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Let n be a positive integer. We introduce a concept, which we call the n-filling
property, for an action of a group on a separable unital C*-algebra A. If A=C(0)
is a commutative unital C*-algebra and the action is induced by a group of
homeomorphisms of 0 then the n-filling property reduces to a weak version of
hyperbolicity. The n-filling property is used to prove that certain crossed product
C*-algebras are purely infinite and simple. A variety of group actions on bound-
aries of symmetric spaces and buildings have the n-filling property. An explicit
example is the action of 1=SLn(Z) on the projective n-space. � 2000 Academic Press
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INTRODUCTION

Consider a C*-dynamical system (A, :, 1 ) where A is a separable unital
C*-algebra on which a discrete group 1 acts by V-automorphisms.

Definition 0.1. Let n�2 be a positive integer. We say that an
action :: g [ :g of 1 on A is n-filling if, for all b1 , b2 , ..., bn # A+, with
&bj&=1, 1� j�n, and for all =>0, there exist g1 , g2 , ..., gn # 1 such that
�n

j=1:gj (b j)�1&=.
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If A is a commutative unital C*-algebra and : is induced by a group of
homeomorphisms of the spectrum 0 of A, then the n-filling property is
equivalent to a generalized global version of hyperbolicity (Proposition 0.3
below). In this setting, the definition was motivated by ideas from [A-D,
LS, BCH]. The present article applies the n-filling property to give a proof
that certain crossed product C*-algebras are purely infinite and simple
(Theorem 1.2). In the commutative case, similar results were obtained in
[A-D, LS] using local properties of the action. Simple crossed product
algebras have been constructed using the related concept of a strongly
hyperbolic action in [H, Appendix 2].

Remark 0.2. In order to prove the n-filling condition as stated in
Definition 0.1 it is sufficient to verify it for all b1 , b2 , ..., bn in a dense subset
C of A+. For then if b1 , b2 , ..., bn # A+, with &bj&=1, 1� j�n, and if
=>0, choose c1 , c2 , ..., cn # C such that &bj&cj&< =

2n for all j and
�n

j=1 :gj (c j)�1&=�2. Write

:
n

j=1

:gj (b j&cj)=x=x+&x& ,

where x+ , x& # A+ and x+ x&=0. We have x�&=�2 and therefore

:
n

j=1

:gj (b j)= :
n

j=1

:gj (c j)+x�1&=�2&=�2=1&=.

Suppose that A=C(0), the algebra of continuous complex valued func-
tions on a compact Hausdorff space 0. If the action arises from an action
of 1 on 0 by homeomorphisms, then the n-filling condition can be
expressed in the following way, which explains its name.

Proposition 0.3. Let 0 be an infinite compact Hausdorff space and let
1 be a group which acts on 0 by homeomorphisms. The induced action : of
1 on C(0) is n-filling if and only if the following condition is satisfied: for
any nonempty open subsets U1 , ..., Un of 0, there exist g1 , ..., gn # 1 such
that g1U1 _ } } } _ gnUn=0.

Proof. If the action is n-filling, let U1 , ..., Un be nonempty open subsets
of 0. There exist elements b1 , b2 , ..., bn # A+, with &bj&=1, such that
supp(bj)/Uj , 1� j�n. By hypothesis there exist g1 , g2 , ..., gn # 1 such
that �n

j=1 :gj (b j)�1�2. Then if | # 0 there exists i # [1, 2, ..., n] such that
:gi (bi)(|)>0. Therefore g&1

i | # Ui , i.e. | # giUi . Thus g1U1 _ } } } _
gn Un=0.
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Conversely, suppose the stated assertion holds. Fix b1 , b2 , ..., bn # A+,
with &bj&=1, 1� j�n, let =>0. For each j, the set Uj=[| # 0; bj (|)>
1&=] is a nonempty and open. Choose g1 , ..., gn # 1 such that g1U1

_ } } } _ gnUn=0. If | # 0, then g&1
i | # U i for some i and so

:gi (bi)(|)>1&=. Therefore �n
j=1 :gj (bj)�1&=. K

Remark 0.4. If the action of the group 1 on the space 0 is topologi-
cally transitive (in particular, if it is minimal) then the n-filling condition
is equivalent to the following apparently weaker condition: for each non-
empty open subset U of 0 there exist t1 , ..., tn # 1 such that t1U _
} } } _ tnU=0.

In order to see this, suppose that U1 , ..., Un are nonempty open subsets
of 0. There exists g2 # 1 such that U1 & g2U2 {<. Then there exists g3 # 1
such that U1 & g2 U2 & g3 U3 {<. Finally, there exists gn # 1 such that
U=U1 & g2U2 } } } & gnUn {<. Then there exist t1 , ..., tn # 1 such that
t1 U _ } } } _ tn U=0 and so t1U1 _ t2 g2U2 } } } _ tn gnUn=0.

Definition 0.5. Let ,(1, 0) be the smallest integer n for which the
conclusion of Proposition 0.3 holds. Set ,(1, 0)=� if no such n exists,
that is, if the action is not n-filling for any integer n.

Topologically conjugate actions have the same value of ,(1, 0). It is
easy to see that the notion of a 2-filling action is equivalent to what is
called a strong boundary action in [LS] and an extremely proximal flow in
[G]. The action of a word hyperbolic group on its Gromov boundary is
2-filling [LS, Example 2.1]. In our first example below (Example 2.1) we
show that the canonical action of 1=SLn(Z) on the projective space
6=Pn&1(R) satisfies ,(1, 6)=n.

The final part of the paper is devoted to estimating ,(1, 0) for some
group actions on the boundaries of affine buildings. These estimates show
that ,(1, 0) is not a stable isomorphism invariant for the algebra
C(0) <r 1 (Example 4.3).

1. PURELY INFINITE C*-ALGEBRAS FROM N-FILLING ACTIONS

Definition 1.1. An automorphism : of a C*-algebra A is said to be
properly outer if for each nonzero :-invariant ideal I of A and for each
inner automorphism ; of I we have &: | I&;&=2.

We shall say that an action :: g [ :g is properly outer if for all
g # 1"[e], :g is properly outer.
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The purpose of this section is to prove the following result.

Theorem 1.2. Let (A, :, 1) be a C*-dynamical system, where 1 is a dis-
crete group and A is a separable unital C*-algebra. Suppose that for every
nonzero projection e # A the hereditary C*-subalgebra eAe is infinite dimen-
sional. Suppose also that the action : is n-filling and properly outer. Then the
reduced crossed product algebra B=A <:, r 1 is a purely infinite simple
C*-algebra.

Remark 1.3. If A=C(0), with 0 a compact Hausdorff space, the con-
dition that eAe is infinite dimensional for every nonzero projection e # A
says simply that the space 0 has no isolated points.

It was shown in [AS, Proposition 1] that if the action : is topologically
free then : is properly outer.

Proof (inspired by [LS, Theorem 5]). Denote by E: B � A the canoni-
cal conditional expectation. Fix x # B, x{0. In order to prove the result it
is enough to show that there exist y, z # B such that yxz=1. Put
a=x*x�&E(x*x)&. Let 0<=<1�(2(2n+1)). There exists b # Cc(1, A)+

such that &a&b&<=. Write b=be+�g # F bgug , where be=E(b)�0 and
F/1"[e] is finite. Note that =>&E(a&b)&=&E(a)&be&�|1&&be& |,
and so &be &&1<1+2=. It follows that

"a&
b

&be&"=&be&&1 &(&be&&1) a+a&b&

<(1+2=)(= &a&+=)==(1+2=)(1+&a&).

Choosing b so that &a&b&<=�(3(1+&a&)) then replacing b by b�&be&
shows that we can assume that &be&=1.

Since :g is properly outer for each g # F, it follows from [OP,
Lemma 7.1] that there exists y # A+, &y&=1 such that &be&�&ybe y&>
&be&&=�|F | and &ybg:g( y)&<=�|F | for all g # F. Using Lemma 1.5 below,
we see that there exists c # B such that &c&�- n and c*ybe yc�1&3=.

Then

&c*yayc&c*ybe yc&�&c*yayc&c*ybyc&+&c*ybyc&c*ybe yc&

�n &a&b&+n &yby& ybe y&

�n=+n :
g # F

&ybg ug yu&1
g ug&�2n=.
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Therefore c*yayc is invertible since (&c*ybe yc)&1&� 1
1&3= and

&1&(c*ybe yc)&1 (c*yayc)&�
2n=

1&3=
<

n
2n&1

<1.

Setting z=(c*yayc)&1 we have &E(x*x)&&1 c*yx* } x } ycz=1. K

It remains to prove Lemma 1.5. A preliminary observation is necessary.

Lemma 1.4. Let A be a unital C*-algebra such that for every nonzero
projection e # A the hereditary C*-subalgebra eAe is infinite dimensional. Let
b # A+, &b&=1 and =>0. For every integer n�1 there exist elements b1 ,
b2 , ..., bn # A+, with &bj&=1, bbj=bjb, &bbj&�1&= and bibj=0, for i{ j.

Proof. There are two cases to consider.

Case 1. Suppose that 1 is not an isolated point of Sp(b). Then there
exist pairwise disjoint nonempty open sets U1 , ..., Un contained in Sp(b) &
[1&=, 1]. Let C be the C*-subalgebra of A generated by [b, 1]. By func-
tional calculus, there exist b1 , b2 , ..., bn # C +, &bj&=1 (1� j�n) with
&bbj &�1&= and bibj=0, i{ j.

Case 2. Suppose that 1 is an isolated point of Sp(b). Then there exists
a nonzero projection e # A such that be=eb=e. By hypothesis the
hereditary C*-subalgebra eAe is infinite dimensional. Therefore every masa
of eAe is infinite dimensional [KR, p. 288]. Inside such an infinite dimen-
sional masa of eAe we can find positive elements b1 , b2 , ..., bn , &b j&=1
(1� j�n) with bibj=0, i{ j. Then bbj=b(ebj)=ebj=b j=b jb and
&bbj &=&b j&=1 for 1� j�n. K

Lemma 1.5. Let (A, :, 1 ) be as in the statement of Theorem 1.2, let
0<=<1�3, and let b # A+, with 1&=�&b&�1. Then there exists c # B such
that &c&�- n and c*bc�1&3=.

Proof. By Lemma 1.4, there exist b1 , b2 , ..., bn # A+, with &b j&=1,
bbj=bjb, bibj=0 for i{ j, and &bbj&�1&2=. Since the action is n-filling,
there exist g1 , g2 , ..., gn # 1 such that �n

i=1 (1�&bbi &) :gi (bbi)�1&=. There-
fore �n

i=1 :gi (bbi)�(1&=)(1&2=)�1&3=. Put c=�n
j=1 - b j u&1

gj
# B.

Now c*c=�i, j ugi - b i - b j u&1
gj

=�n
i=1 :gi (b i)�n and so &c&�- n.

Finally, we have c*bc=�i, j ugi - bi b - bj u&1
gj

=�n
i=1 :gi (bb i)�1&3=. K

2. EXAMPLES

We now give some explicit examples of n-filling actions.
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Example 2.1. For the canonical action of 1=SLn(Z) on the projective
space 6=Pn&1(R), we have ,(1, 6)=n.

Proof. Denote by u [ [u] the canonical map from Rn onto 6.
We first show that the action of 1 on 6 is not (n&1)-filling. Choose a

linear subspace E of Rn of dimension n&1. Let U=6"[E], which is a
nonempty open subset of 6. If tj # 1 (1� j�n&1) then t1U _ } } } _
tn&1U{6. For the subspace t1E & } } } & tn&1E of Rn has dimension at
least one, and so contains a nonzero vector v. Then [v] � �n&1

j=1 t jU. Thus
the action (1, 6) is not (n&1)-filling. It remains to show that it is n-filling.
For this we use ideas from [BCH, Example 1].

We claim that there exists a basis [u1 , u2 , ..., un] for Rn, elements g1 ,
g2 , ..., gn # 1, and (compact) sets K1 , K2 , ..., Kn /6 with K1 _ K2 _ } } } _
Kn=6, and with the following property: for any open neighbourhood Uj

of [uj] (1� j�n) there exists a positive integer Nj such that gn
j K j /Uj for

all n�Nj . It follows that the action is n-filling. For let U1 , ..., Un be
nonempty open subsets of 6. Since the action of 1 on 6 is minimal, we
may assume that [uj] # Uj (1� j�n). Let tj= g&Nj

j , so that Kj /t jU j

(1� j�n). Then t1U1 _ } } } _ tnUn=6.
It remains to verify our claim. Fix a positive integer k�4 and let

a=2�(- k2+4k+k), b=(- k2+4k&k)�2. Consider the matrices A=
( k+1

1
k
1) and B=( 1

k
1

k+1) in SL2(Z). These matrices have eigenvalues
*+=1+ 1

a , *&=1&b, which satisfy 0<*&<1<*+. The corresponding
eigenvectors for A are ( 1

a) and ( &b
1 ), for B they are ( a

1) and ( 1
&b). If

1� j�n&1 let

1 0 } } } 0
0 0

0 1 } } } 0
0 0

gj=\ A + , u j=\1+ , vj=\&b+ ,
a 1

0 0 } } } 1
0 0

where A occupies the j and j+1 rows and columns and the nonzero entries
of the vectors are in rows j and j+1. Also let

1 0 } } } 0
0 0

0 1 } } } 0
0 0

gn=\ + , un=\ + , vn=\ + ,

a 1B
1 &b
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Let R=max( 1+a
1&b , 1+ab

1&b )= 1+a
1&b . For 1� j�n&1 let

Kj ={_!juj+'j vj+ :
l{ j, j+1

! lel&; !j{0;

} ' j

! j }�R, } ! l

! j }�R, l{ j, j+1= ,

Kn={_!n un+'n vn+ :
l{n&1, n

!l el&; !n {0,

} 'n

!n }�R, } ! l

!n }�R, l{n&1, n= .

Direct computation shows if [x] # 6 then [x] # Kj , where |xj |=
max1�l�n |xl |. Therefore 6=�n

j=1 Kj .
Let =>0 and consider the basic open neighborhood Uj of [uj] defined

by

Uj={_!ju j+'jvj+ :
l{ j, j+1

!lel&; !j {0, } 'j

!j }<=, }!l

!j }<=, l{ j, j+1= .

Let N> log(R�=)
log(*+) . Recall that 0<*&<1<*+ . Therefore R�*N

+<=.
For m�N and [!juj+'jvj+� l{ j, j+1 !lel] # Kj , we have

gm_!j uj+' jvj+ :
l{ j, j+1

!lel&=_*m
+! juj+*m

& 'jvj+ :
l{ j, j+1

!lel& .

Now |*m
&' j�*m

+ !j |�(1�*m
+) |'j �!j |�R�*m

+<=, and for l{ j, j+1,

|!l �*m
+!j |�(1�*m

+) |!l�! j |�R�*m
+<=.

This means that gm
j Kj /Uj for all m�N. K

Remark 2.2. The fact that the action of SL3(Z) on the projective plane
P2(R) is not 2-filling can also be seen in a different way. More generally the
action of a group 1 on a non-orientable compact surface 0 cannot be
2-filling. For let M be a closed subset of 0 homeomorphic to a Mo� bius
band, let U1=M c and let U2 /0 be homeomorphic to an open disc in R2.
Then it is impossible to have t1 U1 _ t2 U2=0 for t1 , t2 # 1. For t&1

2 t1(M)
would be a homeomorphic copy of a Mo� bius band embedded in the disc
U2 . To see that this is impossible note that a Mobius band is not discon-
nected by its centre circle, and apply the Jordan curve theorem.

Definition 2.3. Let the group 1 act on the topological space 0. An
element g # 1 is said to have an attracting fixed point x # 0 if gx=x and
there exists a neighbourhood Vx of x such that limn � � gn(Vx)=[x].
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Remark 2.4. Let G be a noncompact semisimple real algebraic group
and let 1 be a Zariski-dense subgroup of G. Consider the action of G on
its Furstenberg boundary G�P, where P is a minimal parabolic subgroup of
G. It follows from [BeL, Appendice] that there exist elements g # 1 which
have attracting fixed points in G�P. In fact the set H of all such elements
g # 1 is Zariski-dense in G: the elements of H are called h-regular in [BeL]
and maximally hyperbolic in [BCH].

It follows from a result of H. Furstenberg [Fur, Theorem 5.5, Corollary]
that if G is a semisimple group with finite centre which acts minimally on
a locally compact Hausdorff space 0 with an attracting fixed point, then 0
is necessarily a compact homogeneous space of G.

The following result shows that many of the actions considered in [A-D,
LS] are n-filling for some integer n.

Proposition 2.5. Let 0 be a compact Hausdorff space and let (0, 1 ) be
a minimal action. Suppose that there exists an element g # 1 which has an
attracting fixed point in 0. Then the action (0, 1) is n-filling for some
integer n.

Proof. Choose x # 0 with gx=x and an open neighbourhood Vx of x
such that limn � � gn(Vx)=[x]. Since the action is minimal, the family
[hVx ; h # 1] forms an open covering of 0. By compactness, there exists a
finite subcovering [h1Vx , h2 Vx , ..., hn Vx].

Let U1 , ..., Un be nonempty open subsets of 0. Since the action of 1 on
0 is minimal, we may choose elements sj # 1 such that hjx # sjUj (1�j�
n). For 1� j�n, choose an integer Nj such that gNjVx /h&1

j sjUj . Then
hj Vx /tj Uj , where tj=hj g&Njh&1

j sj . Therefore t1U1 _ } } } _ tnUn=0. K

Remark 2.6. Consider the action of a noncompact semisimple real
algebraic group G on its Furstenberg boundary G�P. Let 1 be a Zariski-
dense subgroup of G and let n(W) be the order of the Weyl group. In this
case one can be more precise: the action (G�P, 1 ) is n(W)-filling. The proof
follows from the remarks in [BCH, p. 127]. In the next section we prove
an analogue of this result for groups acting on affine buildings.

Recall that an action (0$, 1 ) is said to be a factor of the action (0, 1 )
if there is a continuous equivariant surjection from 0 onto 0$.

Proposition 2.7. Suppose that the action (0, 1) is n-filling and that
(0$, 1) is a factor of (0, 1 ). Then (0$, 1) is an n-filling action.

Proof. This is an easy consequence of the definitions. K
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3. GROUP ACTIONS ON BOUNDARIES OF AFFINE BUILDINGS

We now turn to some examples which motivated our definition of an
n-filling action. They are discrete analogues of those referred to Remark 2.6.
We show that if a group 1 acts properly and cocompactly on an affine
building 2 with boundary 0, then the induced action on 0 is a n-filling,
where n is the number of boundary points of an apartment in 2. If 2 is the
affine Bruhat�Tits building of a linear group then n is the order of the
associated spherical Weyl group.

An apartment in 2 is a subcomplex of 2 isomorphic to an affine Coxeter
complex. Each apartment inherits a natural metric from the Coxeter com-
plex, which gives rise to a well-defined metric on the whole building [Br,
Chap. IV.3]. Every geodesic of 2 is a straight line in some apartment.
A sector (or Weyl chamber) is a sector based at a special vertex in some
apartment [Ron]. Two sectors are equivalent (or parallel) if their intersec-
tion contains a sector. The boundary 0 is defined to be the set of equiv-
alence classes of sectors in 2. Fix a special vertex x. For any | # 0 there
is a unique sector [x, |) in the class | having base vertex x [Ron,
Theorem 9.6, Lemma 9.7]. In the terminology of [Br, Chap. VI.9] 0 is the
set of chambers of the building at infinity 2�. Topologically, 0 is a totally
disconnected compact Hausdorff space and a basis for the topology is
given by sets of the form

0x(v)=[| # 0 : [x, |) contains v],

where v is a vertex of 2. See [CMS, Sect. 2] for the A� 2 case, which
generalizes directly.

We will need to use the fact that 0 also has the structure of a spherical
building [Ron, Theorem 9.6], and its apartments are topological spheres.

Definition 3.1. Two boundary points |, | in 0 are said to be opposite
[Br, IV.5] if the distance between them is the diameter of the spherical
building 0. Opposite boundary points are opposite in a spherical apart-
ment of 0 which contains them; this apartment is necessarily unique. Two
subsets of 0 are opposite if each point in one set is opposite each point in
the other.

We define O(|) to be the set of all |$ # 0 such that |$ is opposite to |.
It is easy to see that O(|) is an open set.

Lemma 3.2. If | # 0 and A is an apartment in 2, then there exists a
boundary point | of A such that | is opposite |.
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Proof. Consider the geometric realization of the spherical building 0.
By [Ron, Theorem (A.19)], the subcomplex 0$ obtained from 0 by delet-
ing all chambers opposite | is geodesically contractible. However, this is
impossible if 0$ contains the spherical apartment of 0 made up of the
boundary points of A. K

Corollary 3.3. If |1 , ..., |n are the boundary points of an apartment
then

0=O(|1) _ } } } _ O(|n).

Remark 3.4. The union is not disjoint in general, as is seen by consider-
ing the example of a tree.

Lemma 3.5. Two chambers |1 , |2 in 0 are opposite if and only if they
are represented by opposite sectors S1 , S2 with the same base vertex in some
apartment of 2. Moreover if two sectors S1 , S2 in an apartment A with the
same base vertex represent opposite elements |1 , |2 in 0, then S1 , S2 are
opposite sectors and A is the unique apartment containing them.

Proof. Suppose that |1 , |2 in 0 are opposite. There exists an apart-
ment A containing sectors S1 , S2 representing |1 , |2 , respectively [Ron,
Proposition 9.5, Br, VI.8, Theorem]. By taking parallel sectors, we may
assume that S1 , S2 have the same base vertex x # A. The sectors of A

based at x correspond to the chambers of an apartment in 0 containing
|1 , |2 [Ron, Theorem 9.8]. Therefore S1 , S2 are opposite sectors. The
converse is clear.

The final assertion follows from [Br, VI.9, Lemma 2 and IV.5,
Theorem 1]. K

Remark 3.6. (a) It is not necessarily true that if |1 , |2 in 0 are
opposite then the sectors [z, |1), [z, |2) based at any vertex z are opposite
sectors in some apartment.

(b) If C1 , C2 are opposite chambers with a common vertex x in an
apartment, then 0x(C1) and 0x(C2) are opposite sets in 0.

Suppose that a group 1 acts properly and cocompactly on an affine
building 2 of dimension n. An apartment A in 2 is said to be periodic if
there is a subgroup 10<1 preserving A such that 10 "A is compact [Gr,
6.B3]. Note that 10 is commensurable with Zn, and this concept coincides
with the notion of periodicity described in [MZ, RR] for buildings of type
A� 2 . In [BB], a periodic apartment is called 1-closed. This terminology
makes it clear that periodicity depends upon the choice of the group 1
acting on the building.

206 JOLISSAINT AND ROBERTSON



It is important to observe that there are many periodic apartments. In
fact, according to [BB, Theorem 8.9], any compact subset of an apartment
is contained in some periodic apartment.

Now let A0 be a periodic apartment, and fix a special vertex z in A0 .
Choose a pair of opposite sectors W+, W & in A0 based at z. Denote by
|\ the boundary points represented by W\, respectively. By periodicity of
the apartment there is a periodic direction represented by a line L in any
of the sector directions of A0 . For definiteness choose this direction to be
that of the sector W+. This means that there is an element u # 1 which
leaves L invariant and translates the apartment A0 in the direction of L. (In
the terminology of [BB, Moz], L is said to be an axis of u.) Then
un|+=|+, un|&=|& for all n # Z. Moreover unz is in the interior of
W+ for n>0 and in the interior of W& for n<0. (See Fig. 1. Here and in
what follows, the figures illustrate the case of a building 2 of type A� 2 ,
where each apartment contains precisely six sectors based at a given
vertex.) The element u above is the analogue of the maximally hyperbolic
elements in [BCH].

The following crucial result shows that |& is an attracting fixed point
for u&1.

Proposition 3.7. Let A0 be a periodic apartment and choose a pair of
opposite boundary points |\. Let u # 1 be an element which translates the
apartment A0 in the direction of |+. Then u&1 attracts O(|+) towards |&;
that is, for each compact subset G of O(|+) we have limn � � u&n(G)=
[|&].

FIG. 1. The periodic apartment A0 .
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Proof. We use the notation introduced above. Let | # O(|+). By con-
sidering a retraction of 2 centered at |+ [Br, p. 170, VI.8, Theorem], we
see that 2 is a union of apartments which contain a subsector of W+.
Moreover for any sector W representing | there are subsectors V +/W+

and V/W which lie in a common apartment A. Replacing V + by a sub-
sector, we may assume that V + has base vertex uNz for some N, that is
V +=[uNz, |+). Replacing V by a parallel sector in A we may also
assume that V has base vertex uNz. By Lemma 3.5, V lies in the apartment
A as shown in Fig. 2.

For each N�0 let GN denote the set of all boundary points | # O(|+)
such that [uNz, |) and [uNz, |+) are opposite sectors in some apartment
A(N). Then G0 /G1 /G2 / } } } is an increasing family of compact open
sets and we have observed above that ��

N=0 GN=O(|+). The result will
follow if we show that limn � � u&n(GN)=[|&] for each N�0. It is
clearly enough to consider the case N=0.

Consider a basic open neighbourhood of |& of the form 0z(v), where
v # [z, |&)/A0 . Choose an integer p�0 such that unv # [z, |+) for all
n�p. If | # G0 then unv # [unz, |) (that is v # [z, u&n|)) for all n�p. (See
Fig. 3.) This means that u&n| # 0z(v) for all n�p. Thus u&n(G0)/0z(v)
for all n�p. This proves the result. K

Theorem 3.8. Suppose that a group 1 acts properly and cocompactly on
the vertices of an affine building 2 with boundary 0. Let k denote the number
of boundary points of an apartment of 2. Then the action (0, 1 ) is k-filling.

FIG. 2. The apartment A.
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FIG. 3. Sectors in the apartment u&nA(0).

Proof. Let U1 , ..., Uk be nonempty open subsets of 0. Let A0 be a peri-
odic apartment with boundary points |j , 1� j�k. By minimality of the
action we can assume that |j # Uj , 1� j�k. By Corollary 3.3, we have
0=O(|1) _ } } } _ O(|n). It follows from the existence of a partition of
unity that there exist compact sets Kj /O(|j), 1� j�k such that
0=K1 _ } } } _ Kk .

Let uj # 1 translate the apartment A0 in the direction of |j , 1� j�k.
Then by Proposition 3.7, there exists Nj�0 such that u&n

j Kj /Uj whenever
n�Nj , 1� j�k. In other words, Kj /un

j Uj whenever n�Nj , 1� j�k. Let
tj=uNj

j . Then

0=K1 _ } } } _ Kk /t1U1 _ } } } _ tkUk

as required. K

Remark 3.9. The action of an A� 2 group 1 on the boundary 0 of the
associated building is 6-filling. We do not know the precise value of
,(1, 0), but it is certainly greater than 2. To see this, fix a point |0 # 0
and choose U to be a nonempty open set opposite |0 . If t1 , t2 # 1 then t1 U
and t2U are opposite the boundary points t1|0 and t2 |0 respectively and
therefore cannot cover 0. To see this, choose a hexagonal apartment of 0
which contains t1|0 and t2|0 and choose a chamber | in this apartment
which is not opposite t1|0 or t2|0 . Then | cannot lie in t1U _ t2 U.
Therefore 2<,(1, 0)�6.
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4. PURELY INFINITE SIMPLE C*-ALGEBRAS

Throughout this section we consider only affine buildings of type A� 2 .
The A� 2 buildings are a particularly natural setting for our investigation.
They are the simplest two-dimensional buildings but they do not necessarily
arise from linear groups. Crossed product C*-algebras associated with
them have been studied in [RS1, RS2]. In this case the building 2 is a sim-
plicial complex whose maximal simplices (chambers) are triangles. An
apartment of 2 is a subcomplex isomorphic to the Euclidean plane
tessellated by equilateral triangles.

The boundary 0 may be identified with the flag complex of a projective
plane (P, L) [Br, p. 81]. Flags will be denoted (x1 , x2) where x1 # x2 . If we
identify chambers of 0 with sectors based at a fixed vertex v0 of type 0,
then a sector wall whose base panel is of type 1 corresponds to an element
of P and a sector wall whose base panel is of type 2 corresponds to an ele-
ment of L [Ron, Sect. 9.3]. P is the minimal boundary of 2 and has been
studied in [CMS], where it is denoted 0l. The topology on P comes from
the natural quotient map 0 � P. Moreover the action of 1 on 0 induces
an action on P. Similar statements apply to L, and there is a
homeomorphism P$L.

From now on assume that the group 1 is an A� 2 group; that is, 1 acts
simply transitively in a type rotating manner on the vertices of an affine
building 2 of type A� 2 .

Proposition 4.1. The actions (0, 1 ), (P, 1) are topologically free. That
is, if g # 1"[e] then

Int[| # 0 : g|=|]=<

Int[w # P : gw=w]=<.

Proof. The statement for the action on 0 is proved in [RS1,
Theorem 4.3.2].

Suppose that the result fails for the action on P. Then there exists an
open set V/P such that gw=w for all w # V. Let V� =?&1(V), where
?: 0 � P is the quotient map. Then V� is a nonempty open subset of 0. By
[RS1, Proposition 4.3.1], V� contains all six boundary points of some
apartment A of 2. These boundary points are the six chambers of an
apartment A0 in 0, as illustrated in Fig. 5. The apartment A0 contains
three points w1 , w2 , w3 # P (Fig. 4). These three points lie in V and hence
are fixed by g. It follows that the lines l1 , l2 , l3 # L are also fixed by g.
Therefore each boundary point of A0 is fixed by g. By the proof of [RS1,
Theorem 4.3.2], it follows that gA=A and g acts by translation on A.
The same is true for all nearby apartments A$, since the corresponding
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FIG. 4. Sector walls w1 , w2 , w3 corresponding to points in P.

walls w$1 , w$2 , w$3 # P will also be fixed by g, if they belong to V. The argu-
ment of [RS1, Theorem 4.3.2] now gives a contradiction. K

Proposition 4.2. If 1 is an A� 2 group, then the algebras C(0) < 1,
C(P) < 1 are simple purely infinite C*-algebras.

Proof. The actions are topologically free by Proposition 4.1 and hence
properly outer [AS, Proposition 1]. Moreover they are 6-filling by
Theorem 3.8. The result follows from Theorem 1.2. K

We now give examples of properly outer actions (0i , 1i), i=1, 2, with
,(11 , 01)=2 and ,(12 , 02)>2 but for which C(01) < 11 is stably
isomorphic to C(02) < 12 .

Example 4.3. Let 11 /PSL(2, R) be a non-cocompact Fuchsian group
isomorphic to F3 , the free group on three generators. Consider the action
of 11 on the boundary S1 of the Poincare� disc. This action is 2-filling and

FIG. 5. The apartment A0 .
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the algebra A1=C(S 1) < 11 is p.i.s.u.n. with K-theory given by K0(A1)=
K1(A1)=Z4, [1]=(1, 0, 0, 0, ) [A-D]. (The K-theory is independent of
the embedding 11 /PSL(2, R).)

Let 12 be the A� 2 group B.3 of [CMSZ]. This group is a lattice subgroup
of PGL3(Q2) and acts naturally on the corresponding building of type A� 2

and its boundary 0. By Remark 3.9, 2<,(1, 0)�6. By [RS2], the
algebra A2=C(0) < 12 is p.i.s.u.n. and satisfies the Universal Coefficient
Theorem. By [RS3] the K-theory of A2 is given by K0(A2)=K1(A2)=Z4,
[1]=0.

It follows from the classification theorem of [Kir] that A1 , A2 are stably
isomorphic (but not isomorphic, since the classes [1] do not correspond).
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