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1. INTRODUCTION 

In a 1967 paper “Nonharmonic Fourier Series in the Control Theory 
of Distributed Parameter Systems” [ 141 we have shown that the classical 
results of Paley and Wiener [12], Levinson [lo], Schwartz [17], and others 
can be used to advantage in studying the controllability of the wave equation 
in a single space dimension. The purpose of the present article goes beyond 
such a simple application of existing results in harmonic analysis to control 
problems. We wish to show in addition that the study of control problems for 
certain hyperbolic partial differential equations leads to some interesting, 
and perhaps unexpected, consequences in harmonic analysis. Thus there is a 
two-way interplay between these two subjects, only recently becoming 
apparent, and we may hope for deeper studies of this relationship in the 
future. 

Because our purpose is to uncover this relationship, we will not attempt 
great generality in our presentations. Many of the results which we will 
obtain are valid for any second order linear hyperbolic partial differential 
equation in two independent variables x and t whose coefficients depend only 
upon x. However, such a complete treatment would introduce complications 
which would obscure our main points. Hence we shall focus our attention in 
this paper on systems related to partial differential equations of the form 
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where the coefficient functions p, p, q and T are twice continuously differen- 
tiable for 0 < x < 1 and 

P(4 3 PO > 0, PC4 > PO > 07 O<X<l. 

If (1.1) is thought of as a model for small vibrations of a flexible string, p is the 
linear mass density and p is the modulus of elasticity. 

We shall impose boundary conditions of the form 

A, g (0, t) + B, g (0, t) = 0, O<t<oo, (1.2) 

Al g (1, t) + B, g (1, t) -f(t), O<t<oo, (1.3) 

with the proviso that 

$f # * (&!& A * = * ($g)“‘. (1.4) 

If we again use the physical analogy of the flexible string, the boundary 
condition (1.2) corresponds to a fixed end (B, = 0), an end free to move in 
the direction of the w axis (A, = 0), or an end free to move but with positive 
or negative friction (A, # 0, II, # 0). Th e reason for the restrictions (1.4) 
will become clear later. The boundary condition (1.3) at x = 1 can be inter- 
preted similarly with f(t) a “control” force at our disposal with which we 
attempt to influence the evolution of solutions of (1.1). 

We will find it convenient to put our problem in a certain standard form. 
The change of independent variable 

5 = jr (f#" ds 

carries (1.1) into an equation of the form 

azw azw aw aw _-- 
at2 ap + 45) at + 43 ag = 0, 

0 < 5 < e= E(l), O<t<co. 
(1.5) 

The coefficients a(.$), b(E) are now continuously differentiable functions of 6. 
This second-order scalar equation can be replaced by the first-order two- 
dimensional system 

& (3 - (; ;, 2 (3 + (y) “b”, (@ = 0, (1.6) 
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where u = awjat, v = a~/@. Every solution of (1.5) in class 01, m 2: 2, 
corresponds to a solution of (1.6) of class F--l. It should be noted, however, 
that two solutions of (1.5) differing by a nonzero constant are carried into the 
same solution of (1.6). Otherwise the correspondence is complete in both 
directions. The appropriate boundary conditions are now 

with the condition 

F#&l, 
0 

?#&I. 
1 

(1.9) 

We have arrived at the system (1.6) b ecause we wished to introduce our 
topic by means of the familiar scalar equation (1.1). But all of the work which 
we do is done just as easily if we generalize (1.6) slightly to 

where the real coefficients ~(5) are continuously differentiable for 0 < 8 < t. 
We retain the boundary conditions (1.7), (1.8). 

By studying the controllability of the system (1.6)-( 1.8) we will be able 
to prove certain theorems about the operator 

(1.11) 

with boundary conditions of the type (1.7), (1.8). In particular, if the (in 
general complex) eigenvalues of L are {A,}, we will be able to establish that 
(eAkt} form a Riesz basis for F[O, 24 in a way very different from that pursued 
by Paley and Wiener, Levinson, Schwartz, and others. Moreover, by showing 
that the controls of which bring solutions of (l.lO), (1.7), (1.8) to zero at 
time t = 26 can be synthesized by means of a linear feedback control law, we 
prove a rather unusual characterization of the dual basis of L2[0, 24 relative 
to {eArt} which has possible application to numerical computation of the 
functions {qk(t)} which are biorthogonal to {eAat}. 

2. PRINCIPAL RESULTS 

In this section we state our theorems for the system (1 .lO), (1.7), (1.8) and 
supply proofs where they are reasonably short. The proofs of Theorems 1 and 
3 are long and are given in Sections 3 and 4. 
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The basis of our work is the question of finite time controllability. This 
topic has been studied earlier by the author [14, 151 and in a thesis by 
J. Grainger [7]. Th e p resent work begins with a statement of these results in 
terms of “finite energy” solutions, i.e., generalized solutions of (l.lO), (1.7), 
(1.8) for which 

s 

e 
o [I 45 a2 + I459 t)121 a < 00, t > 0. 

Appropriate existence, uniqueness and regularity theorems for such solutions 
may be found in [9] and [ 111. Although we have taken all of the coefficients 
in our partial differential equation and boundary conditions to be real, we 
will find it convenient to consider complex solutions. 

THEOREM 1. Let initial and terminal states (u,, , q,) and (ul , vl) be given 
at the times t = 0 and t = 2e, respectively, with u,, , v,, , u1 , v, all in L2[0, e]. 
Then there is exactly one function f E L2[0, 24 such that the solution (u, v) of 
(l.lO), (1.7), (1.8) which satisfies 

a.e. in [0, f!] (2.1) 

also satisfies 

u(& 24 = u,(5), v(5,24 = q(5) a.e. in [0, 7!] (2.2) 

and there is a positive constant P, independent of u,, , v,, , ul , vl such that 

s 

26 

o If @)I2 dt < P jl (I u&5)1” + I vo(t%” + I &?I2 + I vdf)12) d4. (2.3) 

Moreover, there is a second positive constant p such that when u1 = v1 = 0 

,: (I u&%2 + I vd5)12) dt 6 p jy If @)I2 dt. (2.4) 

Also, when u1 = q = 0 the condition (1.9) can be replaced by the weaker 
restriction 

7 #I, 
0 

?#-I 
1 

and the existence off satisfying (2.3) is still assured. However, (2.4) cannot be 
proved in this case. 

The proof will be given in Section 3. The time period 28 is “critical.” We 
have shown in [14] and [15] that it is in general impossible to satisfy the 
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given initial and terminal conditions if less time is allowed, while the control f 
is not unique if more time is allowed. 

The system (l.lO), (1.7) (1.8) withf=: 0 has the form 

where L is the differential operator defined by (1.11) with domain d in 
L2[0, e] @L2[0, 24 consisting of pairs of functions (u, v) whose first deriva- 
tives, taken in the sense of the theory of distributions, he inL2[0, L] and which 
satisfy 

q+@) + B#@) = “p(q + P,fJ(fq = 0. (2.5) 

The adjoint of L is the operator 

defined on the domain A* which differs from A in that (w, z) belonging to it 
satisfy 

a&w(O) - p&o) = qw(G) - j&z(e) = 0. (2.6) 

Very general results due to Birkhoff [l], Schwartz [16], Kramer [8], and 
others show that L is a spectral operator; in particular it has a sequence of 
complex simple eigenvalues {&} such that the associated normalized eigen- 
vectors (vlc , $3 form a Riesz basis in L2[0, rf'] @L2[0, d], i.e., each (u, u) in 
that space has a unique development 

with 

for fixed positive constants m, , m2 . The adjoint operator L* has eigenvalues 
{A,} which are the complex conjugates of the (h,} and eigenvectors (‘pie*, &*) 
such that 

Now let (u, w) be a (possibly complex) solution of (1 .lO), (1.7). (1.8) and 
(w, z) a (possibly complex) solution of 
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satisfying boundary conditions of the form (2.6). If u,, , v,, , ur , vi all belong 
to Cl[O, e] one easily justifies the following computation in the rectangle 
D = ((C, t) 1 0 < 5 < L’, 0 < t < 24: 

(2.11) 

= s 
- ME, 0) f’% 0) + 45,O) %t, WI d5 
+ jse [(@I t) qo, t) + v(O, t) qo, t)) 

0 

- (~(8, t) ~(8, t) + w(t, t) a(& t))] dt. 

If we expand the solution (u(S, t), v([, t)) as in (2.7), 

and note that 

is a solution of (2.10), we may substitute in (2.11) and use (2.9) and the 
boundary conditions satisfied by (u, w) and (w, z) at 0 and G to see that 

s 2e ?h*t4 
OTCe 

4kcT-t) 
f(t) dt> A f 0 

ck(T) - ~~(0) emArT = 

I 
” h*(‘> e--Ak(T--t)f(t) & , p1 = 0. 
0 011 

Now let 

($; “03 = (gj = c 40) ($j 

be steered by means of the control f to the zero terminal state 

f&T) = w&) = 0. 

(2.12) 

(2.13) 
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Then in (2.12) ck( T) = 0 and thus 

s 2c vk*(4 eAkt 0 Pl f(t) dt, Pl i 0, -Q(O) = (2.14) -__ 

s 
‘“me”k’f(f)dt 
0 Pl 

p1 = 0. 

for all k. 
In order to perform the calculations (2.11) we assumed ua , V, belong to 

Cl[O, t]. One may verify easily, however, that (2.14) will also hold for u,, , ‘ua 
in P[O, e] through approximation of (2.13) by finite partial sums and use of 
the inequalities of Theorem 1. We leave this to the reader. Then it follows 
from (2.8) that if {cJO)> 1s an se y q uence of complex numbers with 

c I Ckuw < CQ 

the moment problem (2.14) has a solution f EL~[O, 2Kj. Moreover, using (2.3), 
(2.4) and (2.8) we see that there are positive numbers K1 and K, , independent 
of {c%(O)}, such that 

4 c I 4)12 G j"" I fW12 dt < K2 1 I 4W- 
0 

(2.15) 

It is an easy consequence of Lemma 2.1 in the proof (Section 3) of Theo- 
rem 1 that when /3r # 0, 1 q,*(e)/ is b ounded away from 0 and co and when 
A = 0, I #k*(Q is b ounded away from 0 and co. Then (2.14) and (2.15) 
together prove 

THEOREM 2. Let the eigenvalues of L be {hk} and let {c~} be any sequence of 
complex numbers with C 1 ck I2 < co. Then the moment problem 

s 2e 
Ck = eAktf(t) dt for all k, (2.16) 

0 

has a unique solution off E L2[0, 24 such that 

KS c 1 ck I2 G j2' 1 f(t)i2 dt < fG c / Ck I2 
0 

for certain positive constants K3 and K4 independent of {ck>. 

This theorem implies that the functions {eAnt} form a Riesz basis for the 
space L2[0, 24, i.e., every function g E L2[0, 24 has an expansion 

g(t) = 1 ykeAkt, 
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convergent in L2[0, 28J, with the property 

for positive constants K5 and K6 . The coefficients yk are given by 

where qk(t) is the solution of (2.16) with ck = 1, ct = 0, G # K. The sequence 
{qk} is the biorthogonal sequence for {elkl}, or the dual basis for L2[0, 2[] relative 
to the basis (eAkt}. Another interpretation is that qa is the unique control 
function steering the initial state 

to zero in time t = 28. 
Now one could also prove all of these results by the Fourier-transform 

methods of Paley and Wiener [ 121, Levinson [IO] and Schwartz [ 171, provided 
one had sufficiently good asymptotic estimates of the location of the eigen- 
values &}. In this respect the interesting thing about Theorem 2 is that it has 
been proved without detailed reference to the location of these eigenvalues. 
Even the necessary information that L is a spectral operator can be proved 
rather easily with the partial differential equations methods we employ 
together with a general theorem in [16]. Of course our work is quite special 
since it applies only to sequences (X,} consisting of eigenvalues of operators L 
defined above, whereas the work of the authors cited applies to much more 
general sequences. 

The familiar results to the effect that the functions {eAet} are excessive in 
L2[0, T] if T < 2e and deficient but linearly independent in L2[0, T] if 
T > 2/tan also be proved using methods like these. How this would be done 
should be clear from the work in [14] and [15] together with what we have 
already written here so we will not go into details. 

While the proof of Theorem 1 in Section 3 is constructive, the method 
used is not particularly well adapted to computation. Thus it is significant 
that this control f can be synthesized by means of a linear-feedback control 
law, provided a linear relationship holds between the initial and terminal 
states. This, and other consequences, follow from 
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THEOREM 3. Let u0 and v,, lie in L2[0, /;I and let y be any real number. Let 

u+ = exp -$ 
( J -1 [a&) i- a12(5) + a2d5) i- a&)1 dt) , (2.18) 

a-=exp -4 
( s 12(5) + a2d5) - +d5)1 dS) , (2.19) 

where the aij(t) are the coefficients appearing in (1.10). Let (u, v) be a solution of 
(l.lO), (1.7) and (1.8). Then 

4524 = PO(t), v(5,W = Y%(E) (2.20) 

if and only if the solution (u, v) satisjies the boundary condition 

( - 
soyi 010 j 44 4 + ( /j. yJ (yo + poyao j v(4 t) 

= s ’ l-W) 46, t) + h,(5) v(5,t)l d5, 

(2.21) 

0 

where h, and h, are certain continuous functions depending only upon the aij , 
a0 , /IO and y. When th e aij are all zero, h, and h, vanish identically. When y = 0 
it is sufficient to assume ao/po # 1 and the term yu-/(po + o(o) disappears. 

An immediate consequence of Theorem 3 is the feedback law for the 
control f. If we put 

- 
012 = p. r ao - /joy; au ’ 

- 
A = /go 6’ cfo + pay; a0 (2.22) 

we verify readily that 

(a2J2 + (AY = 2 [ (p~~)~o)2 + bu-)2 ] 10. (PO + %I2 
If the vector (a2 , B2) is a multiple of (01~ , /3& say (a2 , p2) = c(acl , a), c # 0, 
then (1.8) and (2.21) together yield 

f(t) = jl 19 ~(5, t) + F v(& t)] dt. 

If (c+ , p2) and (01~ , /3i) are linearly independent, then one can find a third 
vector (01~ , /3s) in R2 such that (a2 , B2) and (01s , fi3) are linearly independent 
and 
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with ci # 0. Then 

+ w(L’, t) + I”, [y z&f, t) + y ~(5, t)] df. 

Thus we have proved 

THEOREM 4. Let initial and terminal conditions (uO , q,) and (ul , vJ be 
given satisfying (2.20). Then the controlf steering the solution (u, w) of (l.lO), 
(1.7), (1.8)fiom (U ,, , v,,) to (z+ , q) = y(u,, , v,,) satisfies a feedback law 

f(t) = ~(4 t> + 44 t) + sl, [k,(5) ~(6, t) + k,(5) 45, t)] dt, 

where k, and k, lie in Cl[O, 81 and (CL, ) v is either the zero vector or else (01~ , /3,) 
and (p, V) are linearly independent. 

If we take y = 0 in Theorem 3 we see that a solution of (1.10) (1.7) and 

44 t> + v(ff, q = 
PO - a0 o+ 1 e 

[h,(f) u(t, t> + h,(6) 45 91 d5 (2.23) 
0 

always satisfies ZJ(~, 2L) = o(f, 26) = 0. Then from (2.17) and the remarks 
accompanying it we see that the functions {qk(t)} biorthogonal to {eAri} can be 
computed by solving (1. lo), (1.7), (2.23) with the initial state (2.17) and then 
using (1.8). Since the computation of h, and h, can be carried out once and 
for all (see Section 4) by solving a relatively simple partial differential equa- 
tion, we have here a possible method for the numerical calculation of the 
functions {qk(t)}. We remark that (l.lO), (1.7) and (2.23) is a system whose 
solutions can be approximated rather easily using the method of charac- 
teristics [3]. 

Now we will make some comments about the implications of Theorem 3 in 
a general mathematical sense, not particularly related to control problems. 
Fixing y as in Theorem 3, we consider the unbounded operator L, defined in 
the Hilbert space L2[0, /] @ L2[0, e] by (1.11) but with domain d, consisting 
of pairs of functions (u, V) satisfying 

and [cf. (2.21) (2.22)] 
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and having first derivatives in L2[0, LJ. It is not difficult to verify that A, IS 
dense in L”[O, C] @ L2[0, e]. 

Solutions (u, V) of (1. IO), (2.24), (2.25) have the form 

(I) = eLlt (:I) , 

where eLr t is the strongly continuous semigroup (group if y # 0) generated by 
the operator L, . Theorem 3 gives us certain information about this semi- 
group (group) which in turn indicates some interesting properties of the 
operator L, . 

If y = 0 the semigroup eLlt has the property 

,L,(20 uo = 0 
( 1 “0 

for all (u. , vo) in L2[0, Kj @ L2[0, d]. Thus 

for t 2 2L Thus we have a somewhat unusual example of a strongly con- 
tinuous semigroup which vanishes identically after a certain time, in this 
case 225 From results in [5] we see that the spectrum of L, must be empty 
in this case. 

This result can be proved more or less directly when the aij are all zero 
(so that h, and h, are also zero). In this case the boundary condition (2.25) 
becomes 

24(e) + w(E) = 0. (2.26) 

When the aij are not all identically zero the properties of the operator L 
with a right-hand boundary condition of the form (2.26) are rather elusive. 
This is one of the singular cases encountered by Birkhoff [l] and others in 
their pioneering work on the spectral properties of such operators. The 
significance of our work lies in the fact that we have shown that if in this 
singular case we replace the boundary condition (2.26) by 

PO - a0 44 + 740 = (r+ j" PM 45) + h2(8 431 G 
0 

[ a2=p2== poPNo ify=O I , 

then once again we have an operator whose spectrum is empty. We remark 
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that one can give examples to show that this is not generally true for the 
boundary condition (2.26) when the aif are nonzero. 

Now we take up the case y # 0. Theorem 3 then shows that the group 
eLlt has the property 

so that eL1t2[) = ~1. Letting 

p = 1% I Y I 
2& 

it is clear that the group e(L1-D1)t is periodic with period 28 when y > 0: 

e(L,-Pl)2e = 1 
y >o, (2.27) 

and antiperiodic when y < 0, i.e., 

e(kP’)2G = -1 
3 y < 0. 

Consider the case y > 0. We define a new inner product ( , ) in 
L2[0, L’] @L2[0, t] by 

where ( , ) is the usual inner product in that space. Because the operators 
e(LI-P1)t are uniformly bounded and have uniformly bounded inverses [the 
latter a consequence of (2.27)] we see that the norm (( >> associated with the 
inner product ( , ) is equivalent to the usual norm 1) 11 associated with ( , ) in 
the sense that 

for certain fixed positive constants y1 , r2 . The periodicity of the group 
e(Ll-or)t when y > 0 shows that the inner product < , ) is invariant under the 
action of the group. Thus e(Ll-ol)t is a unitary group with respect to this 
inner product in L2[0, e] @L2[0, /J. Stone’s theorem [13] then shows that 
L, - pZ is anti-Hermitian with respect to this inner product with a repre- 
sentation 

L, - pZ = Jrn ip dE(p), 
-cc 
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where E(p) is the spectral measure associated with L, - pl. Since CZ(~~--D~)~ 
is periodic, however, we can show easily that the support of E(p) must be a 
subset of the points 

0, ,I f ) R L- 1) 2, 3 ,... . 

Thus, with respect to the usualinner product (, ), L, is a spectral operator with 
spectrum a subset of the points 

h = 1, 2, 3 )... . (2.28) 

When y < 0 we can argue in much the same way to show that L, is a 
spectral operator whose spectrum is a subset of the points 

p*i(h-~)n, 
c h = 1) 2, 3 ,... . (2.29) 

When the u,~ are all zero, which implies u+ = U- = 1 and h, and ha are 
zero, one can verify directly that the spectrum of the operatorL,with boundary 
conditions 

consists of precisely the points (2.28) or (2.29), depending upon whether 
y > 0 or y < 0, respectively, and that each such point is an eigenvalue of 
single multiplicity. If the afj are not zero and we consider the operator L with 
boundary conditions (2.30), the eigenvalues are again simple and approach the 
values (2.28) or (2.29) asymptotically. The perturbation in L brought about by 
introducing the nonzero aij gives rise to a perturbation in the eigenvalues. 
Thus it is of some interest to be able to prove that this perturbation of the 
eigenvalues can be “undone,” not by removing the aij , but by changing the 
right-hand boundary condition. Specifically, our result is 

THEOREM 5. There exist continuous functions h, and h, such that the opera- 
tor 
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with boundary conditions 

%-P(O) + PO@) = 09 (2.31) 

( 
(2.32) . , 

is a spectral operator whose spectrum coincides (multiplicity included) with that 
of the operator 

Loc) = (Y 3 % (3 

with boundary conditions (2.31) and 

Remarks. When a,,(t) + a,,(S) = 0, u+ = u- and the boundary condi- 
tions (2.32) and (2.33) differ only by an integral term. 

If we want the boundary condition (2.33) to have a given form 

m(4) + pq) = 0 (2.34) 

we can do so by setting 

y=$$(f+Z:). 

The only boundary condition (2.33) which cannot be realized in this way is 

u(l) - w(e) = 0. 

Proof of Theorem 5. We have already established that the spectrum of L, 
is a subset of the spectrum of Lo . When y = 0 the spectra of L, and L, have 
been shown to be empty in both cases so there is nothing to prove. Hence we 
need only show that when y # 0 each point in (2.28) or (2.29) belongs to the 
spectrum of L, and that each of these points is a simple eigenvalue. 

Let us consider a boundary-value control system 

~o”(Q t) + poq, t) = 0, 
~(4 t) + PM t> - 1, i?,(5) 41, t) + MO $5, 91 dt = g(t), 

where cxa and pa are given by (2.22) and g EL~[O, 24. 

(2.36) 

(2.37) 
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Now consider the following adjoint system: 

(2.38) 

a,w(O) - &z(O) = 0, (2.39) 

Ly2w(&) - /Q?(d) = 0. (2.40) 

[If ,k?a = 0 we replace w(e, t)//3, in (2.38) by z(e, t)/~a .] Then we compute, 
using (2.36) and (2.39), 

- y j; [h,(t) ~(5, t) + h,(5) w(t, t)] d5 = y g(t), 

the last equality following immediately when we integrate the term 

by parts and then use (2.37) and (2.40). [Again, if 8s = 0 we replace 
~(4 W% by 44 W2 .I Th us, if (“,) and (y) satisfy (2.35) and (2.38) and the 
given boundary conditions, we have 

Suppose now we set ~(6, 0) = ~(5, 0) E 0 and consider the following 
problems: 

(a) Letting (z) solve (2.35)-(2.37) for these zero initial data and for 
arbitrary g EP[O, 24, are the terminal states (u(., 24, w(*, 24) dense in 
L”[O, T] ? 

(b) Can the zero state (u(., 2e), w(., 26)) = (0, 0) be reached using some 
g #OinL2[0,2JJ? 
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We will show that the answer to (a) is “yes” and the answer to (b) is “no.” 
Assuming this for the moment, we can complete the proof of Theorem 2. 

Suppose hj were an eigenvalue of L, with multiplicity greater than 1. Since 
L, has been shown to be similar to an anti-Hermitian operator, there must 
then exist two independent eigenvectors (wj , zj) and (dj , Zj) of L,*+or- 
responding to the eigenvalue Ai of L,*. Then both 

w(S, t) 
( ) +, t) 

= &(2&-t) w&Y ( ) +%(O 
and 

(2.42) 

(2.43) 

solve 

g (1) +L,* (“,) = 0, 

which is the abstract form of (2.38 j(2.40). Indeed, (see [2] for related mate- 
rial) L,* is the operator 

with domain boundary defined by conditions of the form (2.39), (2.40). 
Substituting (2.42) and (2.43) into (2.41) and recalling that we are taking 
u(*, 0) = v( a, 0) = 0, we have 

Then for all states (ti:;$$) reachable from zero via (2.35)-(2.37) with controls 
g E L2[0, 2L] we have 

But this cannot be so if, as we claim, the answer to (a) is “yes.” Thus, 
assuming the positive answer to (a), L1*, and hence L, , has simple eigen- 
values. 

If some number p & i(+r/J’) [or p f ( j - *b//J is missing from the 
spectrum of L, , assume it is p + i(jr/~!) for definiteness, then we note that 
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has the property that 

I 2f _ 
eAktgf(t) dt = 

0 s PL 
e -ihr/d) tei(M) t dt _ 0 

" 

for all A, which are eigenvalues of L, . Letting (y;) be the eigenvector of I,,* 
corresponding to its eigenvalue A, and setting 

we find, after substitution in (2.41), g a ain with (u(*, 0), w(*, 0)) = (0, 0), that 

for all K. Since the eigenvectors of L,* span L2[0, e] @L2[0, e], we conclude 
that 

and thusgj(t) is a nonzero control taking (0,O) into (0,O). Hence if, as we will 
show, the answer to (b) is “no,” we conclude that each of the numbers 
(2.28) is an eigenvalue of L, when y > 0 and each of the numbers (2.29) is an 
eigenvalue of L, when y < 0. 

Now to complete the proof of Theorem 5, we take up questions (a) and (b). 
Let initial and terminal states (u. , v,,), (ur , 71~) be given, U, , v. , U, , q all in 
L2[0, t]. By Theorem 1 there is a uniquefin L2[0, 24 such that if (u, V) solves 
(2.35), (2.36), (2.1) with 

c&f, t) + Bzv(4 t) =m (2.44) 

then (~(5, 2&), ~(6, 28)) = (z+(t), ol([)), a.e. Then let 

and we have 

a,u(e, t) + /32v(4 t) - jL [h,(t) u(S, t) + h,(5) e, 91 d5 = &> 
0 

so g, which clearly lies in Lz[O, 241, steers (2.35)-(2.37) from (u. , wo) to 
(u r , wl). Thus the answer to (a) is, indeed, “yes.” 
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Passing to question (b), if g steers a solution of (l-IO), (2.36), (2.37) from 
(0,O) to (0,O) then 

f(t) = g(t) = j: [h(5) 45 4 + h(5) 46, t)l dt 

steers a solution of (2.35), (2.36), (2.44) from (0,O) to (0,O). Then Theorem 1 
shows thatf(t) = 0 a.e. in [0, 2t] so that 

g(t) = - j” [k(f) 46, t) + M5) 45 tll dt 
0 

(2.45) 

a.e. in La[O, e]. Then the solution (u, w) satisfies 

a.e. in [0,2/j 

which implies (u(E, t), $8, t)) = (0,O) a.e. and we have, from (2.45), 

g(t) = 0 a.e. inD[O, 2t], 

showing that the answer to (b) is “no.” With this the proof of Theorem 5 
is complete. 

3. PROOF OF THEOREM 1 

The theory of hyperbolic partial differential equations is discussed in detail 
in [6] and [4], to which we refer the reader if a treatment of basic material 
is desired. The characteristics for the system (1.10) are families V+ and %- of 
straight lines with slopes 1 and -1. A member of Y+(-) will be denoted by 
c+(-)([, t), (4, t) being a point on the line in question which serves to specify 
that line. The quantities 

o+ = u + v, 8-=24-w 

satisfy linear ordinary differential equations along characteristics in the 
families V-, Vf, respectively. We may parametrize characteristics c+(O, to), 
c-(0, to) by arc length u, 7: 

c+(O, to) = I (I, t) 1 4 = 2-, t = to + .2- ) 0 < 0 < $44 
d2 42 I , 

c-a to) = I (4, t) I 5 = -II-, t = to - .-IT- ) 0 < 7 < $44 
d2 d2 I . 
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Then we compute without difficulty 

de-+ ’ 7 
- i -,to-gj i- u+++$je+$,to+j dr 2/2 

(3.1) 

+ a-+ ($j e- (-jl , 4, - -$j = 0, 

de- c7 
yg ( 2/2Jo+Sj +~+-(~je+(~‘t”+-$j 

(3.2) 

+ a-- (Sj e- (5, to + 5, = 0, 

where 

u++(f) = B (G3 + %1(E) + %M + 40)~ 

a-+(69 = 4 MO + %(~> - %(8 - %,(m 

u+-(4) = s (-43 + %(E) - 4‘5) + %L!N, 

u--(f) = B (-%(5) + %l(t7 + %2(~> - 44% 

are continuously differentiable. Because the equations (3.1) and (3.2) are valid 
on different characteristic lines the coupling between them is more compli- 
cated than that usually encountered in the theory of ordinary differential 
equations. 

The construction of the controlf of Theorem 1 was first described in [15]. 
Assuming for the moment that u. , u. , u1 , ~1~ are functions in Cl[O, e], we 
direct the reader’s attention to Fig. 1. The basic domain D : 0 < 6 < l, 

FIGURE 1 
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0 < t < 2e is divided by the characteristics C+(O, d) and C-(0, e) into three 
closed triangular domains which we have denoted by d, , d, and A as indicated 
in the diagram. The differential equations (3.1) and (3.2) can be used to prove 
certain existence and uniqueness theorems. In particular, the initial data u0 , 
Q together with the boundary condition (1.7) satisfying %/& # 1 [cf. (1.9)] 
uniquely determine a solution (u(f, t), v(f, t)) of (1.10) which lies in Cl(A,). 
In the same way the terminal data u i , vi given at t = 26 together with (1.7) 
and the restriction aO//J, # -1 determine (~(6, t), v(t, t)) as a solution of 
(1.10) in Cl(A,). If ~~(5) s vi(t) = 0 we just set ~(5, t) = v([, t) = 0 in A, 
and the condition %/&, # -1 can be dispensed with. 

The next step is the extension of the solution into A. The portions of the 
solution already constructed in A,, and A, determine 0+ and & on C+(O, 8) and 
C-(0, d). Th e p bl ro em of constructing a solution of (1.10) in A agreeing with 
these data on C+(O, e) and C-(0, e) is the Goursat, or characteristic initial- 
value, problem. Again the equations (3.1) and (3.2) can be used to establish 
the existence and uniqueness of a solution (u([, t), ~(5, t)) of (1.10) in A. See 
[6, 41 for details. Then u(& t) and v(t, t) determine the controlf(t) via (1.8). 
Standard uniqueness results show that (~(6, t), v(.$, t)) as now constructed in 
D is the unique generalized solution of (1. lo), (1.7), (1.8), (2.1) in D and it 
clearly has the desired terminal values at t = 2C. We say “generalized” 
solution because the limiting values at (0, 4) of (~(6, t), v(E, t)) as defined in 
A,, and A, may not agree, resulting in Bf and 0- having jump discontinuities 
across C+(O, 4) and C-(0, k), respectively. The solution is of class Cl in each 
of A, , A, and A separately. 

It remains only to prove the inequalities (2.3), (2.4). This is done with the 
aid of two lemmas. 

LEMMA 2.1. Let (u, v) be a solution of (l.lO), (1.7) Zying in Cl(A). Then 
there are positive constants PI , Pz such that 

s 

2/ 
Pl [I ~(4 t)l” + I ~(4 t)l”l dt D 

s 

28 

< p2 [I 44 W + I 44 t)121 dt. (3.3) o 

Proof. We begin with the first inequality of (3.3). Let A([) denote that 
portion of A lying to the left of the line f = 5, 0 < 5 < /. Since u and v 
satisfy (1.10) in A([) they also satisfy 
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Therefore, with 

Using the divergence theorem, 

j s,,,, 1; [I u I2 + I ~1 I”1 - ; ha + 41 dt- dt 

+ j;;: Cl ~(5, t)12 + I 45, WI dt. (3.5) 

Substituting (3.5) into (3.4), setting 

-W = j;If [I ~(5, t)12 + I 45, t)12] dt 

and differentiating with respect to 5, we obtain 

E'(5) = jl;; (($ f;) 9 MO + A(5)*) ($; 8)) dt 

+ 1/2 I e+g, e + r;>l” + 4 I WI, zf - 5Y. 
(3.6) 

Since the aij are in Cl[O, 41 there is a positive number AI,, such that 

for 0 < 1; < 6’. Thus, since E(0) = 0 

&G’) < 1/2 j: eMo(‘-‘)[l e+(& t’ + 511” + I e-C& L’ - 5)l”l dt 

and, setting 1 = /we have the first inequality in (3.3) with 

p1 = e--Mod. 
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To get the second inequality in (3.3) we note that (3.6) implies 

E(() < e”o(e-c)E(e). 

Then from (3.4), (3.5) we have 

(7 ( e+ ~,e+~)lad~+S~cIe-(~,e-~)/PdT 

= w - j/,(,) ((1) Y (A + A*) (3) d5 dt 

< e”occ-rk(d) + 1’ MOE(~) d[ 
0 

+ MO 1: eMott-‘) d[] E(e). 

Setting 5 = ewe have the second inequality in (3.3) with 

P2 = e”OC. 

Thus the proof of Lemma 2.1 is complete. 
Actually, Lemma 2.1 is a rather standard estimate for hyperbolic equations 

and can be found, in some form, in good texts. The next lemma is no harder 
to prove but somewhat harder to find in the literature. 

LEMMA 2.2. Let (u, v) be a solution of (l.lO), (1.8) in Cl(d). Then there are 
positive constants P3 and P4 such that 

SJadI ( 2da 
0 

e+ -$,e+-$ )I 
< P3 j-\/ar j O- ($ , e - --$) 1’ d7 + P4 12’ 1 f(t)j2 dt. 

0 0 

Proof. In order to do this it will be convenient to employ a different 
representation of the differential equations (3.1), (3.2), which are given there 
in parametric form. If we introduce coordinates 

t--5+/ 
rl 

=t+t-e 
42 ’ [= 42 
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the characteristics of the partial differential system (I .lO) become lines 
parallel to the 17 and 5 axes. If we put 

the equations (3.1), (3.2) are equivalent to 

F h 0 + a++ ($ (71 - 0 + e) #+(% 5) 

+a-+(& - 

(3.7) 

5) + e) 4-h 5) = 0, 

F (77, 6) + a+- (5 (7 - 5) + q ++b?, 5) 

+ a-- (A (7 - 5) + c) e?, 5) = 0. 

(3.8) 

The domain A now becomes the region 0 < 11 < 5, 0 < 5 < e, and we are 
asked to show that 

I 
e 

I $+(% [)I2 4 G p3 i': I HO, [)I2 4 + ~‘2 f“, j: lf(25)l” 4. (3.9) 
0 

The boundary condition (1.8) now becomes 

Let us set 

and compute 

Using (3.7) and (3.10) we have 

F'(5) = j: [--2a+ + I #+ I2 - a-+(,-$+ + ++$->I 4 + I c,W, 5 + czfGW- 
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Letting M be a common bound for the absolute values of all of the coefficients 
a:{:!(t) in 0 < f < 5 we have 

I F’(C)1 < 3MW) + M 1’ I #WI, 5)l” 4 + 2 I cl I2 I 445, 01” 
0 

(3.11) 
+ 2 I 52 I2 lfcx>l"~ 

Now we make use of (3.8) to obtain the estimate 

I 4-h 511 d e”n I +(O, 01 + M In eMtnws) / $+(s, ()I ds 
0 

from which it follows that 

1 4-(rl, 01” d 2e2M” / #-(0, C)l” + 2M2 (!I e2M(n-s) ds) (1: I #+(s, 01” ds) 

< 2Me2Mc I #-(0, ()I2 + M(e2ML - l)F(5) 

= Ml I W, 01” + MPG3 

uniformly for 0 < 71 < 5, 0 < 5 < 4 Then going back to (3.11) and sub- 
stituting, 

I F’(O < 3MW + M 1’ [Ml I W4 01” + M,W)ld~ 
0 

+ 2 I ~1 I2 M I WJ [)I2 + %F(01 + 2 1~2 I2 If( 

d [3M + MM,& + 2 I ~1 I2 M21 F(5) 

+ WMJ + 2 I cl I2 Icl,] I HO, 01” + 2 I ~2 I2 lf(25)12 

= M,F(5) + M4 I It-@, [)I2 + Mc, I f(X)l” 

uniformly for 0 < 5 < /. This implies, sinceF(0) = 0, 

F(e) < jl eMs(e-c)[M4 I $70, 01” + M5 I f(X>l”ld5 

which proves Lemma 2.2 with 

P 
3 

= M e”se 
4 3 42 P4 = M,eM3? 

We can proceed now to complete the proof of Theorem 1. As shown in 
Fig. 2, we divide the basic rectangle into five triangular subregions. In d,, we 
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FIGURE 2 

use, essentially, Lemma 2.1, but with the roles of t and 5 interchanged, to 
show that 

Then we apply, essentially, Lemma 2.2 to the region da, (instead of d) with 
(u, w) satisfying CY+(O, t) + &u(O, t) = 0 in place of (1.8) (here f is zero) to 
show that 

Therefore, 

-$, e - -$ )I 2 dT < P, I 
t 
o (I ~(5,O)l” + I $6, OV) d5. 

Arguing similarly in d,, and d,, , 

,y 1 e+ (-$I e + 5) I2 da G Ps ,: (I 4-5 24” + I 45 2W) dt. 

We combine these two inequalities with precisely the first inequality of 
Lemma 2.1 to get inequality (2.3) of Theorem 1. 
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To get inequality (2.4) of Theorem 1 we note that u1 = er, = 0 implies, 
together with the boundary condition (1.7), that 

e+(-$,e++J =o a.e., u E [O, d28]. 

Then essentially the same argument as used in Lemma 2.2 shows that 

A similar argument using the boundary condition su(O, t) + /300”(0, t) = 0 
in A,, shows 

so that 

s 2t < PB I fW12 dt. o 
Then we use Lemma 2.1 again with the roles of t and 8 reversed to get (2.4). 

In the above work we have assumed u o, v o , ul , w, all in Cl[O, e]. To get the 
result for u. , 0, , u1 , v1 in L2[0, e] it is sufficient to consider sequences 

Thai (2.4) cannot be proved if we require only ~,,/r6, # 1, al/p1 # - 1 is 
easily illustrated by taking all aij = 0 in (1 .lO) and letting CQ = p1 = 1. The 
solutions (u, 0) of 

w40, t> + Poq, t) = 0, zq, t) + o(l, t) = 0 
vanish at t = 28 no matter what initial conditions are prescribed. But here 
f(t) = 0 so (2.4) could not hold. 

4. PROOF OF THEOREM 3 

We shall again assume that u o , et, lie in Cl[O, e] so that (u, w), the corre- 
sponding solution of (1. lo), (1.7), (1.8) is I l’k ewise of class Cl in each of the 
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domains A, , A, , A as described in the proof of Theorem 1. We define 
domains 

d(T) = ((5, t) 1 0 .< ‘$ < e, L + 7 - f :< t :g / + 7 + [}, 72 0, 

observing that d(0) = d. The domain A(T) is the domain of determinacy for 
data given along the line 5 = /, T < t < 2L’ + r, as far as solutions of (2.10) 
[or (l.lO)] are concerned. 

We let (wr , zr) be the unique solution in d(7) of (2.10) correponding to 
constant real data 

w,(e, t) Fez d, z,(e, t) = 1, r<t<<e+r. (4.1) 

Because these are constant data and the coefficients of the partial differential 
system (2.10) are functions of 5 only, w, and z, are functions of 5 only: 

%(E, 0 = 4% 45 t) = N43. 

Thus, from (2.10), 

w’(5) = -43 46) - %1(E) 43, 

4!) = -43 44 - 443 40, 

which implies that w(d) = ti and ~(8) = f can be chosen so that 

we) - Boz(O> = 1. (4.2) 

We now extend the real solution (w, , x,) from A(T) into the rest of 

D(T) = {(f, t) / 0 < if < e, 7 < t < 26$ T} 

by solving two characteristic-boundary-value problems [6] for (2.10) in the 
domains 

d,(T) = ((6, t) I 0 < 4 < 4 7 < t < T + d-- S}, 

d,(T)={(5,t)IO~~de,T+e+5~tt2e+T}, 

corresponding to the boundary condition 

“oeo,(O, t) - A-J%(O, t> = 0 

and the values of 
8+ = w + z, &=w--z 

(4.3) 

(4.4) 

already provided on C+(O, 7 + e), C-(0, 7 + t), respectively, by the solution 
(w, > z,) already constructed in d(T). Because the system (2.10) has C1 coef- 
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ficients, the complete solution (w, , z,), now constructed in all of D(T), is of 
class Cl in A(T), A,(T) and A,(T) individually, but 8+ and & will suffer dis- 
continuities across C-(0, 7 f d), C+(O, T + 0, respectively, because (4.1) 
does not agree with the boundary condition (4.2) which we imposed on 

(% > x,) when we extended the solution into d,(T) and d,(T). These discon- 
tinuities are essential to our proof. 

Because we have related the terminal state to the inital state by means of the 
constant y, we may set 

u(S, t + 2q = r”u(S, 4, 45, t + 2q = r”@, t) (4.5) 

and obtain a solution of (l.lO), (1.7) for 0 < [ < e, 0 < t < co 
(- co < t < co if y # 0). Of course the control function f appearing in the 
boundary condition (1.8) is extended similarly: 

f(t + 2w = rY(t). 

Now consider Fig. 3 where we have shown D(T), d(r), do(T) and d,(T) for 
7 > 0 as subregions of 0 < f < 4, 0 < t < co. The discontinuities of 

6% 3 z,) lie along C+(O, 7 + k), C-(0, 7 + e), whereas those of (u, PI) lie along 
C+(O, (2k - 1) e), C-(0, (2k - 1) e). In the polygonal regions bounded by 
these characteristics and the lines t = 0, E = 0 and t = e both solutions are 
of class Cl. 

FIGURE 3 
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We proceed now as in (2.11) with (w, .z) replaced by (wT , z,) and the region 
D replaced by D(T). [Strictly speaking, the integration should be done indi- 
vidually over each of the polygonal regions which make up D(T) (see Fig. 3) 
followed by cancellation of boundary terms. We leave this detail to the reader.] 

Using the boundary conditions (1.7), (4.3) and (4.1) together with the fact 
that 

u(k 7 + 24 = yu(& 4, $6 7 + 24 = ru(4, T), 

(4.6) is seen to imply 

0 = j” {[Pa, T + 24 - %(~,414!, 4 
0 

+ [r+(5,7 + 24 - 4&dl +!, ~11 dt 

I 

7+2e 
- [iu(t!, t) + eirv(/, t)] dt. 

7 

(4.7) 

Because the initial data for a solution (wT1 , zT1) are the same as those for 

@T* 3 z,~) but given on [rr , rr + 24 instead of on [TV , T2 + 24, it is clear 
that 

f&(5, 7 + 24 = 4(l3, W&T> = ~o(O 

%(5, 7 + 24) = %(S>, -5(&T) = %l’o(5f), 

are Cl functions of .$ alone and do not depend upon T. 

We now differentiate (4.7) with respect to 7. In doing so we must take 
account of the discontinuities of u and v. In our work below we assume 
0 < 7 < 8. Other cases are handled in the same way. We obtain, noting (4.5), 

(y - 1) q4 7) + (y - 1) h(4 4 

+ [&(/ - T) - co(f - T)] [U((e - T) +, 7) - U((e - 7) -9 T)] 

+ [&(t - T) - zo(t - T)] [f.‘((e - 7) +, 7) - v((f - 7) -> T)l* 
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Using (1.10) and th en integrating by parts, the integral in (4.8) becomes 

+ kG26!) (v%(5) - 4(O) + a22(5) w4(6) - ~063) 
+ r%‘kt> - %‘(Ol 45 41 d5 
- [@I(/ - T) - G,(b - T)] [v((e - T) +, T) - v((e - 7) -Y T)] 
- [yzl(C! - T) - zo(/ - T)] [U((t - T) +, T) - td((t - T) -, T)] 

+ [Y&(t) - G,(t)] v(e, T) + [l’%(c) - &it)] u(e, 7). (4.9 

In (4.9) we have also used the boundary conditions satisfied by u, v, G,, , z5r , 

zo 3 Zr at 6 = 0. Taking account of the fact that 8- = u - v is continuous 
across c-(0, d), the substitution of (4.9) into (4.8) yields 

(Y - 1) a@, T> + (Y - 1) h(6 7) 

+ [~12W ww) - ho + a22(5) (Y%(5) - ho:, 
+ r%‘(E) - %‘(~)I v(t, 01 dt 
+ [?‘%(~> - %(~)I v(l, T> + [I’&(~> - %I:,(~>] U(& 7). 

Consider now the quantities 

These can be written in another way, namely, 

(4.10) 

)/(a - Z,(t -, 7 + 24)) - (2 - Z,(t -, T)) = 012, 

y(ti-ZU,(d-,T+2d))-((eir--T(~--,T))=&. 

409/40/2-7 
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If (WT I 2,) were a continuous solution of (2.10) throughout D(T) these quan- 
tities would be zero. However, because of the discontinuities of (wT , zT) 
propagating along ~~(0, 7 + /), c-(0, 7 + /), this is not so. The quantities 
e+ and I!- satisfy coupled linear first order differential equations similar to 
the equations (3. l), (3.2) satisfied by 8+ and B-- along characteristics c and c , 
respectively. Using the continuity of 4 + and & across c+- and c , respectively, n 
one can show that the jump discontinuities exhibited by I!% and 8~ across 
c-(0, T + e) and ~‘(0, 7 + 0, respectively, i.e., 

oe+g, 7 + / - 6) = e+g +, T + E - 5) - 6+g -, 7 + / - [), 

O<(</, 

oB-(t, 7 + / - E) = 4-g +-, T + G + 0 - 4-g -, 7 + e +- 0, 

O<‘t<P 

(and defined by continuity at 5 = 0 and 8 = t), satisfy uncoupled linear 
first order homogeneous differential equations 

= - 4 (%(5) + 4E) + 45) + 45)) de+(f, 7 + / - 0, 

Thus, with CT+ and u- defined by (2.18) and (2.19), respectively, 

a.2 + & = --dd+(/, T) = --o+dd+(o, 7 + e>, 

/3, - cd, = y&(t, 7 + 2L) = yo-d&(0, 7 + 1”). 

(4.11) 

(4.12) 

Using the boundary conditions (4.3) we can readily calculate 

&+(o, T + p> = 2(%WP) - Poe9) 
% -A ’ 

&((), T + e) = 2(ww - Al48) 
010 + Al * 

Hence, from (4.11), (4.12), (4.2), 
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so that 

If we put 

012 = PO” cLo ( F- 1 a0 + PO ’ 
B2 = ( poTa + ya- ) ’ 010 + PO 

(4.13) 

(4.14) 

G3 = - [%(E) (r%(5) - 4a)) + %,(t) (ye, - S”(6)) 

+ Y%V) - ~o’(E)l, 
43 = - k%(5) b4(0 - @o(t)) + %2(E) (y%(5) - q,(E)) 

+ r%‘(5) - ~o’b% 
then (4.10) has the form 

This takes care of the “only if” point of Theorem 3. To prove the “if” 
part we note that not both of the coefficients - p. “’ a0 - pay; a0 ’ - /lo “” 010 + pay; a0 
are zero. For definiteness, assume the first is not zero. Then consider the 
control problem (l.lO), (1.7), (2.1), (2.20) with control 

ff({, t) -f(t). 

By Theorem 1 there is a solution to this control problem and, by the “only if” 
part of the present theorem, ~(8, t) must satisfy (4.15). 

Next we consider the mixed initial-boundary-value problem (l.lO), (1.7), 
(4.19, (2.1). Existence and uniqueness are as easy to prove here as in the case 
of a standard boundary condition of the form S&L’, t) + /I&t, t) = 0. 
Therefore the solution of this initial-boundary-value problem coincides 
with the solution of the control problem posed in the preceding paragraph. 
Hence (2.20) must be satisfied and we have taken care of the “if” part of 
Theorem 3. 

When y = 0 the rectangle D(T) used in (4.6) can be replaced by the region 

The analysis proceeds as above, provided we note that Bf = u + v vanishes 
along t = 7 + 8 + 6 for 7 > 0. The solution (w7 , 2,) of (2. IO) only needs 
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to be constructed in R(T) rather than in D( T in this case and the condition ) 
aO/&, # 1 is sufficient to carry out this construction. 

Thus the proof of Theorem 3 is complete, provided we recognize that the 
inequalities of Theorem I imply that we can readily extend the results 
proved above for u0 , n,, E P[O, P] to the general case u,, , ZI,, EL~[O, L’]. 
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