Fξ )∪ F
〈β,j〉(ξ)
ξ , then let〈β, i〉 ∈ B

〈β,j〉(ξ)
ξ .

[In words, (i) and (ii) together say that if〈β, i〉 ∈ F
ρ
ξ then we (have to) put〈β, i〉 in B

ρ
ξ , but

otherwise we put〈β, i〉 in B
〈β,j〉(ξ)
ξ .]

Subcase 1.2. Suppose that there is anx = 〈α,n〉 ∈ dom(uβ) such thatα < β, x ∈ Bξ

andSξ �Aβ ∈ uβ(x). Note thatSξ �Aβ /∈Dβ by (C3) and there is only one suchx by (C4).
Recall thatx(ξ) is the uniqueρ < c with x ∈ B

ρ
ξ .

Now, for each〈β, i〉 ∈Oξ ∩Cβ ,

(a) if 〈β, i〉 ∈ Fξ \Fx(ξ)
ξ , then let〈β, i〉 ∈B

〈β,i〉(ξ)
ξ ;

(b) if 〈β, i〉 ∈ (Oξ \ Fξ )∪ F
x(ξ)
ξ , then let〈β, i〉 ∈ B

x(ξ)
ξ .

[In words, (1.2a) and (1.2b) say that if〈β, i〉 ∈ F
ρ
ξ for someρ < c, then we (have to) set

〈β, i〉 ∈B
ρ
ξ , but otherwise we put〈β, i〉 in B

x(ξ)
ξ .]

Subcase 1.3. Suppose neither Subcase 1.1 nor Subcase 1.2 holds. Then for every

〈β, i〉 ∈Oξ ∩Cβ , let 〈β, i〉 ∈B
〈β,i〉(ξ)
ξ if 〈β, i〉 ∈ Fξ , and let〈β, i〉 ∈B0

ξ , if 〈β, i〉 ∈Oξ \Fξ .

Case 2. Suppose thatSξ = 〈Uρ
ξ 〉ρ<c is Type II and is a sequence ofξ -open sets. Then

we are going to defineV ρ
ξ ⊂U

ρ
ξ in such a way that

⋃
ρ<c V

ρ
ξ =

⋃
ρ<c U

ρ
ξ and〈V ρ

ξ 〉ρ<c is
point-countable. Then we set

Bτ = Bξ+1= Bξ ∪
{
V

ρ
ξ : ρ < c

}
.

For every〈β, i〉 ∈⋃
ρ<c U

ρ
ξ we must decide which setsV ρ

ξ the point〈β, i〉 will belong
to. This is easily done in two subcases.

Subcase 2.1. Suppose there is aρ ∈ π(Aβ) such that〈β, i〉 ∈ U
ρ
ξ . Then set

〈β, i〉 ∈ V
ρ
ξ if and only if 〈β, i〉 ∈ U

ρ
ξ andρ ∈ π(Aβ).

Subcase 2.2. Not Subcase 2.1. Then set〈β, i〉 ∈ V
ρ
ξ if and only if ρ < c is the smallest

ordinal with〈β, i〉 ∈U
ρ
ξ .

It is clear from the above definition that〈V ρ
ξ 〉ρ<c is point-countable.

Case 3. Neither Case 1 nor Case 2 holds. Then letBτ = Bξ+1= Bξ .
Finally, the topology ofX is generated byB =⋃

ξ<2c Bξ as a subbase. For ease of
reference letHi = {ξ < 2c: Casei holds} (i = 1,2) and letH =H1∪H2.
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2. X is hereditarily collectionwise normal, hereditarily metaLindelöf and
hereditarily realcompact

Proposition 2.1. X is hereditarily collectionwise normal and hereditarily metaLindelöf.

Proof. To prove thatX is hereditarily collectionwise normal, letO be an open subspace of
X and letF be a relatively closed discrete collection in the subspaceO . Let 〈Fρ〉ρ<c list
each nonempty member ofF exactly once and possibly∅ several times to make a sequence
of lengthc. Note that “O is open and〈Fρ〉ρ<c is a relatively closed discrete collection in
O” is witnessed by� c subbasic open sets. Since each term of〈Sξ 〉ξ<2c is listed 2c times
and cf(2c) > c, it follows that there is a firstξ < 2c such thatSξ = 〈O, 〈Fρ〉ρ<c〉, O is ξ -
open, and〈Fρ〉ρ<c is a relatively discrete sequence of relatively closed sets in the subspace
O of the spaceX with the topology generated byBξ . Then〈Bρ

ξ 〉ρ<c is an open expansion

of 〈Fρ
ξ 〉ρ<c = 〈Fρ〉ρ<c is Oξ .

The proof thatX is hereditarily metaLindelöf follows similarly, making use of Type II
sequences.

Proposition 2.2. X hereditarily realcompact.

Proof. Let Y be a subspace ofX and letZ be az-ultrafilter onY with
⋂

Z = ∅. We need
to show that there is a countableZ ′ ⊂Z such that

⋂
Z ′ = ∅. Let

E = {
π←(qn) ∩ Y : n ∈ ω

}
.

To prove the existence ofZ ′, we will consider two cases.
Case 1. Suppose that for everyy ∈ Y there is anEy such thaty ∈Ey ∈ E andY \Ey ∈Z.

ThenZ ′ = {Y \Ey : y ∈ Y } is as required.
Case 2. Suppose Case 1 does not hold, i.e., there is ay ∈ Y such that whenever

y ∈ E ∈ E , thenY \ E /∈ Z. SinceZ is a z-ultrafilter and eachE is clopen, this implies
that Ey = {E ∈ E : y ∈ E} ⊂ Z. Note that ify = 〈β,m〉, then

⋂
Ey = ({β} × ω) ∩ Y is

countable. Since
⋂

Z = ∅ we can add countably many more members ofZ to Ey to obtain
a countableZ ′ ⊂Z with

⋂
Z ′ = ∅. ✷

3. Complete neighborhoods

Let x ∈ X. A finite intersection of subbasic sets from
⋃

1�ξ<2c Bξ is described by a
finite functiont such that dom(t) ∈ [H ]<ω and

(a) ξ ∈ dom(t) ∩H1 impliest (ξ) ∈ c andx ∈ B
t(ξ)
ξ (i.e., t (ξ)= x(ξ));

(b) ξ ∈ dom(t) ∩H2 implies∅ �= t (ξ) ∈ [c]<ω andx ∈⋂
ρ∈t (ξ ) V

ρ
ξ .

Call a finite functiont as abovecompatible with x. For t compatible withx, let us set

Bt
ξ =

{
B

x(ξ)
ξ , if ξ ∈ dom(t)∩H1,⋂
ρ∈t (ξ ) V

ρ
ξ , if ξ ∈ dom(t)∩H2.
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Note that the sets

Vt,K,n(x)=
⋂

ξ∈dom(t)

Bt
ξ ∩ π←(qn) \K,

wheret is compatible withx, π(x) ∈ qn andK ∈ [X \ {x}]<ω form an open neighborhood
base forx.

For everyξ ∈H1 with x ∈Oξ , let

Oξ(x)=
{
Oξ \Fξ , if x ∈Oξ \ Fξ ,

(Oξ \Fξ )∪ F
x̄(ξ)
ξ , if x ∈ Fξ .

Given a basic open neighborhoodVt,K,n(x) of x, let Ut
ξ (x)=Oξ(x) if ξ ∈ dom(t) ∩H1,

andUt
ξ (x)=

⋂
ρ∈t (ξ ) U

ρ
ξ if ξ ∈ dom(t) ∩H2.

Definition 3.1. We will say that a basic open neighborhoodVt,k,n(x) of x is complete if
for everyξ ∈ dom(t), Vt�ξ,K,n(x)⊂Ut

ξ (x).

Completeness Lemma 3.2. Every point x ∈ X has a neighborhood basis consisting of
complete neighborhoods.

Proof. For an incomplete neighborhoodVt,K,n(x), letξt,K,n denote the biggestξ ∈ dom(t)

such thatVt�ξ,K,n(x) �⊂Ut
ξ (x). Our lemma follows from the following

Claim. For every incomplete neighborhood Vt,K,n(x) there is a neighborhood Vt ′,K ′,n′(x)
⊂ Vt,K,n(x) such that either Vt ′,K ′,n′(x) is complete or ξt ′,K ′,n′ < ξt,K,n.

To prove the claim, letη = ξt,K,n. Sincex ∈ Ut
η(x) andUt

η(x) is η-open, there are
t ′′,K ′′, n′′ such that dom(t ′′)⊂H ∩ η andx ∈ Vt ′′,K ′′,n′′(x)⊂Ut

η(x).
Now let dom(t ′)= dom(t)∪ dom(t ′′) and set

t ′(ξ)=




t (ξ), if ξ ∈ dom(t) \ dom(t ′′),
t ′′(ξ), if ξ ∈ dom(t ′′) \ dom(t),
x(ξ)(= t (ξ)= t ′′(ξ)), if ξ ∈ dom(t) ∩ dom(t ′′)∩H1,
t (ξ)∪ t ′′(ξ), if ξ ∈ dom(t) ∩ dom(t ′′)∩H2.

Let K ′ = K ∪ K ′′ and n′ ∈ ω be such thatx ∈ π←(qn′) ⊂ π←(qn) ∩ π←(q ′′n). Then
x ∈ Vt ′,K ′,n′(x)⊂ Vt,K,n(x), and forξ ∈ dom(t ′) \ η= dom(t) \ η,

(a) ξ = η impliesVt ′�ξ,K ′,n′(x)⊂ Vt ′′,k′′n′′(x)⊂Ut
η(x)=Ut ′

n (x);

(b) ξ > η impliesVt ′�ξ,K ′,n′(x)⊂ Vt�ξ,K,n(x)⊂Ut
ξ (x)=Ut ′

ξ (x). ✷

4. X is not countably paracompact: finding and reflecting β

Our goal is to show that〈Wm〉m∈ω is an open cover without a point-finite closed
refinement. The proof will take up both this section and Section 5.

So suppose for contradiction that there is a sequence〈Zm〉m∈ω of closed subsets ofX
such thatX =⋃

m∈ω Zm andZm ⊂Wm for everym ∈ ω. For eachm ∈ ω consider the
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uniqueξm ∈ H1 with 〈Oξm, 〈Fρ
ξm
〉ρ<c〉 satisfyingOξm = X, F 0

ξm
= Zm,F 1

ξm
= X \ Wm

andF
ρ
ξm
= ∅ for ρ ∈ c \ 2. Recall that〈Bρ

ξm
〉ρ<c is a pairwise disjoint open expansion

of 〈Fρ
ξm
〉ρ<c and thatBξm =

⋃
ρ<c B

ρ
ξm

is an open subset ofOξm = X containingFξm =⋃
ρ<c F

ρ
ξm
=Zm ∪ (X \Wm). For everyx = 〈β,m〉 ∈X, letV (x)= Vt(x),K(x),n(x)(x) be a

basic neighborhood ofx such that
(T0) {ξj : j � m} ⊂ dom(t (x))

and thus, byx ∈ F 1
ξm

, V (x) ⊂ B1
ξm
⊂ X \ Zm. Let t1(x) = dom(t (x)) ∩ H1 (note that,

unlike t (x), t1(x) is just a finite subset ofH1, not a function), and for every subsetA⊂X,
introduce the notationt1(A) = ⋃

x∈A t1(x). By passing to a smaller neighborhood, if
necessary we can (and will) assume that the neighborhoodsV (x)= Vt(x),K(x),n(x)(x) also
satisfy the following properties:

(T1) if j <m<ω, ξ ∈ t1(β, j) and〈β,m〉 ∈Bξ , thenξ ∈ t1(β,m);
(T2) eachVt(x),K(x),n(x) is a complete basic open neighborhood.
Now let M,N be countable elementary submodels ofH((22c

)+) = {all sets whose
transitive closure has cardinality� 22c} in such a way that

c, 〈Sξ 〉ξ<2c, 〈Bξ 〉ξ<c, H,H1, t :X→ Fn(H, c)∪ Fn
(
H, [c]<ω

)
,

〈ξm〉m∈ω, t1 :X→[H ]<ω, K :X→[X]<ω, 〈x(ξ)〉〈ξ,x〉∈H1×X ∈M ∈N.

Let A=N ∩X(= (N ∩ c)×ω), D = {Sξ �A : ξ ∈M ∩H1}.

Proposition 4.1. There is a function u satisfying (C3) and (C4) in the definition of a
control triple and such that whenever v :X→ [H1 \M]<ω is an infinite partial function,
v ∈ N and x �= x ′ in A implies v(x) ∩ v(x ′) = ∅, then there are infinitely many x ∈
dom(v) ∩ dom(u) such that

u(x)= {
Sξ �A: ξ ∈ v(x)

}
.

Proof. Let 〈vj 〉j∈ω enumerate all functionsv ∈ N as in Proposition 4.1 mentioning each
infinitely many times. By induction onj pick distinct {xj : j ∈ ω} ⊂ N ∩ X in such
a way thatj < m < ω implies vj (xj ) ∩ vm(xm) = ∅. Set dom(u) = {xj : j ∈ ω} and
u(xj )= {Sξ �A: ξ ∈ vj (xj )}. To show that(C3) and(C4) hold we only need to show that

(a) u(xj )∩D = ∅ for everyj ∈ ω;
(b) j <m<ω impliesu(xj )∩ u(xm)= ∅.

Suppose indirectly thatu(xj ) ∩ D �= ∅, i.e., there areξ ∈ vj (xj ) andη ∈M ∩ H1 such
thatSξ �A= Sη�A. We are going to show first thatξ, η ∈ N . Indeed,η ∈ N follows from
η ∈M. To seeξ ∈ N , note that byvj , xj ∈ N , if follows that vj (xj ) ∈ N . Sincevj (xj )
is a finite set,ξ ∈ vj (xj ) ⊂ N . Now sinceξ, η ∈ N and Sξ �A = Sη�A, it follows that
Sξ = Sη. Sinceξ, η ∈H1, this by the minimality condition in Case 1 impliesξ = η. Then
ξ ∈ vj (xj )∩ (M ∩H1)= ∅, contradiction.

The proof of (b) is similar. ✷
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Pick and fix au as in Proposition 4.1. For the rest of this section and Section 5, fix aβ∈c
such thatβ > π(A) and〈A,D,u〉 = 〈Aβ,Dβ,uβ〉.

Reflection Lemma 4.2. Let θ ∈M ∩H1, k ∈ ω. Then there is an x = 〈α, k〉 ∈ dom(u) with
the following properties:

(R0) n(x)= n(β, k);
(R1) t1(x)∩M = t1(β, k)∩M;
(R2) ∀ξ ∈ t1(β, k)∩M(〈β, k〉(ξ) ∈M implies 〈β, k〉(ξ)= x(ξ));
(R3) 〈β, k〉 ∈Bθ if and only if x ∈ Bθ ;
(R4) if 〈β, k〉 ∈Bθ , then either 〈β, k〉(θ) ∈M or 〈β, k〉(θ) �= x(θ);
(R5) x ∈ dom(u) and u(x)= {Sξ �A: ξ ∈ t1(x) \M}.

Proof. Let us introduce the notationn = n(β, k), r = t1(β, k) ∩ M, r1 = {ξ ∈ r :
〈β, k〉(ξ) ∈M} andf (ξ) = 〈β, k〉(ξ) for everyξ ∈ r1. Let i = 1 if 〈β, k〉 ∈ Bθ andi = 0
if 〈β, k〉 /∈ Bθ . Note n, r, r1, f, i ∈ M. Let ϕ(α) denote the statement “n(α, k) = n and
t1(α, k)⊃ r, for everyξ ∈ r1, 〈α, k〉(ξ)= f (ξ) and〈α, k〉 ∈ Bθ if and only if i = 1”. Note
that all the parameters ofϕ(α) are fromM, and thatϕ(β) is true.

Let ψ(E) denote the statement “E ⊂ c and ∀α ∈ E ϕ(α), andα �= γ in E implies
(t1(α, k)\r) ∩ (t1(α, k)\r) = ∅”. Let χ(E) denote “E ⊂ c and α �= γ in E implies
〈α, k〉, 〈β, k〉 ∈ Bθ and〈α, k〉(θ) �= 〈γ, k〉(θ)”.

Claim.
(a) There is an uncountable E ∈M such that ψ(E) holds.
(b) Moreover, if 〈β, k〉 ∈ Bθ and 〈β, k〉(θ) /∈M , then there is an uncountable E ∈M

such that ψ(E) and χ(E) both hold.

Proof. We will prove (b) only. The proof of (a) is similar (and simpler). To prove (b), note
first that by Zorn’s Lemma there is a maximalE such thatψ(E) andχ(E) both hold. Since
all the parameters inψ(E) andχ(E) are fromM, we can (and will) assume thatE ∈M.
Suppose indirectly thatE is countable. ThenE ⊂M. ConsiderE′ =D ∪ {β}� E. ψ(E′)
holds, because∀α ∈E,(

t1(α, k) \ r
)∩ (

t1(β, k) \ r
)⊂ t1(α, k) ∩

(
t1(β, k) \M

)⊂M ∩ (
t1(β, k) \M

)= ∅.
χ(E′) holds, because by the assumption in (b),〈β, k〉 ∈ Bθ and〈β, k〉(θ) /∈M, whereas
〈α, k〉(θ) /∈M for everyα ∈E. But thenE′ contradicts the maximality ofE, finishing the
proof of the claim. ✷

Now, if 〈β, k〉 ∈ Bθ and〈β, k〉(θ) /∈M, then fix anE satisfying (b); otherwise fix anE
satisfying (a). Let

E1=
{
α ∈E: (t1(α, k) \ r)∩M = ∅}.

Note thatE1 ∈ N and E1 is infinite (even uncountable). Let us define a functionv

by setting dom(v)= E1× {k} andv(α, k) = t1(α, k) \ r for every〈α, k〉 ∈ dom(v). Note
that v ∈ N is as required in the statement of Proposition 4.1, so there are infinitely
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manyx = 〈α, k〉 ∈ dom(u) ∩ dom(v) such thatu(x)= {Sξ � A: ξ ∈ v(x)}. If 〈β, k〉 ∈ Bθ

and 〈β, k〉(θ) /∈ M, then thex(θ)’s for thesex are all distinct, so we can pickx so
that 〈β, k〉(θ) �= x(θ) is also satisfied. Thisx = 〈α, k〉 then satisfies(R0), (R2), (R3) by
ϕ(α), (R1) by ϕ(α) and(t1(α, k) \ r)∩M = ∅ and(R4), (R5) by its definition.

5. X is not countably paracompact: homogeneity of β

Let us say thatβ (as defined in the previous section) isξ -homogeneous iff ξ ∈H1 and

(H) xi ∈ t1(Cβ) implies that there is aγ ∈M ∩ c such thatOξ ∩Cβ ⊂ B
γ
ξ .

Proposition 5.1. There is an m ∈ ω such that β is not ξm-homogeneous.

Proof. Recall the definition ofZm and ξm from the beginning of the previous section.
SinceX =⋃

m∈ω Zm, we can pick and fix anm ∈ ω such thatZm ∩ Cβ �= ∅. Note that
ξm ∈ t1(β,m)⊂ t1(Cβ). On the other hand,Oξm ∩Cβ =X ∩ Cβ = Cβ is not contained in
anyBγ

ξm
, because bothB0

ξm
⊃Zm andB1

ξm
⊃X \Wm intersectCβ . ✷

By ξm ∈M ∩H1, a contradiction (to “X is countably paracompact”) will follow once
we prove the following result.

Main Lemma 5.2. β is ξ -homogeneous for every ξ ∈M ∩H1.

The rest of this section will be devoted to the proof of the Main Lemma. Suppose
indirectly that there is a minimalθ ∈ M ∩ H1 such thatβ is not θ -homogeneous, i.e.,
θ ∈ t1(Cβ) yet there is noγ ∈M ∩ c such thatOθ ∩Cβ ⊂ B

γ
θ .

Then let us pickk so big that〈β, k〉 ∈ Bθ ∩Cβ and with the notationy[k] = {〈β, j 〉: j �
k}, the following conditions are satisfied:

(1k) if Fθ ∩Cβ �= ∅, thenFθ ∩ y[k] �= ∅;
(2k) if there are at least twoρ ∈ c such thatFρ

θ ∩ Cβ �= ∅, then there are at least two
ρ ∈ c such thatFρ

θ ∩ y[k] �= ∅;
(3k) if there are at least twoρ ∈ c such thatBρ

θ ∩ Cβ �= ∅, then there are at least two
ρ ∈ c such thatBρ

θ ∩ y[k] �= ∅;
(4k) θ ∈ t1(β, k).
By (T1) in Section 4, there is ak ∈ ω satisfying(1k)–(4k).
Now, let us fix anx = 〈α, k〉 as in the Reflection Lemma 4.2 (for ourθ above).

Lemma 5.3. y[k] ⊂ Vt(x)�θ,K(x),n(x)(x).

Proof. Sincex ∈ N , it follows thatK(x) ∈ N and by the finiteness ofK(x), K(x)⊂N .
Sinceβ /∈ N , it follows that Cβ ∩ K(x) ⊂ Cβ ∩ N = ∅. Since by(R0), y[k] ⊂ Cβ ⊂
π←(qn(x)), we conclude thaty[k] ⊂ V∅,K(x),n(x)(x). ✷
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By induction onξ we are going to show that for everyξ ∈ dom(t (x))∩ θ ,

(Iξ ) y[k] ⊂ B
t(x)
ξ (x)

holds.
Supposeξ ∈ dom(t (x))∩ θ and we have proved(Iη) for η ∈ dom(t (x))∩ ξ .
Then by completeness ofVt(x),K(x),n(x)(x),

y[k] ⊂ Vt(x)�ξ,K(x),n(x)(x)⊂ Ut
ξ (x). (∗)

The proof of (Iξ ) from (∗) will be split into several cases depending onξ ∈
dom(t (x))∩ θ.

Case 1(a). Suppose thatξ ∈H1 ∩M. Then byξ < θ and the minimality ofθ it follows
thatβ is ξ -homogeneous. Nowξ ∈ dom(t (x)) ∩H1 ∩M = t1(x) ∩M. By (R1) from the
Reflection Lemma,ξ ∈ t1(β, k)∩M ⊂ t1(Cβ). Hence by the definition ofξ -homogeneity
there is aγ ∈M ∩ c with Oξ ∩Cβ ⊂ B

γ
ξ . Making use of (∗), it follows that

y[k] ⊂Ut
ξ (x)∩Cβ =Oξ(x)∩Cβ ⊂Oξ ∩Cβ ⊂ B

γ
ξ .

In particular,γ = 〈β, k〉(ξ). By (R2), γ = x(ξ). Hencey[k] ⊂ B
γ
ξ = B

x(ξ)
ξ = Bt

ξ (x).
Case 1(b). Supposeξ ∈ H1 \ M. (Recall also thatξ ∈ dom(t (x)) ∩ θ .) Then ξ ∈

t1(x) \M, so by(R5), Sξ �Aβ ∈ uβ(x). By 1.2(b) in the definition of〈Bρ
ξ 〉ρ<c, to prove

that y[k] ⊂ B
x(ξ)
ξ = Bt

ξ (x), we only need to show thaty[k] ⊂ (Oξ \ Fξ ) ∪ F
x(ξ)
ξ . This

follows from the fact that by (∗), y[k] ⊂ Ut
ξ (x) =Oξ(x). (Recall thatOξ(x) = Oξ \ Fξ ,

if x ∈ Oξ \ Fξ , andOξ(x) = (Oξ \ Fξ ) ∪ F
x̄(ξ)
ξ if x ∈ Fξ , and that in the latter case,

x̄(ξ)= x(ξ).)
Case 2. Supposeξ ∈H2. Then by Subcase 2.1 in the definition of〈V ρ

ξ 〉ρ<c, to show

(Iξ ) y[k] ⊂ Bt
ξ (x)=

⋂
ρ∈t (ξ )

V
ρ
ξ ,

it is enough to show that
(a) y[k] ⊂Ut

ξ (x)=
⋂

ρ∈t (ξ ) U
ρ
ξ and

(b) t (ξ)⊂N .
(a) follows by (∗), and (b) follows becauseξ ∈ dom(t (x)) and by x ∈ N,

dom(t (x))⊂N . ✷

6. The end of the proof of Main Lemma 5.2

Recall that at the beginning of the proof of the Main Lemma, we assumed indirectly that
there was a minimalθ ∈M ∩H1 such thatβ was notθ -homogeneous and then we chose
〈β, k〉 ∈ Bθ ∩ Cβ with k big enough to satisfy(1k)–(4h). To arrive at a contradiction we
will show thatβ is θ -homogeneous.

To do this, note first that by(R1) and (4k), θ ∈ t1(β, k) ∩M = t1(x) ∩M. Thus by
Lemma 5.3 and the completeness ofVt(x),K(x),n(x)(x), we conclude that

y[k] ⊂ Vt(x)�θ,K(x),n(x)(x)⊂Oθ(x).
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Claim 1. Fθ ∩Cβ �= ∅.

To see that Claim 1 is true, suppose indirectly thatFθ ∩ Cβ = ∅. Note that byθ ∈
M ∩ H1, Sθ�Aβ ∈ Dβ . Hence by (1.1a) of the definition of〈Bρ

θ 〉ρ<c it follows that
Bθ ∩Cβ = ∅. On the other hand, byθ ∈ t1(β, k) we have〈β, k〉 ∈ Bθ ∩Cβ , contradiction.

Claim 2. There is precisely one γ < c such that Fγ
θ ∩Cβ �= ∅.

By Claim 1, there is at least one suchγ . Suppose there are at least two. Then by(2k),
there are at least twoγ < c such thatFγ

θ ∩ y[k] �= ∅. On the other hand,y[k] ⊂Oθ(x)=
eitherOθ \ Fθ or (Oθ \Fθ )∪ F

x̄(θ)
θ , contradiction.

Next, letj ∈ ω be minimal with〈β, j 〉 ∈ Fθ ∩Cβ = F
γ
θ ∩Cβ . Note that by(1k), 〈β, j 〉 ∈

y[k].

Claim 3. x ∈ F
γ
θ .

To prove Claim 3, note that by〈β, j 〉 ∈ Fθ ∩ y[k] we can’t havey[k] ⊂Oθ \Fθ . Hence
x ∈ Fθ andOθ(x)= (Oθ \Fθ )∪F

x̄(θ)
θ . Since〈β, j 〉 ∈ Fθ ∩ y[k] ⊂ Fθ ∩Oθ(x), it follows

that〈β, j 〉 ∈ F
x̄(θ)
θ . Since〈β, j 〉 ∈ F

γ
θ by the definition of〈β, j 〉, it follows thatγ = x̄(θ),

sox ∈ F
γ
θ .

Claim 4. y[k] ⊂ B
γ
θ .

To prove Claim 4, recall from the proof of Claim 3, that by〈β, j 〉 ∈ F
γ
θ , 〈β, j 〉(θ)

= γ = x̄(θ) and thusy[k] ⊂Oθ(x)= (Oθ \Fθ )∪F
〈β,j〉(θ)
θ . Thusy[k] ⊂ B

γ
θ follows from

(1.1b(ii)) of the definition of〈Bρ
θ 〉ρ<c.

To finish the proof thatβ is θ -homogeneous, note first that by Claim 4,
〈β, k〉(θ) = γ = x̄(θ) = x(θ). Thus by(R4), γ ∈ M. Further, by(3k), B

γ
θ is the only

member of〈Bρ
θ 〉ρ<c which intersectsCβ , i.e.,Bθ ∩Cβ ⊂ B

γ
θ . Finally note that by (1.1b) in

the definition of〈Bρ
θ 〉ρ<c we haveBθ ∩Cβ =Oθ ∩Cβ . Thusβ is θ -homogeneous contrary

to our assumption thatθ is a minimal counterexample.

7. Final remarks

(1) By adding the sets(c\α)×ω, α < c, toBo at the beginning of the construction (and
leaving the rest of the proof unchanged) we can makeX left-separated.

(2) Several questions remain open.

Question 1. Is there a paraLindelöf, collectionwise normal Dowker space?

Even just the following well-known problem [8] is hard.

Question 2. Is there a paraLindelöf Dowker space?
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Question 3. Is there a metaLindelöf, collectionwise normal and first countable Dowker
space?

Question 4 (D. Burke). Is there a metaLindelöf, collectionwise normal and countably
paracompact space which isnot paracompact?

Not even consistency answers are known to Question 1–4.

Question 5. Is there a first countable Dowker space in ZFC?

There are, of course, many consistent examples of first countable Dowker spaces.
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