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Drought phenomenon is one kind of a disaster that can significantly affect the density of vegetation in any
area especially dry regions. This study tries to express the effect of drought on vegetation cover in Yazd-
Ardakan plain, central Iran. At first, annual average for SPI index was calculated from 1996 to 2015, and
then NDVI was calculated for May in 1998, 2000, 2009, 2010, 2011 and 2015. Afterwards, NDVI maps
were classified into three groups including no vegetation, poor vegetation (pastures), and dense vegeta-
tion (farmlands and gardens). Based on the results the worst value of drought was �1.92 in year 1999.
Besides, the annual SPI of 1996 with value of 2.4 was considered as the wettest year during study period
(1996–2015). The highest percentage of dense vegetation and poor vegetation were related to 2010 and
1998 respectively, and the lowest percentage for both classes was related to 2000. There was correlation
among the area of poor vegetation class in middle of spring and previous annual SPI at the significant
level of 95%. In contract, no correlation was found between dense vegetation class areas in middle spring
and previous amount of annual SPI. The study of the correlation between the SPI average and the percent-
age of vegetation classes indicated that pastures were highly sensitive to SPI changes; however, farming
lands showed less sensitivity in short term due to using deep wells.
� 2016 National Authority for Remote Sensing and Space Sciences. Production and hosting by Elsevier
B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
1. Introduction

As an unpleasant climatic phenomenon that directly affects
societies through the limiting access to water resources, drought
is also followed by some huge economic, social and environmental
costs (Goddard et al., 2003). This phenomenon is affected by rain-
fall, temperature, evaporation and transpiration, the content of
humidity in accessible soil and the condition of underground water
(Shahabfar et al., 2012; Montandon and Small, 2008).

Although meteorological information from ground stations has
good accuracy and is popular worldwide, the distribution and den-
sity of meteorological stations is insufficient for the required spa-
tial information detection (Brown et al., 2008; Unganai and
Kogan, 1998; Skandari et al., 2016).

The spatial extent of drought cannot be properly identified
unless there is a good distribution of meteorological stations
throughout the area. Even then, the requirement of time and cost
for the data preparation and chances of error, may hinder the pro-
cedures of drought mitigation. In this context, drought monitoring
through satellite based information has been popularly accepted in
recent years for its low cost, synoptic view, repetition of data
acquisition and reliability (Dutta et al., 2015). In addition to the
advantages mentioned, the Normalized Difference Vegetation
Index (NDVI) and the Vegetation Condition Index (VCI) have been
accepted globally for identifying agricultural drought in different
regions with varying ecological conditions (Ji and Peter, 2003;
Barati et al., 2011; Dutta et al., 2015). Satellite based NDVI is a use-
ful tool for measuring and monitoring environmental conditions
such as crop condition simulation, yield estimation, land degrada-
tion, dryland studies, etc. (Dutta et al., 2015; Aboelghar et al., 2010;
Mondal et al., 2014; Boori et al., 2015).

Drought monitoring projects in USA are of the most interesting
projects performed by some great organizations such as USDA,
NDMC and NOAA in which drought has been studied across USA,
and their up to date results are screened for the public access
(Water and Become, 2005).

The research was conducted by Hadian et al. (2013) revealed
that NDVI has a strong correlation with vegetation canopy. There-
fore, using NDVI in monitoring vegetation cover and its relation to
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meteorological parameters; in particular, precipitation might be
applicable.

Ji and Peter (2003) carried out a study on vegetation response to
accessible humidity by analyzing SPI and NDVI indices in the vast
deserts in the north of America. This study was completed on grass
vegetation and farming lands on the basis of three main goals
including the study of the relation among Standardized Precipita-
tion Index (SPI) and NDVI indices in various time scales, NDVI
response to SPI in various periods of growing season and regional
properties, and the relation between NDVI and SPI. They concluded
that the best cohesion between NDVI and SPI was three months.
Also, the best relation between SPI and NVDI in regions with low
capacity in storing water was obtained in soil. Finally, the most
important result was that NDVI is an effective index of humidity-
vegetation condition, but for monitoring drought with NDVI index,
seasonal scheduling should be also taken into consideration.
Fig. 1. The location o
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Yingxin et al. (2007) represented that there was a strong rela-
tionship among NDVI, NDWI and drought conditions by analyzing
NDVI and NDWI collected from 5-years images of MODIC sensor
for assessing drought in meadow of the great plain of America.
Bhuiyan et al. (2006) monitored drought dynamism in Arawali in
India by applying some meteorological indices and some indices
obtained from satellite sensors, from 1984 to 2003. In their study,
they utilized the SPI index for determining the rainfall deficit
amount and the standardized water level index for assessing short-
coming and drainage of the underground water. Rahimzadeh et al.
(2008) studied the possibility of using NDVI and VCI indices,
extracted from AVHRR sensor of NOAA satellite, for monitoring
drought in west north of Iran. They obtained the best cohesion
between NDVI and VCI by 3-month rainfall (current month plus
the past months), and in comparison with VCI, they found a better
conformity between the NDVI and the rainfall.
f the study area.
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Fig. 3. The elevation-precipitation diagram of 1996.
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Bevan et al. (2014) used NDVI regarding to changes in height in
order to verify the response of plants to drought in 2003 in Europe.
Jain et al. (2010) performed a study on the relationship between
SPI in time scale of 1, 2, 3, 6, 9 and 12 months with NDVI, VCI
andWSVI indices resulting from NOAA and AVHRR sensors in three
states of India. After establishing cohesion relations among such
indices in study areas, they concluded that the speed of vegetation
reaction to drought changes is different in various areas. In a
research at Australia, the relation between SPI and NDVI was stud-
ied in three time intervals of one, three and six months. The results
revealed that the most cohesion coefficient was between the six-
month SPI and NDVI (Caccamo et al., 2011); while the results of
the same study in America indicated that it was between the
three-month SPI and NDVI (Ji and Peter, 2003). It seems that the
properties of vegetation, period of study, soil properties and dis-
persion and intensity of rainfall are important factors that can
effect on the occurrence of the most cohesion coefficient between
NDVI and the delay period of SPI (Moreira et al., 2008). Results of
the research completed by Yazdanpanah et al. pointed out that
the 6 to 12-month SPI index has the most cohesion with NDVI
index (Yazdanpanah et al., 2014).

Alshaikh (2015) conducted a study to monitor and assess the
drought condition in Wadi-Dama, north KSA, in 1990 and 2013
using satellite remote sensing data analysis and GIS technology.
The results represented that the space technology application is
one of the most important methods for the drought assessment,
and also, remote sensing indices are the most effective means to
detect and monitor the earth surface globally.

Dutta et al. (2015) attempted to identify the spatio-temporal
extent of the agricultural drought over Rajasthan using remote
sensing based Vegetation Condition Index (VCI), and assessed the
performance of VCI by comparing the estimates with the meteoro-
logical drought indicator SPI, RAI and yield based the YAI index.
They found that NOAA-AVHRR NDVI which derived VCI estimates,
can be useful for monitoring the onset, the duration and the spatio-
temporal extent of the agricultural drought. The study also proves
and justifies the usefulness of remote sensing and GIS technique
Fig. 2. The location of the concer
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for identifying the drought related stress in rain-fed crops. Unlike
the meteorological data available in sparsely distributed meteoro-
logical stations, remote sensing based index VCI can be success-
fully used for delineating the spatio-temporal extent of
agricultural drought.

The purpose of this research is to classify the NDVI index of
Yazd-Ardakan plain, and also to compare the cohesion of these
classes of area with SPI index for determining areas in which veg-
etation shows a quick reaction to drought in Yazd-Ardakan plain.

2. Materials and methods

2.1. Study area

Yazd-Ardakan plain is a part of catchment area of Siahkouh
desert which is located in 53� 450–54� 500 eastern longitudes and
31� 150–32� 300 northern latitudes, almost in the center of Yazd
province (Fig. 1). The area of this region is 11775 Square kilome-
ters. The climate of this region is in type of desert dry with annual
average rainfall of 61 mm according to 18-years data. The scope of
this alluvial plain starts form foothill of Shirkouh (in the south),
ned meteorological stations.
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Table 1
SPI index Classes.

Class SPI Class SPI

Slight drought �0.8 to
�0.5

Exceptional wet
condition

>2

Medium drought �1.3 to
�0.8

Too severe wet
condition

1.6–2

Severe drought �1.6 to
�1.3

Severe wet condition 1.3–1.6

Too severe drought �2.8 to
�1.6

Medium wet condition 0.8–1.3

Exceptional (acute)
drought

< �2 Slight normal 0.5–0.8

– – Normal �0.5 to
0.5
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and it continues with a moderate gradient and in a valley like bed-
ding up to Siahkouh desert (in the north) over 120 km.

2.2. Methodology

2.2.1. Calculation of SPI average
The SPI that is accepted by the world climatic organization as a

reference drought index for the describing drought (Potop et al.,
2012) which is obtained from the Eq. (1):

SPI ¼ Pi� �P
S

S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xi

1

ðPi� �PÞ2

n

vuuuut ð1Þ

where

Pi = the Rainfall of the given period
S = the Standard deviation
P = the average of the Period of the rainfall
N = the Number of data in a single period
Table 2
Spectral properties of Landsat TM and OLI sensors.

Name of satellite Sensor Band No. Band spectral domain (micrometer)

LANDSAT TM 1 0.45–0.52
2 0.52–0.60
3 0.63–0.69
4 0.76–0.90
5 1.55–1.75
6 10.4–12.50
7 2.08–2.35

8-OLI 1 0.43–0.45
2 0.45–0.51
3 0.53–0.59
4 0.64–0.67
5 0.85–0.88
6 1.57–1.65
7 2.11–2.29
8 0.50–0.68
9 1.36–1.38
10 10.60–11.19
11 11.50–12.51

Table 3
The average of SPI in years of study.

Year Annual SPI Year Annual SPI Year A

1996 �0.79 2000 �0.36 2004 0
1997 0.35 2001 0.49 2005 �
1998 2.4 2002 1.16 2006 0
1999 �1.92 2003 0.77 2007 �
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Negative values of SPI index indicate drought, but the severity
of the drought and its classification in different resources can be
defined by considering conditions of that region in an optional
way. The studies indicate that it’s better to consider �0.5 as the
beginning of the drought in Iran (Hamedan Province Meteorologi-
cal General Department website: www.sinamet.ir). For calculating
this index, at first, by assessment of pluviometry stations informa-
tion existing in study area, rainfall data of 13 stations were selected
from April 1996 to March 2015. The dispersal of stations is shown
in Fig. 2.

In this research, for calculating the annual SPI index at first,
rainfall map for each period was obtained in ArcGIS9.3. For this
purpose, a diagram for the height-rainfall for each period was
drawn by using height of meteorological stations and the amount
of rainfall. Then by utilizing this diagram, the relation between
the height and the rainfall was obtained for each period. In Fig. 3,
the diagram is mentioned as an example for the height-rainfall in
1996.

Afterward, in ArcGIS9.3, height was replaced with DEM map
(Digital Evaluation Model) with 30 m precision in this relationship,
and the rainfall map for each period was obtained. As the next step
in ArcGIS9.3, the map of the period’s rainfall average and the per-
iod’s standard deviation were obtained by employing Eq. (1). After
this stage, the obtained map from the minus of rainfall map for
each period to the rainfall average map for total period was divided
to period standard deviation map. As a result, SPI map for the given
period was obtained. In the next stage, maps for SPI index were
classified by using Table 1 in which the numerical domain for var-
ious classes for that index was inserted. It should be noted that for
highlighting droughts, the number of SPI classes has increased
comparing to other studies.
2.2.2. Utilized satellite sensors
Multispectral Landsat TM and OLI images were used for obtain-

ing vegetation indices. Properties of TM and OLI sensor are given in
Name of spectral domain Resolution (meter) Coverage dimensions (km)

Blue 30 185 � 185
Green 30
Red 30
NIR Infrared 30
Middle infrared 30
Thermal Infrared 120
Middle Infrared 30
Coastal 30
Blue 30
Green 30
Red 30
NIR 30
SWIR 1 30
SWIR 2 30
Pan 15
Cirrus 30
TIRS 1 30 (100)
TIRS 2 30 (100)

nnual SPI Year Annual SPI Year Annual SPI

.4 2008 �0.74 2012 0.52
0.76 2009 0.35 2013 0.48
.39 2010 �0.82 2014 �0.23
0.31 2011 �0.64 2015 �0.45
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Table 2. These images relate to 1998, 2000, 2009, 2010, 2011 and
2015. Also, the images have been registered every year in May.
2.2.3. Pre-processing of satellite data
Raw images of remote sensing always have some errors in

geometry and registered amounts of pixels. First errors are named
Fig. 4. The zonation maps of the annual SPI (199
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geometric errors, and second ones are named radiometric errors.
Some of these errors are corrected in ground receiver stations,
but the images should be finally assessed by users and corrected
if necessary. Generally, corrections can be divided into two groups
including geometric corrections and radiometric corrections
(Lillesand and Kiefer, 1987; Jensen, 1996).
7, 1998, 1999, 2008, 2009, 2010 and 2014).
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Fig. 4 (continued)
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2.2.3.1. Geometric corrections. Geometric correction is the first step
for preparing satellite data. It can be done using ground control
points, measured by GPS or maps that are corrected geometrically.
Such maps could be satellite images of the region that are taken in
past years, or air images taken from the region with high precision
that are georeferenced utilizing ground region data. In that case,
geographical position of each point in image is like its position
on the ground. For geometrical correction in this research, applied
images were accessed from an ASTER sensor image already cor-
rected in geometrical terms. Also a numeric layer of roads and pro-
jections were made in image and the correction was completed
using this layer (Moreno, 1999; Jensen, 1996; Schowengerdt,
2007).
2.2.3.2. Radiometric corrections. Radiometric corrections are
employed for decreasing or deleting two types of main atmo-
spheric and machine errors. Atmospheric errors are the result of
atmosphere effect (absorption and scattering) on electromagnetic
energy. Such correction takes place in two steps; the conversion
of numeric value to the spectral radiance, and the conversion of
Fig. 5. The maps of NDVI (1998, 200
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the spectral radiance to the spectral reflectance (Jensen, 1996;
Schowengerdt, 2007).

By carrying out radiometric corrections, the effect of sunlight
angle difference caused by the difference in time among the
applied data is removed. Likewise, the spectral reflectance may
correct the difference in spectral ranges that are rooted in various
spectral bands (Xiajun and Lo, 2000).
2.2.4. Calculating and classifying NDVI
This is one of the most well-known herbal indices widely used

in most researches and satellite studies for determining vegetation
health and density which is explained through the Eq. (2) (Pôças
et al., 2013):

NDVI ¼ ðNIR � REDÞ=ðNIR þ REDÞ ð2Þ

where:

NIR: the Reflection of the light in NIR bands
RED: the Reflection of the light in red band

In this formula, NIR is near infrared band and R is red band. Its
domain is variable from �1 to +1. When vegetation is so good and
dense, this index is close to +1 and it decreases in case of vegeta-
tion destruction. To obtain this index, we have used ILWIS and
ENVI software.

After that, the index was classified in three classes including no
vegetation, poor vegetation (pastures) and dense vegetation (farm-
ing lands and gardens) exploiting supervised classification after
which the percentage area of each part was obtained. For assessing
the authenticity of prepared maps, ground truth and random
points which were taken from ground localization (positioning)
set were used.
3. Results and discussion

The average of annual SPI was calculated through ArcGIS 9.3
and using maps of Yazd-Ardakan plain SPI in period of 1996–
2015. The worst amount observed in drought indices in Yazd-
Ardakan plain for annual SPI is �1.92 in 1999, and the annual SPI
of 1996 with value of 2.4 was considered as the wettest year during
study period of 1996–2015 (Table 1).
0, 2009, 2010, 2011 and 2015).
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Current averages of the SPI in different years are illustrated in
Table 3. The most percentage of the area of dense vegetation and
poor vegetation classes is related to 2010 and 1998 respectively,
and the lowest percentage of the area for both classes is related
to 2000.

According to Table 3, the worst amount of drought that
occurred in period of 1996–2015 was related to year 1999, and
the year 1998 considered as the wettest year among all years
(Fig. 4). This might be because of annual insufficient precipitation
in Iran (Zehtabian et al., 2010). The same result has been obtained
by Bhat (2006) which showed 21.5% of India experienced inade-
quate annual rainfall and consequent severe drought was hap-
pened in most regions of the country.

Likewise, NDVI was calculated in order to highlight and rein-
force the difference in spectral reflection between vegetation. For
this purpose, TM and OLI sensors were used and the index map
was classified into three groups including no vegetation, poor veg-
etation (pastures) and dense vegetation (farming lands around
cities and cultured areas). Figs. 5 and 6 demonstrate samples of
NDVI and classification maps of Ardakan-Yazd plain. The area
and the percentage of each class are shown in Table 4.

Considering Fig. 6, the highest percentage of vegetation cover is
related to 2010, and the lowest percentage refers to 2000.
According to this, the most severe drought that has ever occurred
Fig. 5 (cont
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from 1996 to 2015 was in 1999; therefore, the lowest vegetation
in Yazd-Ardakan plain has been in the next spring which is 2000.

The results of Table 4 indicate that cohesion of the area percent-
age of the poor vegetation class relating to the middle of the spring
in each year. It shows a significant figures in 95% by the SPI of the
previous year. There was correlation among the area of poor vege-
tation class in middle of spring and previous annual SPI at the sig-
nificant level of 95%. In contract, no correlation was found between
dense vegetation class areas in middle spring and previous amount
of annual SPI. The reason is that, poor vegetation is related to pas-
tures and margins of waterways that supply their own need for
water from atmospheric rainfalls. This result corresponds to the
researches accomplished by Ji and Peter (2003) and Jain et al.
(2010).

Since the used satellite images are for late May and early June,
drought index in the past year should be used in order to study the
effect of drought on vegetation. Hence, areas percentage cohesion
of the classes of dense and poor vegetations for 1998, 2000,
2009, 2010,2011 and 2015 were studied by the SPI in 1997,
1999, 2008, 2009, 2010 and 2014 in SPSS software by applying
Pearson test. The results are provided in Table 5.

In Fig. 7, a diagram of vegetation areas percentage which is the
total percentage of two classes of dense and poor vegetation is
provided.
inued)
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Fig. 6. The maps of vegetation classes (1998, 2000, 2009, 2010, 2011 and 2015).
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4. Conclusion

This study analyzed the relationship between NDVI and SPI in
Yazd-Ardakan Plain during the growing season. Based on the
Please cite this article in press as: Khosravi, H., et al.. Egypt. J. Remote Sensing
results there is a positive correlation between NDVI and SPI that
means more rainfall lead to more vegetation cover. It can be said
that NDVI and precipitation index have a strong correlation where
water is a major limiting factor for plant growth.
Space Sci. (2016), http://dx.doi.org/10.1016/j.ejrs.2016.11.007
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Table 4
Results retrieved from satellite vegetation indices.

Classes
Year

Dense vegetation Poor vegetation No vegetation

Area (km2) Percent Area (km2) Percent Area (km2) Percent

1998 581.89 4.98 1640.47 14.04 9461.97 80.98
2000 394.93 3.37 784.02 6.71 10505.38 89.91
2009 747.23 6.4 1297.67 11.11 9639.43 82.50
2010 944.97 8.09 1430.32 12.24 9309.04 79.67
2011 754.53 6.46 1259.11 10.78 9670.69 82.77
2015 690.05 5.94 1289.95 11.04 9700.33 83.02

Fig. 7. Diagram of time changes on percent of vegetation area.

Table 5
Results of cohesion of the percentage of areas for dense and poor vegetation classes
with previous year.

Poor vegetation Dense vegetation

Pearson cohesion SPI (previous year) 0.943 0.647
Sig. (2-tailed) 0.016 0.238
Number 5 5
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Any changes in amount of rainfalls affect vegetation classes
immediately. However, dense vegetation class is related to farming
lands, gardens around cities and villages. In those regions irrigating
water is mostly supplied by deep and half-deep wells. The results
also indicate that the highest correlations occurred during the mid-
dle of the growing season. This was likely due to sensitivity of
plants to water availability during their growing season. This sea-
sonal effect needs to be taken into account when regression tech-
niques are used to quantify the NDVI and SPI relationship.

As a result, drought has not been able to cause a significant
change in the area percentage of the dense vegetation. The tempo-
ral variations of NDVI anomaly are closely linked with SPI and have
strong linear relationship with SPI. It should be noted that in the
south west part and partly west of Yazd-Ardakan plain in which
foothill Qanats provides vegetation water requirements, the area
of the dense vegetation class is affected by drought. However,
the relation between drought and the area of the dense vegetation
class doesn’t show any significant correlation. Regarding to define
vegetation classes by NDVI maps, we can say there is a positive
correlation between annual SPI (with delay) and the vegetation
area of pastures as well as waterways margins.

There is no correlation between SPI and NDVI of farming lands
and gardens with two months delay. The combination of remote
sensing, NDVI vegetation data and climatic indexes are suitable
for estimation of land cover changes (Zarei et al., 2016). It can be
noted that NDVI can be a proper indicator of moisture condition
and can be used as an important data source for detecting and
monitoring drought in the arid and semiarid regions.

According to the results of this research, monitoring the
drought needs simultaneous use of the climatic data and satellite
Please cite this article in press as: Khosravi, H., et al.. Egypt. J. Remote Sensing
images to obtain better results which is compatible to the research
of Himanshu et al. (2015). Additionally, researches with more
satellite images are needed to make mentioned facts about drought
and its effects on vegetation more precise.
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