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Abstract

We construct, in ZFC, a hereditarily collectionwise normal, hereditarily metaLindel6f, hereditarily
realcompact Dowker space. This answers a question of R. Hodel (also asked by S. Watson and
D. Burke) and another question of M.E. Rudin2001 Elsevier Science B.V. All rights reserved.
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Introduction

This paper was motivated by two problems.

1. Backin 1972, R. Hodel [3] raised
Problem 1. Is every metaLindel6f, collectionwise normal space paracompact?

A spacé X is called metaLindeldf, if every open cover ¥fhas a point-countable open
refinementX is collectionwise normal, if every discrete collecti¢f );<; of closed sets
can be expanded to a pairwise disjoint open collection, i.e., if there is a pairwise disjoint
collection(U;);<; of open sets such that > F; for everyi € I.

The question was also asked by Watson [8] and Burke [2]. Watson [8] points out that
the only known counterexample is a consistent example of a screenable Dowker space by
Rudin [6] constructed in 1983.

2. In her 1971 paper constructing a Dowker space in ZFC, Rudin [5] asks
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1 The author's research was partially supported by NSF Grant DMS-9623391.
2 “Space” in this paper means regulBy topological space.
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Problem 2. |s there a realcompact Dowker space?

A spaceX is realcompact if every-ultrafilter on X with the countable intersection
property is fixed.X is a Dowker space, i is a normal space which is not countably
paracompact.

Again, consistent examples of realcompact Dowker spaces are known [4].

The aim of this paper is to show that both of these questions can be answered in ZFC
(“no” to Problem 1 and “yes” to Problem 2). Moreover, the answers can be consolidated
into a single example such that all subspaces of the construction have the desired properties
(except the Dowker property).

Main Theorem. Thereisa hereditarily collectionwise normal, hereditarily metalindel of,
hereditarily realcompact Dowker space X.

Sections 1-5 of this paper are devoted to the proof of the Main Theorem. The
technique we use is in the same family as the technique of constructing a screenable
Dowker space [2], i.e., we construct a natural default hereditarily collectionwise normal,
metaLindelof (and realcompact) space and build in enough diagonalization (through
countable elementary submodels) to make the outcome space not countably paracompact.
The reflection tricks, however, are different from those in [2].

Sections 1 and 2 deal with the construction and the basic properties of the ¥pace
These sections are relatively easy to read, even without pencil and paper, and will give the
reader an idea of what the space looks like. The hard part is to show featot countably
paracompact. Readers who want to construct examples with a similar technique may want
to work through Sections 3-5 containing the proof tiais not countably paracompact.

The use of countable structures, the technique of complete neighborhoods and the way the
reflection works for open separations of uncountable relatively closed discrete collections
are the main ideas.

Our terminology and notation are the standard ones used in set theory and set-theoretic
topology. In particular,Y ]S¥ is the set of all subsets af of cardinality< «. We are going
to use the following characterization of a Dowker space.

Proposition. A space X is a Dowker space if and only if X is normal and there is an
increasing open cover (W, )<, Of X with no countable closed refinement.

1. Theconstruction of X

The set of points oK is ¢ x w. Let us fix the notatiorW,, = ¢ x n for the union of the
firstn rows andCg = {8} x w for the gth column ¢ € w, g € ¢). Letw ¢ x w — ¢ denote
the natural projection, lefly,: n € w} be an open base for the Cantor space topology on
¢ = 2“. We are going to start with the simple topology ¥r= ¢ x w generated by

Boz{Wn: nea)}U{X\{x}: xeX}U{n(_(qn): new}
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as a subbase. This topology#s, and it would be easy to show that it is realcompact.
Furthermore{W,: n € w} is an increasing open cover af with no point-finite closed
refinement in this topology. Unfortunately, this initial topology is not even Hausdorff, let
alone (hereditarily collectionwise) normal. To achieve that we néedde steps. In each
step we consider either a potential relatively closed discrete collection to be separated by
disjoint open sets, or an open collection to be given a point-countable open refinement.
These collections will show up as Type I, respectively Type Il sequences. Let us say that
S=(0,(FP),<) is aTypel sequenceif O C X and(F”),.. is a sequence of pairwise
disjoint subsets 00. S = (U”),. will be called aType Il sequenceif U” C X for every
p <Cc.

If AC X, then let

STA=(0NA,(FPNA)pen(a) If SisTypel
and let
STA= <Up N A)pEn(A) if Sis Type Il

We are going to define our separations and refinements from countable cHjuhkd S
via control triples defined below. L&t(A) = {STA: S is Type I}.

Definition 1.1. (A, D,u) is a control triple if and only if the following conditions are
satisfied:
(C1) AelX]”;
(C2) D e[S(A)]S;
(C3) u is a function with don) € [A]® such thatu(x) € [S(A) \ D]S® for every
x edom(u);
(Ca) x # x’ indom(u) impliesu(x) Nu(x") = 0.

Let (Ag, Dg, ug)g<. listall control triples mentioning eaahtimes.

Now, let (Se)z <2¢ list all Type | and Type Il sequences mentioning eathirdes.

We will construct an increasing sequend® ). -2« of subbases for topologies ox.
Subsets o which are open in the topology generateddyywill be calledz-open.

Bp has already been constructed.

If = <2%is alimit ordinal, then seB; = (J; _, Be.

If r =& 41 < 2% then we consider several cases according to Whi.

Case 1. Suppose thafe = (O¢, (F§’>p<c> is a Type | sequence, thakg is £-open, that
(Fsp>p<c is a relatively discrete sequence of relatively closed sets in the subSpanfehe
spaceX with the topology generated i, and that is minimal in 2 to satisfy all of the
above conditions. Then we will define a pairwise disjoint expansﬂfr)p<c of (Fg’)p<c
by subsets 0D¢ and we will set

By = Bey1= Bt U{Béoi p < c}.
To do this, let us introduce the following notation:

= =l B

p<c p<c
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if x € F¢ thenx (&) is the uniquep < ¢ with x € F?; if x € B: thenx(¢) is the unique
p < cwith x € Bf for the setsB{ to be constructed at stép
Which (8, j) € Og goes to whichB{ (or to noB{ at all) will be decided by induction
on 8. So suppose that < ¢, we have decided on points QjMﬁ C,, and consider thgth
columnCg = {B} x w.
Subcase 1.1. If S: [Ag € Dg, then we decide on points @fs N Cg in the following way.
(@) If FeNCg=0,thenB: NCg =0 (i.e., set(p, j) ¢ ng for eachp < candj € ).
(b) If Fe N Cg # @, then pick the smallest € w such that(8, j) € Fr N Cg. Then for
every(ﬁ i) € 0:NCg,

@) if ( ng\Fﬁ](S) then let(g, i) € B"®);

(ii) if (B.i) € (O:\ Fr) U F“’ DE) then let(g, i) e Bf*”(f).
[In words, (i) and (i) togethersay that{B, i) € F” then we (have to) pug, i) in Bg), but
otherwise we pui{g, i) in BE(’S’”(E).]

Subcase 1.2. Suppose that there is an= (o, n) € dom(ug) such thaix < 8, x € Bt
andSg[Ag € ug(x). Note thatSe [Ag ¢ Dg by (C3) and there is only one suchby (Ca).
Recall thatx (¢) is the uniquep < ¢ with x € Bf.

Now, for each(ﬁ i) € O NCg,

(@) if (B,i) € Fx \Fx(é) then let(, i) € B/

(b) if (B.i) € (0 \ Fe) UF}®, then let(B, i) € B}

[In words (1 2a) and (1.2b) say that(j, i) € FE" for somep < ¢, then we (have to) set
(B,i) € Bf, but otherwise we pus, i) in Bg‘(é).]

Subcase 1.3. Suppose neither Subcase 1.1 nor Subcase 1.2 holds. Then for every
(B.i) € 0N Cp, let(B.i) e BP Vit (B.i) e Fe, andlet(B. i) € BY,if (B.i) € O¢ \ F.

Case 2. Suppose thaf: = (ng)p<c is Type Il and is a sequence df-open sets. Then
we are going to defin® c U{ in such away that),,_ V' =,_ U and(V{),c is
point-countable. Then we set

oy

BTZBE_HL:BEU{V;Z p<c}.

For every(8,i) € Up<c UE we must decide which selég the point(g, i) will belong
to. Thisis easny done in two subcases.
Subcase 2.1. Suppose there isg@e m(Ag) such that(g, i) e Uép. Then set

(/B,i)eVEp if and only if (ﬁ,i>eU§ andp € (Agp).

Subcase 2.2. Not Subcase 2.1. Then 3@t i) Vg’ if and only if p < ¢ is the smallest
ordinal with (8, i) € Uf .

Itis clear from the above definition thzat/ép>p<c is point-countable.

Case 3. Neither Case 1 nor Case 2 holds. Ther3gt= B 1 = Bs.

Finally, the topology ofX is generated by5 = UE<2C B: as a subbase. For ease of
reference leH; = {£ < 2¢:. Case holdg (i =1, 2) and letH = H1 U H>.
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2. X ishereditarily collectionwise normal, hereditarily metal indel6f and
hereditarily realcompact

Proposition 2.1. X ishereditarily collectionwise normal and hereditarily metaLindel 6f.

Proof. To prove thatX is hereditarily collectionwise normal, |€1 be an open subspace of

X and letF be a relatively closed discrete collection in the subspacket (F”), . list

each nonempty member @f exactly once and possibl{/several times to make a sequence

of lengthc. Note that ‘O is open and F”),-. is a relatively closed discrete collection in

0" is witnessed by ¢ subbasic open sets. Since each terniSefs <o« is listed 2 times

and ci(2) > ¢, it follows that there is a firs§ < 2° such thatS; = (O, (F*),<.), O is &-

open, andF*),.. is arelatively discrete sequence of relatively closed sets in the subspace
O of the spaceX with the topology generated H§; . Then(Bg’),o<c is an open expansion

of <F§)>p<c = <Fp>p<c is OS-

The proof thatX is hereditarily metaLindelof follows similarly, making use of Type Il
sequences.

Proposition 2.2. X hereditarily realcompact.

Proof. LetY be a subspace df and letZ be az-ultrafilter onY with () Z = ¢. We need
to show that there is a countal#é C Z such thaf | 2’ = ¢. Let

£ = {n‘_(qn) NY:n ea)}.
To prove the existence &', we will consider two cases.

Case 1. Suppose that for evesye Y thereis anty, suchthaty € E, e £andY \ E, € Z.
ThenZ'={Y \ E,: y € Y} is as required.

Case 2. Suppose Case 1 does not hold, i.e., there is@aY such that whenever
yeEe&, thenY \ E ¢ Z. SinceZ is az-ultrafilter and eaclF is clopen, this implies
thatf, ={E € £: y € E} C Z. Note that ify = (8,m), then &, = (B} x w) NY is
countable. Sincg) Z = @ we can add countably many more membergab £, to obtain
acountable’ c Zwith(\2'=0. O

3. Complete neighborhoods

Let x € X. A finite intersection of subbasic sets frdm; ., _,c Bs is described by a
finite functionr such that dortr) € [H]=® and

(a) € edom(r) N Hy impliest (&) € candx € Bg(s) (i.e.,1(&) =x(&));

(b) & e dom(r) N Hp impliesy # 1(£) € [c]=* andx € ()¢, &) VS”.

Call a finite functiorr as abovesompatible with x. For: compatible withx, let us set

Bl _ Bg(s), if £ e dom(r) N Hy,
Moo Ve if € e domi) N Hy.
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Note that the sets
Vika@) = [ BiN7 (g \ K,
Eedom(r)

wherer is compatible withe, 7(x) € ¢, andK € [X \ {x}]=® form an open neighborhood
base forx.
For everyz € Hy with x € O, let
O¢ \ Fg, if x € O¢\ F,
O¢ () = { (O \ F)UF®, ifxeF;.

Given a basic open neighborhod¥dk ,(x) of x, let Ug (x) = Og(x) if £ edom(z) N Hy,
andU{ (x) = ¢, UE if & € dom(r) N H.

Definition 3.1. We will say that a basic open neighborho®d ,(x) of x is complete if
for everyé € dom(r), Viz kn(x) C Ué’ (x).

Completeness Lemma 3.2. Every point x € X has a neighborhood basis consisting of
complete neighborhoods.

Proof. Foranincomplete neighborho®dk ,(x), leté; k., denote the biggeste dom(r)
such thatV;re x »(x) ¢ UE’ (x). Our lemma follows from the following

Claim. For every incomplete neighborhood V; k ,(x) thereisaneighborhood Vs g,/ (x)
C Vi, k.n(x) such that either Vyy g+, (x) iscompleteor & g < &k n-

To prove the claim, let) = & k ,. Sincex € Uf,(x) and U,;(x) is n-open, there are
¢, K", n" such that dor@”) C H Ny andx € Vyr g7 v (x) C Uy (x).
Now let dom(#’) = dom(¢) U dom(z”) and set

1(§), if £ e dom(r) \ dom(z"),

rey =" if & e dom(”) \ dom(r),
x(E)(=1(&)=1"(&)), if &edom)Ndomt”)N Ha,
tE)UL(E), if & € dom(r) Ndom(z"") N Ho.

Let K=K U K" andn’ € w be such thatr € 7 (g,/) C 7 (g,) Nt (g,)). Then
x € Vir k1w (x) C Vi g n(x), and forg € dom(z’) \ n = dom(r) \ n,

(@) & = nimplies Vi g, k7w (x) C Vi o (x) C UL (x) = U (x);

(b) & > nimplies Vi k7 (x) C Vije k.n(x) CUL) = UL (x). O

4. X isnot countably paracompact: finding and reflecting 8

Our goal is to show thatW,,)mc» IS an open cover without a point-finite closed
refinement. The proof will take up both this section and Section 5.

So suppose for contradiction that there is a sequéAgé,,<., of closed subsets of
such thatX = J Z, and Z,, C W, for everym € w. For eachm € w consider the

mew
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uniqueg, € Hi with (Ox,,, (F{ ),<.) satisfying O, = X, an =Zn, Fslm =X\ Wy,
and FS’; =@ for p € ¢\ 2. Recall that(Bg’m)p<c is a pairwise disjoint open expansion
of (F{ )p<c and thatBg, = J,_. B, is an open subset ads, = X containingF, =
qu FE’; =ZnU(X\Wy,).Foreveryx = (B,m) € X, let V(x) = Vi), k (x),n(x)(x) e @
basic neighborhood of such that

(To) {&;: j <m} Cdom((x))
and thus, byx € Félm, Vx) C Bélm C X\ Z,. Lett1(x) = dom(¢(x)) N Hy (note that,
unliket (x), r1(x) is just a finite subset aff1, not a function), and for every subsétc X,
introduce the notatiom (4) = (J,.471(x). By passing to a smaller neighborhood, if
necessary we can (and will) assume that the neighborhidods= V; ). k (x),n(x)(x) also
satisfy the following properties:

(Ty) if j <m <o, £ et1(B, j)and(B, m) € Be, then € t1(B, m);

(T2) eachV,() k(x).n(x) IS @ complete basic open neighborhood.

Now let M, N be countable elementary submodels ®f(22)*) = {all sets whose
transitive closure has cardinality 22} in such a way that

¢, (Se)e<2c, (Be)s<c, H, H1,1:X — Fn(H, ¢) UFn(H, []=°),
<§m)m€a)atl:X_) [H]<a)’ K:X— [X]<wa (x(%_»(é',x)eHlxXeMeN-

LetA=NNX(=(NNc)xw), D={Se[A:£€Mn Hy}.

Proposition 4.1. There is a function u satisfying (C3) and (C4) in the definition of a
control triple and such that whenever v: X — [H1 \ M]<® isan infinite partial function,
veN and x #x’' in A implies v(x) N v(x") = @, then there are infinitely many x €
dom(v) N dom(x) such that

u(x)={Se[A: § ev(x)}.

Proof. Let (v;) ;e €numerate all functions € N as in Proposition 4.1 mentioning each
infinitely many times. By induction ory pick distinct {x;: j € w} C N N X in such
a way thatj <m < w implies v;(x;) N vy (x,) = 0. Set dom(u) = {x;: j € w} and
u(x;) ={Se[A: £ e vj(x;)}. To show tha{C3z) and(C4) hold we only need to show that

(@) u(xj)Nn D =P foreveryj € w,

(b) j <m <wimpliesu(x;) Nulxy,) =0.
Suppose indirectly that(x;) N D # @, i.e., there aré& € v;(x;) andn € M N Hy such
thatSe[A = S, [A. We are going to show first thgt n € N. Indeed,y € N follows from
n € M. To see¢ € N, note that byv;, x; € N, if follows thatv;(x;) € N. Sincev; (x;)
is a finite set e vj(x;) C N. Now since&, n e N and S:[A = S,[A, it follows that
S¢ = S,. Since&, n € Hy, this by the minimality condition in Case 1 impli€s= 5. Then
& evj(x;) N (M N Hy) =9, contradiction.

The proof of (b) is similar. O
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Pick and fix au as in Proposition 4.1. For the rest of this section and Section 5 fesca
such tha > w(A) and(A, D, u) = (Ag, Dg, ug).

Reflection Lemmad4.2. Let0 e M N Hy, k € w. Thenthereisan x = («, k) € dom(uz) with
the following properties:

(Ro) n(x) =n(B,k);

(R1) n(x)NM =n(B,k)NM,

(R2) V& etn(B,k)NM((B,k)(&) € M implies (B, k) (&) = x(£));

(R3) (B,k) e By ifandonlyifx € By;

(Rg) if (B, k) € By, then either (B, k)(8) € M or (B, k)(0) # x(9);

(Rs) x e dom(u) and u(x) = {Sg[A: £ € t1(x) \ M}.

Proof. Let us introduce the notation = n(8,k), r = n(B.k) N M, r* = {6 e r:
(B, k)(&) e M}y and f (&) = (B, k)(€) for everyé e rl. Leti =1if (8,k) € By andi =0
if (B,k) ¢ Bg. Noten,r,rl, f,i € M. Let ¢(a) denote the statement(a, k) = n and
t1(a, k) D 7, foreveryg e rl, (o, k)(&) = f(&) and(a, k) € By if and only ifi = 1”. Note
that all the parameters gf(«e) are fromM, and thaip(B8) is true.

Let ¥ (E) denote the statementt“C ¢ andVa € E ¢(a), anda # y in E implies
(t1(o, K)\r) N (t1(e, k)\r) = @". Let x(E) denote 'E C ¢ and«a # y in E implies
{a, k), (B, k) € By and(a, k)(0) # (v, k)(0)".

Claim.
(a) Thereisan uncountable E € M such that ¢ (E) holds.
(b) Moreover, if (8,k) € By and (8, k)(0) ¢ M, then there is an uncountable E € M
such that v (E) and x (E) both hold.

Proof. We will prove (b) only. The proof of (a) is similar (and simpler). To prove (b), note
first that by Zorn’s Lemma there is a maximfakuch thaty (E) andy (E) both hold. Since

all the parameters iy (E) and x (E) are fromM, we can (and will) assume thate M.
Suppose indirectly thak is countable. Thet C M. ConsiderE’ = DU {8} 2 E. ¢ (E’)
holds, becauséx € E,

(1. )\ r) N (12(B. k) \ ) Craler, k) N (11(B. k) \ M) C M N (t2(B. k) \ M) = 0.

x (E") holds, because by the assumption in {#),k) € By and (8, k)(9) ¢ M, whereas
(o, k) (0) ¢ M for everya € E. But thenE’ contradicts the maximality of, finishing the
proof of the claim. O

Now, if (8, k) € By and(B, k)(0) ¢ M, then fix anE satisfying (b); otherwise fix ai
satisfying (a). Let
E1= {a eE: (t1(a,k)\r)NM :(/)}.

Note thatE1 € N and E; is infinite (even uncountable). Let us define a function
by setting doniw) = E1 x {k} andv(w, k) = t1(c, k) \ r for every{a, k) € dom(v). Note
that v € N is as required in the statement of Proposition 4.1, so there are infinitely
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manyx = («, k) € dom(u) N dom(v) such that(x) = {Se [ A: & e v(x)}. If (B,k) € By
and (8,k)(0) ¢ M, then thex(9)’s for thesex are all distinct, so we can pick so
that (8, k)(0) # x(0) is also satisfied. This = («, k) then satisfiegRo), (R2), (R3) by
¢(a), (R1) by ¢(a) and(z1(e, k) \ r) N M = @ and(Ry), (Rs) by its definition.

5. X isnot countably paracompact: homogeneity of 8

Let us say thap (as defined in the previous sectionfihomogeneousiff & € H1 and

(H) xietn(Cp)implies thatthereis & € M N ¢ such thatOs N Cg C Bg’.
Proposition 5.1. Thereisan m € w such that g is not &,,-homogeneous.

Proof. Recall the definition ofZ,, andé&,, from the beginning of the previous section.
SinceX = ,,c, Zm,» We can pick and fix am € w such thatZ,, N Cg # ¢. Note that
&n € t1(B, m) C 11(Cp). On the other hand);,, N Cg = X N Cg = Cp is not contained in
anyBg’m, because botlﬂgm DZn annglm D X\ W, intersectCg. O

By &, € M N Hy, a contradiction (to X is countably paracompact”) will follow once
we prove the following result.

Main Lemma5.2. g is&-homogeneousfor every & € M N Hj.

The rest of this section will be devoted to the proof of the Main Lemma. Suppose
indirectly that there is a minimal € M N H1 such thatg is not 6-homogeneous, i.e.,
6 € 11(Cp) yetthere is ngy € M N ¢ such thatDy N Cg C B .

Then let us pick so big that(g, k) € Bs N Cp and with the notatioy[k] = {(B, j): j <
k}, the following conditions are satisfied:

(Ly) if FpN Cg #1, thenFy N y[k] # @;

(2r) if there are at least twp € ¢ such thatFep N Cg # ¥, then there are at least two

p € ¢ such thatF)) N y[k] # ;
(3) if there are at least twp € ¢ such thatB) N Cp # ¢, then there are at least two
p € ¢ such thatB) N y[k] # @;

(4) 6 €t1(B. k).

By (T1) in Section 4, there is & € w satisfying(1x)—(4x).

Now, let us fix anx = («, k) as in the Reflection Lemma 4.2 (for ofiabove).

Lemma5.3. y[k] C Vt(x)[é),K(x),n(x)(x)-
Proof. Sincex € N, it follows that K (x) € N and by the finiteness of (x), K(x) C N.

Sincep ¢ N, it follows thatCg N K(x) C Cg N N = . Since by(Ro), ylk] C Cg C
T (qn(x)), We conclude thag[k] C Vg k (x),nx)(x). O
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By induction ong we are going to show that for evefye dom(z (x)) N 6,
(Ie)  ylklc B (x)

holds.
Supposé € dom(z(x)) N6 and we have proved,) for n € dom(z(x)) N§&.
Then by completeness & x), k (x),n(x)(X),

YIk] C Vioyre. K ().n(o)(*) C U (x). (%)

The proof of (Ir) from (x) will be split into several cases depending éne
dom(z(x)) N 6.

Case 1(a). Suppose thdte H1 N M. Then byé < 6 and the minimality ob it follows
thatg is £-homogeneous. Now € dom(¢(x)) N H1 N M = t1(x) N M. By (R1) from the
Reflection Lemmas € 11(8, k) N M C t1(Cp). Hence by the definition af-homogeneity
thereis a € M N cwith O N Cp C B} . Making use of ¢), it follows that

yIk] C UE(x) N Cp = 0g(x) NCp C O N Cp C Bg.

In particular,y = (8, k) (£). By (R), y = x(£). Hencey[k] C B} = B}® = B.(x).

Case 1(b). Suppose& € H1 \ M. (Recall also that € dom(z(x)) N #.) Then¢ e
11(x) \ M, so by(Rs), Se[Ag € ug(x). By 1.2(b) in the definition oKBg)),KC, to prove
that y[k] C Bg(é) = Bg (x), we only need to show that[k] C (O \ Fr) U Fg(é). This
follows from the fact that byx), y[k] C Ug (x) = O (x). (Recall thatOg (x) = O¢ \ Fg,
if x € Og \ Fe, and Og(x) = (O¢ \ F¢) U ng(s) if x € F¢, and that in the latter case,

X&) =x(8).)
Case 2. Supposé € H». Then by Subcase 2.1 in the definition((ivtg’>p<c, to show

(Is)  ylkcBix)= [ V£,
pet(§)
it is enough to show that
(@) yIkl C U{(x) = pese) UE and
(b) 1(§) C N.
(a) follows by ¢), and (b) follows because& € dom(t(x)) and by x € N,
domt(x)) CN. O

6. The end of the proof of Main Lemma 5.2

Recall that at the beginning of the proof of the Main Lemma, we assumed indirectly that
there was a minimal € M N Hy such that8 was not9-homogeneous and then we chose
(B, k) € By N Cg with k big enough to satisfyl;)—(4;). To arrive at a contradiction we
will show thatg is 8-homogeneous.

To do this, note first that byR1) and (4), 0 € t1(B,k) "N M = t1(x) N M. Thus by
Lemma 5.3 and the completenessif), k (x),n(x)(x), we conclude that

Ikl C Vioyre, k (x),nx)(x) C Og(x).
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Claim 1. Fy N Cg # 0.

To see that Claim 1 is true, suppose indirectly tiiatN Cs = @. Note that byd e
M N Hy, S¢[Apg € Dg. Hence by (1.1a) of the definition thg),,q it follows that
By N Cg =9. On the other hand, by € 11(8, k) we have(g, k) € Bs N Cg, contradiction.

Claim 2. Thereisprecisely oney < ¢ suchthat F)' N Cp # 9.

By Claim 1, there is at least one sugh Suppose there are at least two. Then(®y),
there are at least twp < ¢ such thath’ N y[k] # @. On the other hand;[k] C Og(x) =
eitherOg \ Fyp or (Oy \ Fyp) U F;W), contradiction.

Next, letj € » be minimal with(g, j) € FyNCg = F) NCp. Note thatby(1y), (B, j) €
ylk].

Clam3. x e F(j/.

To prove Claim 3, note that b8, j) € Fy N y[k] we can’'t havey[k] C Op \ Fy. Hence
x € Fg andOy(x) = (0g \ Fs) U F, . Since(, j) € Fy N y[k] C Fy N Og(x), it follows
that(g, j) Fg(e). Since(B, j) € Fe” by the definition of(8, j), it follows thaty = x(6),
sox e F).

Claim4. y[k]C B} .

To prove Claim 4, recall from the proof of Claim 3, that kg, j) € ), (B, j)(©®)
—y = %(6) and thusy[k] C Og(x) = (0p \ Fs) U F\P7 Thusy[k] c B follows from
(1.1b(ii)) of the definition of(B§’>p<c.

To finish the proof thatg is 6-homogeneous, note first that by Claim 4,
(B,k)(0) =y =x(0) = x(0). Thus by(Rs), y € M. Further, by(3;), B;’ is the only
member of( B ), which intersect€s, i.e., B N Cg C B} . Finally note that by (1.1b) in
the definition of(B§’>p<c we haveBy N Cg = Og N Cg. Thusp is #-homogeneous contrary
to our assumption tha is a minimal counterexample.

7. Final remarks

(1) By adding the sete \ o) x @, « < ¢, to By at the beginning of the construction (and
leaving the rest of the proof unchanged) we can ntaklteft-separated.

(2) Several questions remain open.
Question 1. Is there a paraLindelof, collectionwise normal Dowker space?

Even just the following well-known problem [8] is hard.

Question 2. Is there a paraLindelof Dowker space?
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Question 3. Is there a metalLindeldf, collectionwise normal and first countable Dowker
space?

Question 4 (D. Burke). Is there a metalLindel®f, collectionwise normal and countably
paracompact space whichrist paracompact?

Not even consistency answers are known to Question 1-4.
Question 5. Is there a first countable Dowker space in ZFC?

There are, of course, many consistent examples of first countable Dowker spaces.
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