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In this paper we introduce a concept of quasiconjugate for functions detined on 
R” whose values are in ii. The conjugacy correspondence between functions and 
their quasiconjugates is one-to-one and symmetric in a class of quasiconvex 
functions whose minimizer on R” is located at the origin. By using the concept of 
quasiconjugate we obtain a duality relationship between Quasiconvex Minimization 
under a Reverse Convex Constraint and Quasiconvex Maximization under a 
Convex Constraint. This duality relationship allows us to establish a primaldual 
pair in a class of nonconvex optimization problems without the duality gap. 
Several applications are given. (0 1991 Academic Press. 1~. 

1. INTRODUCTION 

In Global Optimization theory there are two typical problems that are 
convex (or more generally, quasiconvex) maximization over a convex set 
and convex (or more generally, quasiconvex) minimization over the com- 
plementary of a convex set. These two problems are often called Concave 
Program and Reverse Convex Program, respectively. In Concave Program 
due to the objective function a local optimum may not be a global one 
whereas in Reverse Convex Constraint due to the constraint a local 
optimum may not be a global one. By an additional variable a concave 
program can be converted into a reverse convex program. Therefore, 
Reverse Convex Program is seemingly more complicated than Concave 

* The first draft of this paper was prepared during the author’s stay at Sophia University 
(Tokyo) and the revision was prepared during the author’s stay at the University of 
Technology, Graz (Austria). 
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Program. But in this paper we shall see that Concave Program and 
Reverse Convex Program actually have the same level of difficulty. 

Concave Program was studied first by H. Tuy in 1964 (see [34]). Up to 
now Concave Program has attracted numerous algorithmic studies (see, 
e.g., Zwart [42,43], Taha [26], Tuy [35], Thoai and Tuy [31], Hoffman 
[12], Falk and Hoffman [S], Mukhamediev [17], Horst [14, 151, Tuy, 
Thieu, and Thai [36], Rosen [20], Rosen and Pardalos [21], and their 
references). Reverse Convex Program was studied later (see, e.g., Hillestad 
and Jacobsen [9,10], Singer [22], Tuy [37], Tuy and Thuong [38,39], 
Muu [18], Thach [27], Thoai [32], Fulop [7]). In [37] Tuy show that 
under the stability condition a reverse convex program can be systematically 
reduced to a sequence of linearly constrained convex maximization 
problems. 

The purpose of this paper is to present a duality relationship between 
Concave Program and Reverse Convex Program. A concave program 
corresponds to the dual problem (in the dual space) which is a reverse 
convex program and a reverse convex program corresponds to the dual 
problem (in the dual space) which is a concave program. The 
correspondence is symmetric. If an optimal solution of the dual problem 
has been known then by solving an ordinary convex program we can 
obtain an optimal solution of the primal problem. In some cases, by the 
existing methods, the dual problem is much easier than the primal one and 
hence instead of solving the primal we can solve the dual. By this way we 
obtain a new approach for algorithmic studies for Concave Program and 
Reverse Convex Program. The duality relationship is based on a concept 
of quasiconjugate of functions. 

The paper is organized as follows. In Section 2 we introduce a con- 
cept of quasiconjugate for functions defined on R" whose values are in 
i? (R = R u { f co } ) and give several illustrative examples. In Section 3 
we give some basic properties of quasiconjugates and conjugacy corre- 
spondences between a function and its quasiconjugate. In Section 4 we 
introduce a relation between quasiconjugates and quasiconvex hulls 
of functions. In Section 5 we establish a duality relationship between 
Concave Program and Reverse Convex Program. In Section 6 we give 
some applications. Finally, we devote Section 7 to discussions. 

2. QUASICONJUGATES OF FUNCTIONS 

DEFINITION 2.1. Let f: R" -+ R be an arbitrary function. We call the 
quasiconjugate off, denoted by f “, a function defined as 

-inf{f(x): (x, u) > l} 
f”(u)= (-sup(f(r): XE R") 

if IJE R"\(O) (1) 
if u =O. (2) 
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By Definition 2.1, if u # 0 then 

f”(o) = -inf{f(x): (x, u) > l} > -sup{f(x): XE R”} =f”(O). 

Therefore, the quasiconjugate functionfH has always a minimizer at 0, i.e., 

f”(0) =min{fH(u): u E R”}. (3) 

Let us consider several examples. 

EXAMPLE 2.1. f(x)=c.f*(u)= -c (c is a constant). 

EXAMPLE 2.2. f(x)= IIxl1*. 

( II.11 denotes the euclidean norm). 

EXAMPLE 2.3. f(x) = xTAx, where A is a positive definite n x n-matrix 
and T is the transpose. 

where u(u) = (A + AT)-’ u/uT(A + AT)-’ u. 

Examples 2.1-2.3 can easily be checked. 

EXAMPLE 2.4. Let Y be a compact convex set in R” containing 0 
(assuming Y# (0)) and 

f(x)=max{(Y,x), YE Y}. 

Since Y is a compact convex set and 0 E Y, one has Yoo = Y (where Y” 
denotes the polar of Y: Y”= {XC R”: (x, JI) 6 1 V~C Y}, and Yoo the 
bipolar of Y). Therefore, f( .) is the minkowski functional of Y”. Since Y 
is compact, Y” contains 0 in its interior. One has 

f”(O)= -sup{f(x):x~R”} = -co. 

Suppose that u # 0 and 

--c1 =fH(u)= -inf(f(x): (x, u) 2 l}. 
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Since f( . ) is the minkowski functional of the convex set containing 0 in its 
interior, one has a > 0. By the duality principle in Tuy [37] one has 

a = inf{f(x): (x, 21) 2 l} -21=max{(x,o):f(x)<cr}. (4) 

Since f( . ) is the minkowski functional of Y”, one has 

{x:f(x)<a}=aYO. 

From (4) this implies 

1=max{(ax,u):x~Y~}=amax{(x,u):x~Y~}. 

SO, 
U=l/max{(x,u):xE Y”} 

or 

f”(u) = - l/max{ (x, u): XE YO}. 

From the above examples we can obtain many others by noting that 

(;lf)” = 1 .f VA>0 (5) 

(f+a)“=fH-a Va. (6) 

3. BASIC PROPERTIES OF QUASICONJUGATE FUNCTIONS AND 
CORRESPONDENCE BETWEEN FUNCTIONS AND THEIR QUASICONJUGATES 

THEOREM 3.1. Let f: R” + R be an arbitrary function. The quasi- 
conjugate function f H is quasiconuex on R” and satisfies 

f”(mf”(w VUER”, VIE [0, 11. (7) 

ProofI It is obvious that (7) is true if u = 0. In view of (3) we also see 
that (7) is true for A= 0. Now let u # 0 and I E (0, 11. Then, one has 

{x: (u,x)~l}~{x:~(u,x)bl} 

*inf{f(x): (u, x) 2 l} <inf{f(x): (Au, x) 2 l} 

*f”(u)af”(nu). 

Thus, (7) has been proved. We are going to prove that f H is quasiconvex, 
i.e., 
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for all u,, v2 and all AE [0, 11. If either vi =0 or v,=O then from (3) and 
(7) it follows (8) for all RE [0, 11. If both vI and u2 are nonzero vectors 
then one has 

{x: (h, f (1 -A) u2, x) < 1) 

2 {x: (u,, x) < 1) n {x: (u,, x) < 1} 

*{x: (IuY,+(1-2)u2,x)3 1) 

~{x:(u,,x)31}u{x:(uz,x)>l) 

*inf(f(x): (Au, + (1-A) u2, x) 2 1) 

>min(inf{f(x): (u,, x) 2 l}, inf(f(x): (uz, x) 2 1) 

*-inf{f(x):(Iu,+(l-L)u,,x)>l} 

d -min{inf{f(x): ( ul, x> 2 I}, inf{f(x): (u2, x> > 1)) 

= max{ -inf{f(x): ( u,,x)Bl}, -inf{f(x): (u,,x)> 1)) 

-fH(lul +(I -A) v2)~max{fH(ul),fH(U2)}. I 

DEFINITION 3.1. We say that a functionf: R” + R achieves the maximum 
value at the infinite if j-(x,) -+ sup{f(x): XE R”} for any sequence {xnj 
such that llxnll + + co. 

LEMMA 3.1. Assume that f: R” -+ R achieves the maximum value at the 
infinite. Zf f is lower semi-continuous (kc) then it has a minimizer on every 
nonempty closed subset of R”. 

Proof Let M be a nonempty closed set in R”. Since f is lsc, it has 
a minimizer on any compact set. Therefore, if f has no minimizer on M 
then there exists a sequence {x,} G A4 such that jjx,jj -+ + CC and 
f(x,) -+ inf{ f(x): x E M}. Thus, by Definition 3.1 one has 

sup{f(x):xER”}= lim f(x,)=inf{f(x):xEM}. 
n-a 

Therefore, f(x) = const for every x E M. This conflicts with the fact that f( .) 
has no minimizer on M. 1 

THEOREM 3.2. Zf f is continuous at 0 and 

f(O)=inf{f(x):xE R”} (9) 

then f H achieves the maximum value at the infinite. And if f achieves the 
maximum value at the infinite then f H is continuous at 0 and 

f H(O) = inf{ f H(v): v E R”}. 
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Proof: Assume that f is continuous at 0 and (9) occurs. Then, 

sup f”(v) = sup -inf{f(x): (u, x) 2 1) 
iJER" IJER" x 

= sup sup {-f(x): (u, x) B l} 
vcR" x 

= sup -f(x)= - inf f(x) 
xeR"\(O} xsR"\{O} 

= - ,‘:i” f(x) = -f(O). 

Let {o,} be a sequence of vectors in R” such that Iju,Il + cc (n + co). Then, 

fH(u,) = -i;f{f(x): ( x9 0”) 2 1) 2 -f(~“lllb2112)~ 

Since lIu,/ll~,l1211 = l/llu,ll +O (n + co), this implies that 

$nm f”(U”) 2 -f(O) = sup f”(u). 
VCR" 

So, f” achieves the maximum value at the infinite. In order to prove the 
second assertion it remains to prove that f H is continuous at 0 when f 
achieves the maximum value at the infinite. Suppose that {un} is a 
sequence of vectors in R” such that u, --* 0 (n + co). For each n there must 
exist a point x, such that 

(X”, %> 2 1 (10) 

f(x,) < inf{f(x): (4 0, > 2 1 > + l/n. (11) 

Since u,+O (n+co), from (10) it follows that Ilx,II --f cc (n + co). 
Therefore, f(x,) tends to sup{f( x : XE R”}. From (11) it follows that ) 

Jim, linf{f(x): ( 4 0”) 2 l} -j-(x,)1 =o. 

So, one has 

JimmYH(U,)=Jirna{ -inf{f(x): (x, u,)> l}] 

= lim -f(x,)= - lim f(x) 
n-02 “-CC 

= -sup{f(x): XE R”} =f”(O). 

Thus, S” is continuous at 0. 1 
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THEOREM 3.3. Zf f is upper semi-continuous (USC) then f H is kc. Zf f is Isc 
and achieves the maximum value at the infinite then f H is USC. 

Proof: Since the point-to-set map v H {x: (v, x) > 1 } is lsc at any 
v # 0, from the upper semicontinuity off it follows that the function 

v~inf{f(x): (v,x)>l} 

is USC at any v # 0 (see, e.g., Fiacco [6, Theorem 2.2.1 I), and hence the 
function f H is lsc at any v # 0. Further, from (3) it follows that f H is always 
lsc at 0. Thus, f” is lsc on R” when f is USC. Now, assume that f is lsc and 
achieves the maximum value at the infinite. Suppose that (vn} + 17. We 
need prove that 

7 lim f”(v,)<f”(C). 

By Lemma 3.1, for each n there exists x, such that 

(12) 

f”(v,)=-inf{f(x):(v,,x)21}=-f(x,). 

For any subsequence {x,J such that IIx,J + cc one has 

lim f”(v,,)=lim -f(x,j= -1im f(x,) 

= -sup{f(x):xER”}=fH(0)<fH(fi). (13) 
- - 

On the other hand, for any subsequence {xn,> -+ X we have (x, v) > 1. 
Therefore, by virtue of the lower semicontinuity off one has 

lim(x,J2f(4 

* -l&-(x,J < -f(X) 
- 

= hm -f (xJ d -f(X) 
- 

*f”(G)> -f(.?)>iG -f(x,,)=l~mfH(v,5). 

From (13) and (14) it follows (12). 

(14) 

DEFINITION 3.2. A function f: R” + 1 is said to be strictly quasiconvex 
in the weak sense at a E R” if for all x E R” satisfying 

f(a)<f(x)<sw{f(z):zER”) 

one has 

f(nx+(l-l)a)<f(x) VA E (0, 1 ), 
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DEFINITION 3.3. A function f: R” --f R is said to be strictly quasiconvex 
in the weak sense on R” if it is strictly quasiconvex in the weak sense at 
each point in R”. 

It can be easily seen that, in the general case, the strict quasiconvexity 
(see, e.g., Mangasarian [16]) implies the strict quasiconvexity in the weak 
sense. But, if either sup { f ( x :x~R”}=cc orf(.) hasnomaximizeron R” ) 
then the strict quasiconvexity in the weak sense is equivalent to the strict 
quasiconvexity. 

THEOREM 3.4. Assume that a Isc function f achieves the maximum value 
at the infinite and f(0) = inf{ f( x : x E R”}. Zf f is strictly quasiconvex in the ) 
weak sense at 0 then f” is strictly quasiconvex in the weak sense on R”. 

Proof: First, we prove that f” is strict quasiconvex in the weak sense 
at 0. Let V be a vector in R” such that 

f H(O) <f”(v) < sup{ f “(v): u E R”} 

and let 1 E (0, 1). If f “(AC) <f H(O) then f “(0) > f “(16). Now, suppose that 
f”(,G) > f H(O). By Lemma 3.1 there is X such that 

(2, 26) 2 1 

f”(W=-inf{f(x):(lo,~)>l)=-f(x). 
(15) 

In view of (7) we see that 

-f(~)=f”(~~)<f”(~)<sup(f*(v):v~R”} 

= sup{ -ivf{f(x): (x, v) 3 1)) 
” 

= -infinf{f(x): (x, v) 2 l} 
IJ ” 

< -inf{f(x): XE R”} = -f(O). 
x 

So, f (2) > f(0). Since f “(AC) > f H(O), one has 

sup{f(x):xER”}= -f”(O)> -f”(nv)=f(x). 

Therefore, 

f(O)<f(i)<sup{f(x):xER”). 

Since f is strictly quasiconvex in the weak sense at 0, this implies that 

-f(X)< -f(G)< -inf{f(x): (x, V)> 1) =f”(C). 
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Combining this and (15) yields f”(6) >f”(G). So, J’” is strictly quasi- 
convex in the weak sense at 0. 

Now, let u1 and u2 be two vectors in R” such that 

f”(ol) <fH(u,) < sup.{f”(u): UE R”j. 

Assume that there is 1 E (0, 1) satisfying 

f”(u1+ A(u, - u,)) =.Y(u,). 

Then, from the quasiconvexity offH it follows that 

.Ph+ Nu, - Ul)) =.Y(u*) vee [i, 11. 

Denote by S the set {UE R”:fH(u) <fH(u2)} and by M the line segment 
[u, + A(u, - vi), u2]. Since f is lsc and achieves the maximum value at the 
infinite, by Theorem 3.3 S is an open set. It is clear that S n M = $25. 
Therefore, S and M can be separated by hyperplane {u: I(u) = 0}, i.e., 

I(u) < 0 VUES (16) 

I(u)>0 VUEM, (17) 

where 1( .) is an affine function on R” (see, e.g., Tuy [do], Holmes [ 131). 
On the other hand, since 

sup f”(u) >Y(U*) =fH(u, + A(r, - 01)) >f”(r,) >f”(O), 
OER” 

from the strict quasiconvexity in the weak sense offH at 0 it follows that 

f”(h) <“P(h) WE(O,l) 

f”(e(u, + 44 -u,))) <Y(Q) VeE (0, 1). 

This implies that 
eu, E s WE(0, 1) 

qu, + A(u, - Ill)) E s VBE (0, 1). 
Therefore, 

z(eu,) < 0 vee (0, 1) 

4@01+ 44 - u,))) < 0 WE(O,l). 

Letting 8+ 1 we obtain l(u,)<O and l(u,+1(u,--u,))<O. So, from (17) 
one has I(Q) = 0 and l(u, + I(u, - ul)) = 0. This means that the hyperplane 
{u: Z(u) = 0) contains the line passing through u1 and u2. Therefore, 
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I(u,) = 0. Since ur ES, we arrive at a contradiction with (16). So, we must 
have f”(vl+n(v,-u,))<fH(uZ) for all 1~(0, 1). Thus, f” is strictly 
quasiconvex in the weak sense on R”. 1 

4. QUASICONVEX HULLS AND BIQUASICONJUGATES OF FUNCTIONS 

First, we introduce a concept of quasiconvex hull of functions. 

DEFINITION 4.1. Let f: R” + i? be an arbitrary function. A function h is 
called a quasiconvex hull off if 

{x:h(x)<cr}=conv{x:f(x)<cr} VaEK. (18) 

PROPOSITION 4.1. For any function f: R” + 1, a quasiconvex hull off 
always exists and it is unique. 

Proof: For any a E i?, one has 

so, 

{x:f(x)<a> =.vp {x:f(x)<B>. 

Define 

conv{x: f(x) < a} = U conv{x: f(x) < /I}. 
a>S 

(19) 

h(x)=inf ,~:xE u conv(x:f(x)</?} . 
i Y=-8 I 

(20) 

Then, we obtain the function h: R” + R. We are going to prove (18). Sup- 
pose that h(Z) <a. From (20) this implies that there exists y smaller than 
a such that ZEuE,Bconv(x:f(x)</?}. Since y<a, from (19) it follows 
that Z~conv{x: f(x)<a}. Conversely, suppose that X~conv{x: f(x)ca}. 
From (19) it follows that there is y smaller than a such that 
XE conv(x: f(x) c r}. Then; (20) implies that h(Z) < y. So, h(Z) <a. 

To complete the proof it remains to prove that a quasiconvex hull off 
is unique. Suppose that h and g are quasiconvex hulls off: By the definition 
of quasiconvex hull one has 

{x: h(x) <a} = {x: g(x) < a} Va. 

This implies that h(x) = g(x) for all x E R”, i.e., h = g. i 

PROPOSITION 4.2. The quasiconvex hull of a function f is the greatest 
quasiconvex function majorized by J 
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Proof: This proposition can readily be deduced from the definition. 1 

We go on with the definition of biquasiconjugate of functions. 

DEFINITION 4.2. Let f: R” + i? be an arbitrary function. The quasicon- 
jugate of the function f” is called the biquasiconjugate off and denoted by 
f”“. 

The following theorem will give a relation between the quasiconvex hull 
and the biquasiconjugate of a function. 

THEOREM 4.1. Let f: R” + a be an USC function satisfying 

f(O)=inf{f(x):xER”\(O}}. (21) 

Then, the biquasiconjugate off coincides with its quasiconvex hull. 

Proof. We need first the following lemma. 

LEMMA 4.1. Let f: R” + i? be an arbitrary function. Then, one has 

fHH(0)=inf{fHH(x):x~R”\{O}} 

=inf{f(x):xER”\{O}} (22) 

f(xDf""(4 VXE R”\(O). (23) 

Proof: Let XE R”\(O). One has 

fHH(x)= -inf {fH(v): (0, x) 2 l} 
” 

= -inf{ -inf{f(z): (v, z) 3 l}: (0, x) 2 l} 
” z 

=sup{inf{f(z): (21, z) 2 1): (0, x) > 1) 
” i 

Gsup{f(x): (v, x) 2 1} = f(x). 

Thus, (23) has been proved. By definition one has further 

f""(O)= -sup,{f”(v): VER”} 

= -sup{ -inf{f(x): (v, x) B 1) 
” x 

=inf{inf{f(x): (x, v)> 1)) 
t’ x 

=inf{f(x): XE R”\(O)}. 
x (24) 
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Combining this and (23) yields 

fHH(0)~inf{fHH(x):~~R”\{O}}. (25) x 

But by virtue of (3) one has 

f”“(0) = inf{fHH(x): x E R”). (26) 

From (24), (25), and (26) it follows (22). i 

Now, we turn to prove Theorem 4.1. From Lemma 4.1 and (21) it 
follows that 

{x:f(x)<a}s {x:f”“(x)<a} VaER. 

Moreover, since f HH is quasiconvex (Theorem 3.1), the set {x: fHH(x) < a} 
is convex and hence it must contain conv{x: f(x) < a}. We are going 
to prove the inverse inclusion, i.e., {x: f”“(x) < a} E conv(x: f(x) < a}. 
Indeed, let X4 conv(x: f(x) < a}. Since one has 

f”“(0) =inf{fHH(x): XER”} =inf{f(x): XER”} =f(O), 

if a <f(O) then {x: fHH(x) < a} = @ and hence x $ {x: f”“(x) < a}. Now, 
suppose that a >f(O), i.e., 

OE {x:f(x)<a}Sconv{x:f(x)<a}. (27) 

Since x does not belong to the open convex set conv{x: f(x) < a}, there is 
a hyperplane separating X from conv{x: f(x) < a} (see, e.g., Tuy [40] or 
Holmes [13]). Furthermore, from (27) it follows that the separting hyper- 
plane can be taken as a form {x: (6, x) = 1 } where 0 satisfies 

(V,X)>l (28) 

(V,x)<l VxEconv{x:f(x)<a}. (29) 

From (29) it follows that inf(f(x): (x, U) > l} 2 a. So, 

f”“(x) = -inf{fH(u): (u, X) > l} 2 -f”(G) 

=inf{f(x): (x, O)a l} 2a. 

Therefore, X $ {x: f”(x) < a}. Thus, 

{x:fHH(x)<a}Gconv{x:f(x)<a} 
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and hence 

(x: f”“(x) < a} = conv(x: f(x) < a} 

(for all c1 E 1). By the definition, f”” is the quasiconvex hull off: 

COROLLARY 4.1. Let f: R”+ K be an USC function satisfying (21). Iff is 
quasiconvex then f HH = J: 

ProoJ Since the quasiconvex hull of f is the greatest quasiconvex 
function majorized by f, the corollary is immediately deduced from 
Theorem 4.1. 1 

COROLLARY 4.2. If f is an USC quasiconvex function satisfying (21) then 
f H is a quasiconvex function satisfying 

fH(0)=inf(fH(v): VER”\(O}}. (30) 

Proof. Since f”” = A it follows that f H = (f”“)” = (f H)HH. Then, by 
virtue of Lemma 4.1 one has (30). 1 

THEOREM 4.2. Let f: R” + R be a function satisfying (21). Zf f is lsc and 
achieves the maximum value at the infinite then f”” is the quasiconvex hull 
off and 

{x: f”“(x)<a} =conv{x: f(x)<cr}. (31) 

ProoJ: By (21) and Lemma 4.1, one has 

fHH(O)=inf(fHH(x):x~R”\{O})=inf{f(x):x~R”\{O})=f(O) 

and 

{x: f ““(x) < a} 1 (x: f(x) < cl} 

Since {x: f”“(x) < a} is convex, this implies 

t/a. 62) 

{x: f”“(x)<a} Iconv{x: f(x)<u} Va. (33) 

Now we prove the inverse inclusion. Let x$conv{x: f(x) < a}. Since 
x < CI 

l!sx~~(to~ x* buch that 
is a compact set, conv{ x: f (x) < CC} is closed. Therefore, there 

<x*, x) 2 1 (34) 

<x*,y> < 1 vy: f ( y) G a. (35) 

409/159’2.2 
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By Lemma 3.1 this implies 

inf{f(v): (x*, y) > l} >a. 

so, 

(36) 

f”“(x) = -inf{fH(u): (u, x) > l} > --f”(y) 

=inf{f(y): (x*,y)>l}>a. (37) 

Therefore, one obtains (31). Let h be a quasiconvex function majorized 
by f. For any a, one has 

{x:h(x)<a}3{x:f(x)<a} 

*{x:h(x)da} =~conv{x:f(x)<a}= (x:fnn(x)<a}. 

Thus h(x) <f”(x). So, f”” is the quasiconvex hull ofJ: 1 

COROLLARY 4.3. Let f be a IX, quasiconvex function satisfying (21). Zff 
achieves the maximum value at the infinite then f HH = f. 

5. DUALITY RELATIONSHIP BETWEEN QUASICONVEX MAXIMIZATION 

UNDER A CONVEX CONSTRAINT AND QUASICONVEX MINIMIZATION 

UNDER A REVERSE CONVEX CONSTRAINT 

We consider a quasiconvex maximization over a convex set 

max{f(x):xED}, (P) 

where f( .) is an USC quasiconvex function and D a compact convex set. 
Even in a special case where f is a convex quadratic function and D is 
defined by a finite number of linear inequations, this problem is NP-hard. 

DEFINITION 5.1. A quasiconvex maximization over a convex set, (P), is 
said to be in the standard form if D contains 0 and 

f(O)=inf{f(x):xER”}. 

Note that any quasiconvex maximization problem (P) can be easily 
transformed into the standard form. Indeed, let ZE D. Set B = D - z, 
f(x) = max{f (z), f(x + z)}. Then 0 E 6, f is USC, and f(0) = 
inf{f(x): XE R”}. Problem (P) is equivalent to max{f(x): xeb} which is 
in the standard form. 
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Now we consider a quasiconvex minimization over the complementary 
of a convex set 

min(g(x): x E R”\int G}, (Q) 

where g( .) is a kc quasiconvex function achieving the maximum value at 
the infinite and G is a closed convex set with the nonempty interior. 

DEFINITION 5.2. A quasiconvex minimization over the complementary 
of a convex set (Q) is said to be in the standard form if 0 E int G and 

g(O)=inf{g(x):xER”\{O}}. 

We see that problem (P) can be regarded as a special case of a more 
general one 

min{ g(x): x E M\int G), (38) 

where g( .) is a lsc quasiconvex function achieving the maximum value at 
the infinite and M, G are closed convex sets (M is not singleton). Problem 
(38) is often called a d.c. programming (see Tuy [41]). Even in a special 
case where g( .) is a constant function, M is defined by a linite number of 
linear equations and G is a sphere, problem (38) is NP-Complete. 

Suppose that by minimizing function g( -) on M we obtain a solution z. 
If z # int G then we are done: z is also an optimal solution to (38) (the 
reverse convex constraint is not essential). Otherwise we can transform (38) 
into a quasiconvex minimization over the complementary of a convex set 
in the standard form. Indeed, by setting 

G=G-z, g(x) = min{ g(z), g(x + z) + 6(x + z 1 M)} 

problem (38) can be transformed into 

min( g(x): x $ int G}, 

where 0 E int G, g is lsc, quasiconvex, achieves the maximum value at the 
infinite and satisfies g(0) = inf{ g(x): x E R”\(O)}. 

In the sequel we introduce definitions of dual problems of (P) and (Q), 
respectively. 

DEFINITION 5.3. (i) Suppose that (P) is in the standard form. The 
problem 

min{fH(u): UE R”\int Do} 

is called the dual problem of (P). 

(p*) 
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(ii) Suppose that (Q) is in the standard form. The problem 

max{ g”(u): u E Go} (Q*) 
is called the dual of (Q). 

We see that if a quasiconvex maximization over a convex set (P) is in the 
standard form then its dual is a quasiconvex minimization over the comple- 
ment of a convex set and the dual is also in the standard form. Indeed, 
since D is a compact set, Do contains 0 in its interior and since f is USC, 
quasiconvex and satisfies 

it is continuous at 0. By Theorems 3.2, 3.3, and Corollary 4.2, f” is a lsc 
quasiconvex function achieving the maximum value at the infinite and 
satisfies 

f”(0) = inf fo(x). 
XR” 

Analogously, the dual of (Q) is a quasiconvex maximization over a convex 
set in the standard form. Furthermore, since Do0 = D and f HH =f (see 
Corollaries 4.1 and 4.3), we see that the dual problem of (P*), denoted by 
(P**) is nothing but (P). Analogously, one has (Q**) is the same as (Q), 
So, we obtain an one-to-one correspondence between a class of quasicon- 
vex maximization problems with a convex constraint in the standard form 
and a class of quasiconvex minimization problems with a reverse convex 
constraint in the standard form. The correspondence is symmetric. Before 
giving the duality relationship between (P) and (P*), let us recall the 
definition of a normal cone. 

DEFINITION 5.4. Let C be a closed convex set in R”, x a point in R” (x 
does not necessarily belong to C). The cone 

{vER”: (v,z-x)<OVZEC} 

is called the normal cone to C at x and is denoted by N(C, x). 

THEOREM 5.1. Let (P) be a quasiconvex maximization over a closed 
convex set in the standard form ‘and (P*) the dual of (P). One has the 
following duality relationship. 

(i) -sup(P) = inf(P*). 
(ii) If X is an optimal solution to (P) then every minimizer off H on 

the halfpace {u E R”: (2, v ) 2 1 } is an optimal solution to (P*). 
(iii) Zf V is an optimal solution to (P*) then for any ZEN(D’, O)\(O) 

the vector x/l(V, 2) is an optimal solution to (P). 
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Proof: (i) One has 

-sup(P)= -sup{f(x): XED} 

= -sup{f”“(x): XED} 

= -sup{-inf{fH(u): (21, x) 2 l}:xGD} 
.r r 

=,I;f, inf{fH(u): (u, x) 3 l} 
l! 

=imri{f”(u): (0, x) 3 1). 

For every u E int Do we have (u, x) < 1 Vx E D. Therefore, if u E int Do then 
inf,.. (fH(u): (u, x) B l} = inf /zr = + co. So, 

-s~p(P)=inffrfn{f~(u): (u,x)>l) 

= ,IBiin!DfnofH(u) = inf(P*). 

(ii) Suppose that X is an optimal solution to (P), i.e., 

fED; f(X) = sup(P). 

Let V be a minimizer of f” on the halfspace {u E R": (2, u ) 2 1 }. Since 
X E D, the set {u E R": (2, u) 2 1) is contained in the feasible set 
{u: u $4 int Do} of (P*). Furthermore, 

inf(P*) = -sup(P) = -f(X) = -f”“(x) 

= inf{fH(u): (2, u) > 1) =f”(G). 

Therefore, 0 is an optimal solution to (P*). 
(iii) Suppose that V is an optimal solution to (P*). Let 

X E N(D", V)\(O). Then by the definition of a normal cone one has 

(X,u-V)<O VUED'. 

Since X # 0 and 0 E int Do, this implies that (X,6) > 0. So, 

(.f/(X, V), 6) = 1 

0 2 (X/(X, V), u - 6) = (.f/(X, U), 0) - 1 VUED'. 
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Thus, 12 (Z/(X, V), v) Vu E Do. Therefore, Z/(X, V) belongs to D. On the 
other hand one has 

-f(X/(X, if)) = -f”” - (x/(X, 0)) =ifff{f”(v): (Z/(jz, V), v) 2 l} 

<f”(U) = inf(P*) = -sup(P). 

So, Z/(X, V) is an optimal solution of (P). i 

Remark 5.1. If we have obtained a solution of the primal problem (P), 
by Theorem 5.l(ii), we can obtain a solution of the dual (P*) by 
minimizing a quasiconvex function over a halfspace (i.e., by solving a 
convex program). Conversely, if we have obtained a solution of the dual 
problem, by Theorem S.l(iii), we can obtain a solution of the primal by 
finding a vector in a convex set. This requires us to solve a convex 
program. 

6. APPLICATIONS 

Application 6.1. Let A be a symmetric positive definite n x n-matrix. 
Since {x: llxll < l}“= {v: ~/VII < l}, by virtue of Example 2.3 we have the 
following primal-dual pair 

Primal Dual 

max{xTAx: llxll< l} min{ - l/v’&‘u: Ilull 2 l}. 

Since - ~/v~A-‘v = a* vTA-% = - l/cr, the dual problem can be 
rewritten as 

min{vTklO: llvll 2 l}. (40) 

If we denote by -a the optimal value in the dual problem then l/u will be 
the optimal value in (40). By Theorem 5.1(i) one has 

max{xrax: I/XII G l} = c( = l/min{vrA-‘v: [lull > l}. 

This equality says that if CI is the greatest eigenvalue of A then l/cr is the 
smallest eigenvalue of A - ‘. 

Application 6.2. Let a,, a*, . . . . ak be k vectors in R” such that 
OEint(conv{a,, a*, . . . . ak}). Since 

(conv{a,, a*, . . . . ak})“= {v: (ai, v) < 1 Vi= 1, . . . . k}, 
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by virtue of Example 2.2 we have the following primal-dual pair 

Primal Dual 

minimize IJx/(’ maximize - l/llu1/* 

s.t. xE R”\int(conv{a,, . . . . &)) s.t. (a,, v) < 1 Vi = 1, . . . . k. 

The dual can be rewritten as 

max{ 11~111’: (ai, u) d 1 Vi= 1, . . . . k}. (41) 

This is a linearly constrained quadratic concave minimization problem and 
it has attracted a lot of algorithmic studies (see Tuy et al. [34-361, Rosen 
et al. [20, 211, . ..). By Theorem 5.1, if 0 is a solution of the dual then a 
minimizer of llxll’ on the halfspace {x: (u, x ) 2 1 } is a solution of the 
primal. This minimizer is ti/\lV1j2. 

Application 6.3. Let Y be a compact convex set containing 0 in its 
interior and X a closed convex set containing 0 in its interior. By virtue 
of Example 2.4, one has the following primal-dual pair 

Primal Dual 

The maximization of the function v ~1 - l/max{ (u, x): x E V} is 
equivalent to the maximization of the function u H max{ (u, x): x E V}. 
So, the dual can be rewritten as 

This problem is a bilinear programming. Thus, we have the duality 
relationship between a minimax problem with a reverse convex constraint 
and a bilinear programming. 

Since in finite dimension cases the dimension of the initial space is equal 
to the dimension of the dual space, the number of variables in the primal 
problem is equal to the number of variables in the dual problem. But in the 
following application we shall show that for some time the dimension of 
the dual problem can be strongly reduced and much smaller than the 
dimension of the primal. 

Application 6.4. We consider the primal problem 

where 

minimize I\x II *, s.t. g(x) B 0, 

g(x)=sup(y~I3X-l:h(~)~O, YERm) 

(43) 

(4) 
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with B being a m x n-matrix and h( .) a convex function defined on R” such 
that {y: h(y)<O} is bounded. It is obvious that g( .) is a finite convex 
function and g(0) = - 1 < 0. If denote 

G= (x: g(x)<O} (45) 

then problem (43) can be rewritten as min{ IIxII’: xE R”\int G}. By virtue 
of (44) and (45) we can see that Go = {u E R": u = BTy for some y satisfying 
h(y) GO}. Now the dual of (43) can be stated as 

maximize - l//loll *, s.t. u = BTy for some y: h(y) < 0, 

or equivalently, 

maximize 1) 0 II 2, s.t. u = BTy for some y: h(y) < 0. (46) 

If we replace variable u by variable y then (46) becomes 

maximize 11 B’y (1 2, s.t. h(y) 6 0, y E R”. (47) 

This is a convex maximization on a convex set in R”. Thus, the dimension 
of the primal problem is n whereas the dimension of the dual (47) is m. If 
m 4 iz then it will be much more appropriate to solve (47) (in R”) than to 
solve directly (43) (in R”). 

7. DISCUSSION 

In this section we discuss the relations between our results with the 
previous one. 

In Singer [23] a concept of general conjugation was introduced. An 
operator c which associates each function f: R” + R with a function 
f ‘: R” + R is called a conjugation if 

(inf fi)' = sup ff (48) 
iPI isI 

(f+a)'=f'-a, (49) 

where c1 E R, fi: R” + R Vie Z. The conjugate operator H (Definition 2.1) 
always satisfies (49) (see (6)), whereas it does not satisfy (48). Indeed, it is 
easy to check that (inf,,, fi)" coincides with supiS, f y at every point 
except the origin. Thus, the quasiconjugate operator His not a conjugation 
in the sense given in [23]. 

In Greenberg et al. [8], Crouzeix [3], Atteia et al. Cl], and Singer [24 J 
several attempts have been made to represent the lower semi-continuous 
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quasiconvex hull off (i.e., the greatest lower semi-continuous quasiconvex 
fuction majorized by f) as a second conjugate off, in some sense. For 
instance, Singer [24] has introduced, for any f: R” + i? and 1 E R, the 
“A-semi-conjugate” fi off, as the function defined by 

f:(u) = A- 1 -inf(f(x): (u, x) > 2 - 1 } (50) 

and he has proved that the function 

few := sup (fX(x) 
i. E R 

(51) 

coincides with the lower semi-continuous quasiconvex hull off: In those 
papers a class of quite general functions has been considered. But in order 
to obtain the semi-continuous quasiconvex hull the previous works use 
more than one operator. For example, in Singer [24] we have to use the 
“A-semi-conjugate” operator (see (50)) and the “normalized second semi- 
conjugate” (see (51)). In this paper a new definition of quasiconjugate 
and a definition of quasiconvex hull are introduced. Let f be a function 
satisfying 

f(0) = inf{f(x): x E R”\(O)}. 

By Theorems 4.1 and 4.2 if eitherfis USC orfis lsc and achieves the maximum 
value at the infinite, then the quasiconvex hull off can be obtained by 
using only the quasiconjugate and it is exactly the biquasiconjugate of J: 
Of course, if f is lsc and achieves the maximum value at the infinite then 
the quasiconvex hull off is lsc (Theorem 4.2) and hence it is the semi- 
continuous quasiconvex hull off as well. 

In recent years, Duality Theory in Nonconvex Optimization, especially, 
in D.C. Minimization has attracted attention from several researchers (see, 
e.g., Pshenichnyyi [19], Toland [33], Hiriart-Urruty et al. [4, 111). The, 
approaches in the papers mentioned above are based on the formula 

(g-h)*(u)= uEvh* Ig*(o++h*w Vu E R”, 

where h is a convex function and h*, g* denote the conjugates of h, g, 
respectively. In Hiriart-Urruty [ 111, the dual of a convex maximization 
problem with a convex constraint also is obtained that is a d.c. minimiza- 
tion problem (a problem of minimizing a d.c. function). For example, if we 
consider the primal problem given in Application 5.1 then the dual can be 
determined as 

min{(l/4) uTap’u- /Iv/I: UE R”] 
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(see [ll]). But, by the approaches in those papers we could not obtain a 
dual problem for a general reverse convex program, especially, we could 
not obtain a duality relationship between Concave Program and Reverse 
Convex Program. 

ACKNOWLEDGMENT 

The author thanks Professor Hoang Tuy for the helpful comments and discussions. 

REFERENCES 

1. M. ATTEIA AND A. EL QORTOBI, Quasi-convex duality, in “Optimization and Optimal 
Control,” pp. 3-8, Lecture Notes in Control and Information Science, Vol. 30, Springer- 
Verlag, Berlin, 1981. 

2. H. P. BENSON, A finite algorithm for concave minimization over a polyhedron, Naval Res. 
Logist. Quart. 8 (1983), 215-230. 

3. J. P. CROUZEIX, “Contribution a l’etude des fonctions quasiconvexes,” These, Universite 
de Clemont, 1977. 

4. R. ELLAIA AND J. B. HIRIART-URRUTY, The conjugate of the difference of convex 
functions, J. Optim. Theory Appl. 49 (1986), 493498. 

5. J. E. FALK AND K. L. HOFFMAN, A successive underestimating method for concave 
minimization problems, Muth. Oper. Res. 1 (1975), 251-259. 

6. A. V. FIACCO, “Introduction to Sensitivity and Stability Analysis in Nonlinear Program- 
ming,” Academic Press, New York, 1983. 

7. J. FULOP, “A Finite Cutting Plane Method for Solving Linear Programs with an 
Additional Reverse Convex Constraint,” Working Paper No. M0/73, MTA SZTAKI, 
Hungarian Academy of Sciences, 1988. 

8. H. J. GREENBERG AND W. P. PIRSKALLA, Quasi-conjugate functions and surrogate duality, 
Cahiers Centre l?tudes Rech. Opt+. 15 (1973), 437448. 

9. R. J. HILLESTAD AND S. E. JACOBSEN, Reverse convex programming, Appl. Marh. Optim. 
6 (1980), 63-78. 

10. R. J. HILLESTAD AND S. E. JACOBSEN, Linear programs with an additional reverse convex 
constraint, Appl. Math. Optim. 6 (1980), 257-269. 

11. J. B. HIRIART-URRUTY, Generalized differentiability, duality and optimization for 
problems dealing with differences of convex functions, in “Lecture Notes in Economics 
and Mathematical Systems” (J. Ponstain, Ed.), Vol. 256, pp. 37-70, Springer-Verlag, 
New York/Berlin, 1984. 

12. K. L. HOFFMAN, A method for globally minimizing concave functions over convex sets, 
Math. Programming M (1981), 22-32. 

13. B. HOLMES, Geometric functional analysis and its applications, in “Graduate Texts in 
Mathematics” (P. R. Halmos, F. W. Gehring, and C. C. Moore, Eds.), Springer-Verlag, 
New York/Berlin, 1985. 

14. R. HORST, On global minimization of concave functions: Introduction and survey, 
OR Spektrum 6 (1984), 195-205. 

15. R. HORST, A general class of branch-and-bound methods in global optimization with 
some new approaches for concave minimization, J. Opfim. Theory Appl. 51 (1986), 
271-291. 



QUASICONJUGATES AND NONCONVEX DUALITY 321 

16. 0. L. MANGASARIAN, “Nonlinear Programming,” McGraw-Hill, New York, 1969. 
17. B. M. MUKUMEDIEV, Approximate methods of solving concave programming problems, 

U.S.S.R. Comput. Math. and Math. Phys. 22 (1982), 238-245. 
18. L. D. Muu, A convergent algorithm for solving linear programs with an additional 

reverse convex constraint, Kybernetika 21 (1985). 428435. 
19. B. N. PSHENICHNYYI, “Lecons sur Jeux Differentials, Controle Optimal et Jeux Differen- 

tiels,” Cahiers de IIRIA, No. 4, 1971. 
20. J. B. ROSEN, Global minimization of a linearly constrained concave function by partition 

of the feasible domain, Math. Oper. Res. 8 (1983), 215-230. 
21. J. B. ROSEN AND P. M. PARDALOS, Global minimization of large-scale constrained concave 

quadratic problems by sefr.rable programming, Math. Programming 34 (1986), 163-174. 
22. I. SINGER, Minimization of continuous convex functionals on complements of convex 

subsets of locally convex spaces, Optimization 11 (1980), 221-234. 
23. I. SINGER, Some relations between dualities, polarities, coupling functionals and conjuga- 

tions, J. Math. Anal. Appl. 115 (1986), l-22. 
24. I. SINGER, The lower semi-continuous quasi-convex hull as a normalized second 

conjugate, Nonlinear Anal. Theory Methods Appl. 7 (1983), 1115-1121. 
25. I. SINGER, A general theory of dual optimization problems, J. Math. Anal. Appl. 116 

(1986), 77-130. 
26. H. A. TAHA, Concave minimization over a convex polyhedron, Naval Res. Logisf. Quart. 

20 (1973), 533-548. 
27. P. T. THACH, Convex programs with several additional reverse convex constraints, Acta 

Math. Vietnam. 10 (1985), 35-57. 
28. P. T. THACH, Concave minimization under nonconvex constraints with special structure, 

in “Essays on Nonlinear Analysis and Optimization Problems,” pp. 121-139, Institute of 
Mathematics, Hanoi, 1987. 

29. P. T. THACH AND H. T~JY, Global optimization under Lipschitzian constraints, Japan J. 
Appl. Math. 4 (1987), 205-217. 

30. P. T. THACH, Quasiconjugates of functions and duality correspondence between a 
quasiconvex minimization under a reverse convex constraint and a quasiconvex maxi- 
mization under a convex constraint, presented at the 13th International Symposium on 
Mathematical Programming, Tokyo, 1988. 

31. N. V. THOAI AND H. TUY, Convergent algorithms for minimizing a concave function, 
Math. Oper. Rex 5 (1980) 556-566. 

32. N. V. THOAI, “A Modified Version of Tuy’s Methods for Solving D. C. Programming 
Problems,” CORE Discussion Paper No. 8528, 1985. 

33. J. F. TOLAND, Duality in nonconvex optimization, J. Math. Anal. Appl. 66 (1978). 
399415. 

34. H. TUY, Concave programming under linear constraints, Dokl. Akad. Nauk. SSSR 159 
(1964), 32-35. 

35. H. TUY, Concave minimization under linear constraints with special structure, 
Optimization 16 (1985), 335-352. 

36. H. TUY, T. V. THIEU, AND N. Q. THAI, A canonical algorithm for globally minimizing a 
concave function over a closed convex set, Math. Oper. Res. 10 (1985), 498-514. 

37. H. TUY, Convex programs with an additional reverse convex constraint, J. Optim. Theory 
Appl. 52 (1987), 463-486. 

38. H. TUY AND N. V. THUONG, A fmite algorithm for solving linear programs with an 
additional reverse convex constraint, in “Lecture Notes in Economics and Mathematical 
Systems” (W. Krelle, Ed.), Vol. 255, pp. 291-304, Springer-Verlag, New York/Berlin, 
1984. 



322 PHAN THfEN THACH 

39. H. TUY AND N. V. THUONG, Minimizing a convex function over the complement of a 
convex set, MefhodF Oper. Res. 49 (1985), 85-99. 

40. H. Tw, Convex inequalities and the Hahn-Banach theorem, Dissertationes Math. 47 
(1972). 

41. H. TUY, A general deterministic approach to global optimization via DC. programming, 
Math. Stud. 129 (1987), 273-303. 

42. P. B. ZWART, Nonlinear programming: Counterexamples to two global optimization 
algorithms, Oper. Res. 21 (1973), 1260-1266. 

43. P. B. ZWART, Global optimization over a convex polyhedron, Naval Res. Logist. Quart 20 
(1973), 533-548. 


