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ABSTRACT

Though total positivity appears in various branches of mathematics, it is rather
unfamiliar even to linear algebraists, when compared with positivity. With some
unified methods we present a concise survey on totally positive matrices and related
topics.

INTRODUCTION

This paper is based on the short lecture, delivered at Hokkaido Univer-
sity, as a complement to the earlier one, Ando (1986).

The importance of positivity for matrices is now widely recognized even
outside the mathematical community. For instance, positive matrices play a
decisive role in theoretical economics. On the contrary, total positivity is not
very familiar even to linear algebraists, though this concept has strong power
in various branches of mathematics.

This work is planned as an invitation to total positivity as a chapter of the
theory of linear and multilinear algebra. The theory of totally positive
matrices originated from the pioneering work of Gantmacher and Krein
(1937) and was brought together in their monograph (1960). On the other
hand, under the influence of 1. Schoenberg, Karlin published the monumental
monograph on total positivity, Karlin (1968), which mostly concerns totally
positive kernels but also treats the discrete version, totally positive matrices.

Most of the materials of the present paper is taken from these two
monographs, but some recent contributions are also incorporated. The novelty
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is in the systematic use of skew-symmetric products of vectors and Schur
complements of matrices as the key tools to derive the results in a transparent
way.

The paper is divided into seven sections. In Section 1 classical de-
terminantal identities are proved for later use. The notions of total positivity
and sign regularity are introduced in Section 2, and effective criteria for total
positivity are presented. Section 3 is devoted to the study of various methods
of production of new totally positive matrices from given ones. In Section 4 a
simple criterion for a totally positive matrix to have a strictly totally positive
power is given. Section 5 is devoted to the study of the relationship between
the sign regularity of a matrix and the variation-diminishing property of the
linear map it induces. In Section 6 the refined spectral theorems of Perron-
Frobenius type are established for totally positive matrices. Examples of
totally positive matrices are collected in Section 7. But the most significant
results, concerning the total positivity of Toeplitz matrices and translation
kernels, are only mentioned without proof.

1. DETERMINANTAL IDENTITIES

This section is devoted to the derivation of classical spectral and de-

tarmi tal 1Annf1hnc \17}1 ch are ncnr] in the cnl'\cnnnnnf‘ cphfwnnc Thn use n‘
terminantal identit wWilCh €C 11 1N€ sussequent seclions

skew-symmetric products of vectors and Schur complements of matrices will
unify and simplify the proofs.

For each n > 1, let 5, stand for the (real or complex) linear spaces of
(column) n-vectors ¥'= (x,), equipped with inner product

(4= L i (1.1)

The canonical orthonormal basis of J#, consists of the vectors ¢, ( =¢,™),
i=1,2,...,n, with 1 as its ith component, 0 otherwise. A vector ¥ = (x,) is
positive (respectlvely, strictly positive), in symbols ¥> 0 (> 0), if x,>0
(>0 fori=12,....,n

A linear map from S, to 5, is identified with its n Xm matrix
A =[a;;], relative to the canonical basis of 5, and 5£:

a;=(A&™, g™y,  i=12,...,n, j=12..m (12

The linear map A is also identified with the ordered m-tuple of n-vectors:
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A =[a,,a,,...,a,], where
j=12,...,m. (1.3)

A is called positive (strictly positive), in symbols A >0 (A > 0), if it
transforms every nonzero positive vector to a positive (strictly positive)
vector. Obviously A is positive (strictly positive) if and only if @, > 0 (> 0),
i=1,2,...,m, or equivalently, if and only if a,.].>O (>0), i=12,...,n,

j=12,...,m.
] m "

For each k> 1, let @ 5, denote the k-tensor space over #,. The inner
k

product in @ 5, is determined by

k

(X\®X,® - X, Y1®,® -+~ OUy) = l_[1<fia!7i>- (1.4)
ie

k
The canonical orthonormal basis of ® J#, is by definition {&"®e ™

® - ®eM:1<i;<n, j=12,...,k}. .

Each linear map A from 5, to 5, induces a linear map from & 57,

k k
to ® J%,, called the k-tensor power and denoted by & A:

k
( ® A)(i’1®f2® - ®%,) = (AX,)® (AX,)® - -- ®(Ax,). (L.5)
If B is a linear map from 3¢, to 5, then it follows from (1.5) that
k k k
®(AB)=(®A)-(®B). (1.6)

Let S, denote the symmetric group of degree k, that is, the group of all
pirmutations of {1,2,...,k}. Each m €S, gives rise to a linear map P{™ of

® J£,, determined by

PIV(X\@%,® -+ ®%,) =%, 1, ®X,-15® -+ ®F,-13). (1.7)
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A k-tensor X is called skew-symmetric if
P™MX =sgn7-X forany =we€§,, (1.8)

where sgnm =1 or — 1 according as # is an even or odd permutation. The
subspace of all skew-symmetric k-tensors over S, is called the kth skew-
k

symmetric (or kth Grassmann) space over #,, and denoted by AJ#,. The

k
orthogonal projection P{™ to A, is given by

1
P{M = — sgnm- P{™, (1.9)
k! LE=4-7
The k-tensor
XIATGA - AXp=PM(F 07,8 -+ ®%}) (1.10)

is called the kth skew-symmetric product of the ordered k-tuple
(%, %5,.... %) }. Then it follows from (1.8) and (1.10) that

iy AX g A AT gy =sanm H AT A - A (L)

Further, it follows from (1.4), via the definition of determinant, that

(FIATGA AT AT A s AR = det[<x,, 7], (L12)

where det means determinant. A consequence is that {X, x,,..., %} is
linearly dependent if and only if X, A X, A -+ AX,=0.
It follows from (1.5) ;:md (1.7) that, for each linear map A from 5%, to

H#,, its k-tensor power @ A intertwines P{™ and P{™ in the sense that

<">(®A) (®A) P™  for meES,. (1.13)

k
Therefore & A intertwines the projections P{™ and P{™:

k k
P,f")-( ® A) = ( ® A) P, (1.14)
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k
The restriction of ® A to the skew-symmetric space is called the k-exterior

k k
power of A, and denoted by AA. In view of (1.5), the exterior power AA is

determined by the formula
k
(/\A)(Ec‘l/\ Xy A - AT ) = (AT )A(AX) A - A(AX). (1.15)
If I, stands for the identity map of 5, then

k
AL =I5, (1.16)

k
the right-hand side being the identity map of AJ,. It follows from (1.5) or

(1.15) that if B is a linear map from 3#, to 7,
k k k
/\(AB)=(/\A)-(/\B). (1.17)

A coniequence of (1.16) and (1.17) is that if A is an invertible map of 5%,
then AA is invertible, and

k -k
(/\A) =AA"L (1.18)

When 1<k<n, Q,, will denote the totality of strictly increasing
sequences of k integers chosen from {1,2,...,n}:

Qr.n€a=(a;), (1<) ay<ay<--- < (<n). (1.19)

The order relation a< B for «, B € Q, , means by definition that a; < 8;,
i=12 ..., k. The complement «' is the increasingly rearranged
{1,2,...,n}\ @, so that «’ is an element of Q,_, , When a€Q, .,
BE€Q,,, and aNnB =g, their union aU B should be always rearranged
increasingly to become an element of Q; ., ..



170 T. ANDO

For each « € Q, ,,, its dispersion number d(«) is defined by

da)= T (a,-a—D=ay—a—(k=1),  (1.20)

i=1

with the convention d(a)=0 for € Q, ,. Then d(a)=0 means that «
consists of k consecutive integers. For a € Q, , the aprojection of an
n-vector ¥ = (x,) is the k-vector with components x,,x,,..., *,,. The space
of all a-projections is denoted by £, that is, 5, is #, indexed by
(aj, ag,...,0p).

Let A be an n X m matrix, a €Q, ,, and € Q, . Then A[«a|B] is by
definition the k X! submatrix of A using rows numbered by a and columns
numbered by 8. If A is considered a linear map from £, to 5, then
Ala|B] is one from 5, to 5. When a=f, Ala|a] is simply denoted by
Ala]. Further we shall use the following notation:

Alal)=Alalp’],  A(alB]=Ala|B],
Aa|B)=Ala’|B], Aa) = Ala’la’],

and

Al-|8] = A[1,2,...,n|B], Alal-] = Alall,2,...,m],

AlB)=A[L2,...,nB"], A(a}-]=Ale'1.2,...,m].

Given a € Q, ,, let us use the abbreviation

E(=@Mp) =g AN - A, (1.21)

2

Then by (1.12), {Vk 1€} :ac Qk. .} becomes a complete orthonormal system
of the k-skew-symmetric space over J,, and is taken as the canonical
k

orthonormal basis of AJ#,. Therefore the notions of positivity for a k-skew-

symmetric tensor and a linear map between skew-symmetric spaces always
refer to these canonical basis. According to (1.12) and (}(.21), for a linear

map A from 5, to J,, the (a, 8) entry of the matrix of A A is determined
by

k
k!<(/\A)é’<"'>,§,é<"’;> — det Ala|B]. (1.22)
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k k
Therefore A A is positive (strictly positive), in symbols AA>0(> 0)if and

only if det A[a|B] >0 (> 0) for any a € Q, , and B € Q; ,,, or equivalently
if and only if @ Adg A -+ A g, > 0 (> 0) for any BEQ; .

In the rest of this section, we assume n =m, so that A, B are n-square
matrices. First of all, the multiplication law (1.17) produces, via (1.22), the
following determinantal identity:

det(AB)[a|B] = Y detA[alw]-detB[w|B] for a,BEQ; .

W€,

(1.23)

Given an n-square matrix, it is sometimes convenient to consider its
adjoint A* and its conversion A¥, whose (i, j) entries are given by a; and
Ay ivlnej+ respectively. Then it is immediate from the definition that for
a, B € Q,, one has det A*[a|B] = det A[a|B] and det A*[a|B] =
det A[a®8%], where (a®),=n—¢a,+1, i=1,2,..., k, and similarly for 8*.

For a linear map A on J#, we can speak about its spectrum, the set of
complex numbers A for which AI,— A is not invertible, or equivalently
AX = AX has a nonzero solution ¥. When A% = AX, then A is usually called
an eigenvalue of A, and X an eigenvector corresponding to A. Therefore the
spectrum consists of all eigenvalues. Since the noninvertibility of an n-square
matrix is equivalent to the linear dependence of its n column (or row)
vectors, A is an eigenvalue of A if and only if it is a root of the polynomial
det(AI, — A) of degree n. The multiplicity of an eigenvalue A is by
definition the multiplicity of A as a root of det(AI, — A).

Let A(A)=(A,(A), Ay(A),..., A, (A)) stand for the eigenvalues of an
n-square matrix A, arranged in modulus-decreasing order:

M(A) = [A(A)]> - =X, (A)],

with multiplicities counted. For each n-tuple of complex numbers
(&, &,,..., 8, ), let diag(£,, &, .., £,,) denote the diagonal matrix with diago-
nal entries {£}, &,,..., £, }. Obviously the eigenvalues of this diagonal matrix
coincide with £, §,,..., ¢,, with multiplicities counted. A matrix A is called
diagonalizable if it is similar to a diagonal matrix, that is, there are a diagonal
matrix diag(£,, &,,...,¢,) and an invertible matrix T such that A=T-
diag(¢), &5,...,&,)-T"% In this case the eigenvalues of A are just
{1, &5,..., £, } with multiplicities counted.
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TueoreM 1.1. Let A be an n-square mlfltn'x. Then for each 1<k <n,
the eigenvalues of the (2)—square matrix \A are given by T15_ 1AL (A),

a € Qy ., with multiplicities counted.

Proof. Since the set of diagonalizable matrices is dense in the space of
n-square matrices, and the spectrum depends continuously on matrix entries,
we may assume that A is diagonalizable. Therefore with A, = A (A), i=
1,2,...,n, we have A=T-diag(A;,A,,...,A,)-T"! for some invertible T.
Then according to (1.17) and (1.18)

k

/"\A=(}\T).Adiag(xl,xz,...,xn). /"\T)”.

k
But it is readily seen that Adiag(X}.A,,...,\,) has eigenvalue TT{_ A,

aer,n. |

Let A be an n-square matrix, 1 <k <n, and a, 8 € Q; ,,. When A[«|B]
is invertible, the Schur complement of A{«|B] in A, in symbols A /[a]B], is
defined as the following (n — k)-square matrix indexed by a’, 8"

A/lalB] = A(lB) — A(alB]-AlalB] -AlalB). (1.24)

When a = 8, we shall use A /a for A /[«|B].
For a € Q, ,, sgn(a) is defined as sgn(7) of the permutation 7 €S, that
assigns a; to i fori=1,2,..., k and aj to k+jfor j=1,2,...,n—k, so that

sgn(a) = (= 1)Fie kb2 (1.25)

Correspondingly, for a € Q, ,, let T, stand for the linear map on J#, such
that

o

T =¢,, i=12,...k and TG, ;=&, j=12,...,n—k (1.26)

Obviously T, is unitary and

det T, = sgn(a). (1.27)



TOTALLY POSITIVE MATRICES 173

THEOREM 1.2. Let A be an n-square matrix, 1 <k <n, and a, € Q; .
If Al a|B] is invertible, then

det A = sgn(a)sgn(B)det A[a|B]det(A/[a)B]). (1.28)
If, in addition, A is invertible, so is A /[a|B] and
A7Y(Bla)=(A/[alB]) ", (1.29)

Proof. Let us begin with the special case a= 8= {1,2,...,k}. Since A
admits the factorization

Lla] Ala]"'Alale)
0 I,(a)

_ I1.[«a] 0
Aaja] Ala] " I(a)

Afa] O }

(1.30)

(1.28) is immediate, because the left and the right factors on the right hand
side of (1.30) have determinant 1, while the middle factor has determinant
det A[a]det(A /). Also, (1.29) follows from (1.30), on taking inverses of
both sides.

Turning to the general case, consider the maps T,, T, in (1.26). Then it
follows immediately from (1.2) and (1.26) that, with suitable identifications of
indices,

(T7'AT,)[1.2,.... k] = AleiB],  (T7'ATy)(L,2,.... k) = A(alB),
(T7'AT,)(1.2,..., kL,2,..., k] = A(alB],
(T,'AT,)(1,2,.... k|L,2,....k) = A[alB);

hence
(1,'AT,)/{1,2,....k} = A /[l B].

Now (1.28) follows from the special case proved above, by using (1.27).
Finally (1.29) results from the following relation and the special case proved
above:

A Bla) = (T A7) (L2, k) = (T'AT,) (1,2,..,k).
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Since an n-square matrix is approximated arbitrarily closely by matrices
all square submatrices of which are invertible, in deriving various de-
terminantal identities from Theorem 1.2 we can assume that all square
submatrices of A are invertible.

If an n-square matrix A is invertible, then

det A(B|a)

det A™'[a|B] = sgn(a)-sgn(B) det A

for a,8€Q, ,. (1.31)
This follows from (1.29) and (1.28), applied to a’ and B8’ in place of a and 8.
Let J,:=diag(l, — 1,1, —L...,(—= D" !). Since det ] [a|w]=sgn(a)-
(—D**k=D/2 gr =0 according as w=a or #a, the following identity
follows from (1.31), by using (1.23):

det A(B|a)
det(]nA—l]n)[al,B] =W for a,8€Q,,. (1.32)
When k =1, (1.32) means that
det A(j|i)

[(i,j)entryof AY] =(-1)""/ i,j=12,....n. (1.33)

detA

The following identity holds for a general n-square matrix A:

Y. sgn(w)det A[ajw]det A(Blw) =sgn(B)det A-85, 4

©we,

for a,f€Q; ., (1.34)

where 8§, g=1lor =0 according as a=f for #B. In fact, when A is
invertible, by (1.31) the left hand side of (1.34) is equal to

sgn(B)det A Y det Alajw]det A [w|B],

W EQy p

which coincides with the right hand side by (1.23).
If a,€Q, , and w,7€Q; , are such that w C a’ and 7 C B’, then

det Ala|f]det(A/[alB]) [w]7]
=sgn(a/aUw)sgn(B/BUTt)det AlaUw|BUT], (1.35)

where sgn(a/a U «) and sgn(B/B U 7) are defined as follows: let p:=a U w
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=By o bge) and vi=BUT=(r,vy,...,¥,,), and let a;=p., B
i=1,2,..., k. Then

i =

Sgn(a/a U w) — ( _ 1)Z‘f7i _k(k+1)/2’ sgn(,B/,B U T) - ( _ 1)2’{0, - k(k+1)/2'

(1.36)

To see (1.35), consider the (k +I)-square matrix B=[b,;], defined by
bj=a, by s j= , k + 1. Then it is readily seen that (1.35) is just (1.28)
with B, y, o in place of A a, B respectively. An immediate consequence is

{(a;, B} ) entry of A/[a|B])

detA[aU{af}|U{Bj,}] .

=sgn(a/aU{af})5gn(B/BU{'Bil}) det A a|B]

(1.3
Further, for any n-square A and &, B € Q, ,,,

det([detA[aU{a{}|BU{Bj’}]]i’j=l‘2 ’’’’ n_k)=detAdetA[a|B]nfk”1‘

(1.38)

In fact with £, =sgn(a/aU{a/}) and T, =sgn(B/BU{B/}), i, j=
1,2,. — k, it follows from (1.37) that the left hand side of (1. 38) is equal
to

det A[a|B]" " det[diag(¢,;. £uyp- -0 £ur )

A/[alB] 'diag(m;;,'n,;é,---, "IB,",,()]

n-—k

=detAlalB]" 7" TT sgn(a/au{a;})det(A /[al8])

i=1

X :li[:sgn(ﬁ/ﬂu (87}).
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But is is readily seen from (1.25) and (1.36) that

n—k n—k
iI=—-[1 sgn(a/aU{a;})=sgn(a) and 1131 sgn(B/B U {,B].’}) =sgn(B),

and (1.38) follows from (1.28).
If A is an n-square matrix, « €Q, | ,, W€Q, ,,,and w C a, then for
l<g<n
det A[w|l,n)det A[a|g) =det A[w|l,q)det A[ajn)
+det Alw|g,n)det A[all). (1.39)
To see (1.39), fix p € w and let p:=w\{p} and »:== {1, g, n}’. Further let
{m}=aNw and B:=A/[ulr]. In view of (1.35) and (1.37), on dividing
both sides of (1.39) by det A{p|r]® and factoring out sgn(p/p U

{pDsen(pn/pU{p,m}), it is readily seen that (1.39) is equivalent to the
following relation:

sgn(v/vU{q})sgn(r/rU{1,n}) b,,det B[p, m|L, n]
=sgn(v/vU{n})sgn(v/rU{1l,q})b,,det B[p,m|l,q]
+sgn(v/vU{1})sgn(r/vU{q,n}) b, det B[p,m|q,n].
Next it follows from (1.36) that
sgn(r/»U{q))sgn(r/rU{l,n})=sgn(r/rU{n})sgn(r/rU{L q})
=sgn(r/»U(1})sgn(r/rU{q,n})
=(-1)""

Therefore (1.39) is finally equivalent to the following relation, which is easily
checked:

bpqdetB[p,mﬂ,n] =bp"detB[p,m|l,q]+bpldetB[p,m|q,n].

We close this preliminary section with an interesting chain rule for Schur
complements, though it is not used explicitly in the subsequent part.
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THEOREM 1.3. Let A be an n-square matrix, and suppose that A[a|B] is
invertible for some a,BEQ; .. If w,T€Q, ., wCa’, and 7 C B’, then the
invertibility of (A /[a|B])[w|7] is equivalent to that of AlaVU w|BUT]. In
this case the following relation holds;

(A/laB])/[el] = A/[avw|BUT]. (1.40)

Proof. The first assertion is immediate from (1.35). And (1.40) is equiv-
alent to the relation

det((A/[al])/[wir]) [ulr] = det(A/[aUwiBUr]) [plr] (1.41)

for any u,v€Q, , such that pc(aUw)’ and yC(BUT). But again,
according to (1.35), the left hand side of (1.41) is equal to

sgn(w/wU p)sgn(a/aU w)sgn(a/aUwUp)sgn(t/TUr)

et AlaUwup|BUTUY]
det AlaUw|BUT]

d
Xsgn(B/BU T)sgn(B/BUTUY)X

while the right hand side is equal to

det AlaVwUp|BUTUY]
det AlaVw|BUT]

sgn(aVUw/aUwUp)sgn(BUT/BUTUY)

It is readily seen from (1.36) that
sgn(w/w U p)sgn(a/aV w)sgn(a/aUeUp) =sgn(aUw/aUwUp),
and
sgn(7/TUv)sgn(B/BU r)sgn(B/BUTUY) =sgn(BUT/BUTUY),

which proves (1.41), and hence (1.40). [ |

Notes and References to Section 1
We use mostly the notations of Marcus (1973). The (:)-square

matrix [det A[a|B]], ge g, , is called the kth compound of A. Theorem 1.1 is
the Kronecker theorem, while (1.23) is the Binet-Cauchy theorem [see
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Gantmacher (1953)]. More about tensor spaces and skew-symmetric spaces
can be found in Marcus (1973).

Recently de Boor and Pinkus (1982) and Brualdi and Schneider (1983)
also used the Schur complement as a unifying principle in deriving various
classical determinantal identities. When a = 8 the identity (1.28) in Theorem
1.2 appeared first in Schur (1917), and the notion of Schur complement was
explicitly introduced in Haynsworth (1968). The matrix [( — 1)’ */det A(jli)]
is called the adjugate of A and is denoted by adjA; thus adjA =det A-
J,A7'].. Equations (1.31) and (1.38) are known as the Jacobi identity and
the Sylvester identity respectively. The quotient formula (1.40) in Theorem
1.3 is due to Crabtree and Haynsworth (1969) and Ostrowski (1971). More
about Schur complements can be found in Quellette (1981) and Carlson
(1986).

2. CRITERIA FOR TOTAL POSITIVITY

In this section we introduce fundamental notions for our theme: sign
regularity and total positivity.

By a signature sequence we mean an (infinite) real sequence &= (¢;) with
le,=1, i=1,2,.... The multiple of a signature sequence &' =(e{") by a
unimodular real ¢ and the product of & and another signature sequence
#P = (¢2) are those signature sequences defined by (ee!") and (&{"e®)
respectively.

An n X m matrix A is called sign-regular with signature € if

k
g NA>0, k=1,2,...,min(n,m). (2.1)

The sign regularity of A is equivalent to the condition
g Adp N ANdp >0 for BEQ, ,, k=1,2,...,min(n,m),
(2.2)
or, by (1.22), in determinantal form,
gdet A{a|f] =0  for a€Qy ., BEQ , k=1,2,...,min(n,m).

(2.3)

A is called strictly sign-regular with signature € if > in (2.1) is replaced by
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>, or equivalently if > in (2.2) [respectively (2.3)] is replaced by > [>].
As a special case, A is called totally positive if

ANA>0, k=1,2,...,min(n,m), (2.4)
or equivalently if
dg Nag N --- Ndp >0 for BEQ, ,, k=1,2,...,min(n,m),
(2.5)

or equivalently if

det A[alB] >0 for a€Q;,, BEQ,,, k=12,.. ,min(n,m).
(2.6)

A is called strictly totally positive if > in (2.4) is replaced by >, or
equivalently if > in (2.5) [(2.6)] is replaced by > [>].

For the sign regularity of A it is required to check the signs of a very
large number of determinants. But if the rank of A is known in advance—in
particular, if A is invertible—the necessary number of determinants to check
can be considerably reduced.

TrEOREM 2.1. Let A be an n X m matrix of rank r, and € a signature
sequence. If (2.2), or equivalently (2.3), is valid whenever d(B)<m —r,
then A is sign-regular with signature €. In particular, if (2.5), or equivalently
(2.6), is valid whenever d(B) < m — 1, then A is totally positive.

Proof of (2.3) by induction on k. When k=1, (2.3) is true because
d(B)=0for B € Q, .. Suppose that (2.3) is true with k — 2, k — 1 in place of
k, but not with k. Find 8 € Q, ,, for which there is a € Q; ,, such that

gdet Ala|B8] <0, 2.7

and which has minimum d(B) under the above requirement. Suppose first



180 T. ANDO
that d(a) = 0. Let !:=d(B). Then (2.7) is possible only if

I>m-—r. (2.8)
We claim that for every p such that 8; <p <, and p & 88
@, ANdg ANag A--- Ndy =0. (2.9)

For this, fix such p and let 7= {f,,8;,..., Bc_,}. Then the claim means
that A[ — |7 U {p}] has rank <k — 2. Let us use (1.39) in the form that for
every w€Q; , , withwCa

detA[w|TU{p}]detA[cxlfrU{Bl,,Bk}]
~det Aw|rU{B,}]det A[ajrU (B, p}]

+det Alw|rU{B;}]det AlalrU {p,B:}]. (2.10)

Since TU{B,B:} =8, d(r{BLp})<I-1, and d(rU{p, B, D <!~-1,
it follows from (2.7), the induction assumption, and the minimal property of [
that the above identity can be valid only when

det Alw|ru{p}]=0 forany w€Q_,,, wCa (2.11)

On the other hand, according to (1.34), by (2.7) there is y € Q,_, ,, such that
y C a and det A[y|7] # 0. In order to prove the claim, that is, rank A[ — |7 U
{p1}] < k-2, it suffices to show that every row vector of A{ — [T U{p}]isa
linear combination of the row vectors with indices in vy, or equivalently that

det A[yu{g}lru(p}]=0 for qe&v. (2.12)
When g € a, (2.12) follows from (2.11). Therefore fix g € «, and let p=
{pp po, ) =(a\Y)U{g},and v = {», »,, ¥3} = { B}, p. Bi }. Remark that
d(a)=0 implies g=p, or =p; Consider the 3-square matrix B={[b,]
defined by
by=det A[yu{p}Iru{»}]. i,j=12.3

Then by induction assumption all b;; have same sign &, _;, and in view of
(1.38), all the determinants of 2 X2 submatrices of B[-|1) and B[-|3) have the
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same sign &, _,¢;. On the other hand, (2.11) implies that b;, =0 whenever
p; #* q. The claim asserts by=0. If by+# 0, all the above conditions can be
consistent only when b,; = 0 whenever u,# g or b;;=0 whenever p,# q
according as ¢ = p; or = p,. Apply again (1.38) to see each case leads to the
contradiction det A{a|B] = 0. Therefore b, = 0, which establishes (2.9). Since
(2.9) is valid for I @’s with p & {B,, B;,..., By_,}, we have r =rank A <
m — I, contradicting (2.8). This contradiction shows that (2.3) is valid for k
whenever d(a)=0. This restriction d(a)=0 can be released again by
appealing to (1.39). This completes the induction. =

Recall that a matrix A=[a,;] is called lower (upper) triangular if

a;;=0wheneveri<j(i>j). Aiscalleda Jacobi (or tridiagonal) matrix if
a;;= 0 whenever |i — j| > 1.

CoroLLARY 2.2. An n-square invertible lower triangular matrix A is
totally positive if det A[a|l,2,...,k] >0 for every k and a € Q, .

Proof. Let A be lower triangular. Since rank A = n, according to Theo—
rem 2.1 it suffices to show that det A[«|B] > 0 for a, B € Q, , with d(B) =
If «;, < B,, then det A{a|B] =0 because of lower triangularity. If «, > B,, let
7={1,2,..., B, —1}. Then by assumption and lower triangularity

0<detAlaU7|1,2,..., 8]
=det A[aU7|BUT]

=det A[r]det A a|B]
Bi—1
= |1 a, det A[«|B8].
i=1
Since det A =[I_,a,, # 0 and each a,; > 0, it follows det A{a|B] = 0. [ |

THEOREM 2.3. Let A be an n-square Jacobi matrix. If A is positive,
A20, and all principal minors are nonnegative, that is, det A[a] =0
whenever d(a) = 0, then A is totally positive and forany t,>0,i=1,2,...,n

det( A +diag(t,, t,,....t,)) >det A+ []¢. (2.13)

i=1
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Proof by induction on n. The assertion is trivial for n = 1. Assume that
the assertion is true with n —1 instead of n. We may obviously assume
a,; > 0. Then by (1.35), A/{1} is again an (n — 1)-square positive Jacobi
matrix with nonnegative principal minors, so that by the induction assump-
tion A /{1} is totally positive and

det( A /{1} +diag(ty,ts,...,t,)) > det(A/{1})+ ﬁ t;.
i=2

Therefore by Theorem 1.2

det( A +diag(t,,t,,...,t,))

=(a,, +t )det| A/{1) +di )
(ot dr| /(1) 5+ 2222 L

G909, Q1909
t, + - t3,...,tn))

>a,detA/{1}+ lj[lt,.

n
=detA+ []¢.
i=1

It remains to show that A is totally positive. But the above argument shows
that, by adding small #, > 0, we may assume det A > 0. In view of Theorem
2.1 we have to check

det A{e|B] >0 for a,BEQ,, with d(B)=0.

For k = n, this is just the assumption. For k < n — 1, this is derived from the
total positivity assured in induction assumption. [ ]

CoroLLARY 2.4. If an n-square Jacobi matrix A is totally positive, so is
A +diag(ty, ty,...,t,) forany t, 20, i=1,2,...,n.

Proof. It follows from Theorem 2.3, applied to principal submatrices,
that A +diag(¢,,%,,...,¢,) is a positive Jacobi matrix with nonnegative
principal minors. |

Now let us turn to criteria for strict sign regularity. The number of
determinants to check is further reduced.
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THEOREM 2.5. An n X m matrix A is strictly sign-regular with signature
€ if g det Ala|B] > 0 whenever a € Q, ,,, BEQ; ,,, and d(a)=d(B)=0,
k=1,2,...,min(n,m). In particular, A is strictly totally positive if
det A[a|B] >0 whenever a€Q, ., BEQ, ., and d(a)=d(B)=0, k=
1,2,...,min(n, m).

Proof. Let us prove the inequalities

e det A{a|B] >0 for «a€Qy ,, BEQL . k=12,....min(n,m),
(2.14)

by induction on k. When k =1, this is trivial because d(a)=d(B8)=0 for
a€Q, ,, BEQ, . Assume that (2.14) is true with k — 1 in place of k. First
fix an a€Q, , with d(a)=0, and let us prove (2.14) with this a by
induction on !:=d(f). When I = 0, this follows from the assumption of the
theorem. Suppose that ¢, det A[a|y] > 0 whenever y € Q, ,, and d(y)<l—
1. Take any B € Q, ,,, with d(8) =1I. Then there is p such that 8, <p < g,,
d(rU{B,p)<l-1, and d(tU{p, B})<l—1, where 7=
{Bgs Bss--s Be—1 }. It follows from (1.39), as (2.10) in the proof of Theorem
2.1

det Afw|rU{p}]det AlalrU{B,,B:}]

=det AfwlrU{ ;)] det AlalrU{By,p}]

+det Alw|rU{B,}]det AlalrU{p,B;}]

for any w e Q,_, , with w Ca. Then it follows from the two induction
assumptions that the right hand side of the above identity is nonzero with
sign &, _ &, while det A[w|7 U {p}] on the left hand side is nonzero with sign
gx_,. Therefore the identity is consistent only when ¢, det A{a|8] > 0. This
proves (2.14) for a € Q, ,, with d(a) = 0. Apply the same argument rowwise
to conclude that (2.14) is generally true. ]

The same argument, combined with Corollary 2.2, yields the following.

CoroLLARY 2.6.  An n-square lower triangular matrix A is totally posi-
tive if det A[e|l,2,...,k] >0 for every k and a € Q, ,, with d(a)=0.
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We conclude this section with a theorem on approximation of a totally
positive matrix by strictly totally positive ones.

TrEOREM 2.7.  Every sign-regular matrix can be approximated arbitrarily
closely by strictly sign-regular matrices with the same signature. In particu-
lar, every totally positive matrix can be approximated arbitrarily closely by
strictly totally positive matrices.

Proof. Let A be an n X m sign-regular matrix with signature &. We may
assume n = m, by considering [ A,0] or 2 if necessary. As will be shown in
Section 7, there is a sequence {G,} of n-square strictly totally positive
matrices such that G, — I, as p —>co. Now let us proceed by backward
induction on rank A. Remark that (1.17) implies

. >0 if i<grankA,
& /\(G”AG”){=O if i>rank A. (2.15)

When rank A = n, the assertion follows immediately from (2.15). Assume that
the assertion is true for all sign-regular matrices of rank k + 1. Let rank A =k,
and take p so large that B:= G, AG, is sufficiently close to A. According to
(2.15) and (1.23), B has the property

e, det B[a|B] >0 for a,8€Q;,, i=12,.. k. (2.16)
Let
min |det B[a|8]|
5= . a.BEQ
= min

l<i<k max |detBlw|7]|’
W, TEQ; 1,

Then, for any 0 < ¢ < §, the matrix C = B + te; e, . ,[€}.0,0,...,0] is sign-reg-
ular with signature € and is of rank k +1, because B is sign-regular with
signature & and

det C[a|B]
_ [det Ba|B] +teye, det Bla\{1}IB\{1}] i a=B,=1,
a det B[ a|B] otherwise.

For small ¢ the matrix C is sufficiently close to B, and hence to A. Now by
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the induction assumption C can be approximated arbitrarily closely by
strictly sign-regular matrices with signature £. This completes the induction.
|

Notes and References to Section 2

The notions of total positivity and sign regularity were introduced by
Gantmacher and Krein (1937, 1950) with special reference to vibration of
mechanical systems. They established almost all the fundamental results
that will be presented in this lecture. The theory was also developed by
Schoenberg (1930) in connection with the variation-diminishing property.
The monograph by Karlin (1968), which mainly concerns the theory of totally
positive and sign-regular kernels, devotes some attention to the exposition of
totally positive and sign-regular matrices.

The criterion for strict total positivity, Theorem 2.5, was proved by
Fekete (1913); its improvement, Theorem 2.1, is due to Cryer (1976). As a
generalization of Jacobi matrices, A = [a, j] is called m-banded, or an m-band
matrix, if a,; =0 for |i — j|>m. A criterion for total positivity of a band
matrix is found in Metelmann (1973). Lewin (1980) showed that a matrix of
the form A = I, — B with positive B has totally positive inverse only when A
is a Jacobi matrix. The approximation theorem 2.7 is in Whitney (1952).

3. PERMANENCE OF TOTAL POSITIVITY

This section is devoted to canonical methods of production of new totally
positive matrices from given totally positive ones.

Obviously, if A is sign-regular with signature &, so are the adjoint A* and
the conversion A*,

THEOREM 3.1. If A is an n X m sign-regular matrix with signature t,,
and B is an m X [ sign-regular matrix with signature €5, then the product AB
is sign-regular with signature €,- €. In this case AB becomes strictly sign-reg-
ular if A is strictly sign-regular and B is of rank min(m, 1), or if A is of rank
min(n, m) and B is strictly sign-regular. In particular if A, B are (strictly)
totally positive, so is AB.

This is an immediate consequence of (1.17) or (1.23).

The sum of two totally positive matrices is not totally positive in general.
Therefore a square matrix A can rarely generate a totally positive one-param-
eter semigroup, that is, exp(tA) rarely is totally positive for all ¢ > 0.
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TaEOREM 3.2. An n-square matrix A generates a totally positive one-

parameter semigroup exp(tA) if and only if A = &I, + B for some real £ and
a totally positive Jacobi matrix B.

Proof. Suppose first that A is of the form mentioned. Then since

exp(tA) = e*'exp(tB)

t P
=e* lim (1,,+—B) ,
p— o0 P

the total positivity of exp(tA) results from Theorem 3.1, because, for the
totally positive Jacobi matrix B, I, +(t/p)B is again totally positive by
Corollary 2.4.

Suppose conversely that exp(tA) is totally positive for all ¢ > 0. In view of
Theorem 2.3, it suffices to show that A is a real Jacobi matrix with
nonnegative off-diagonal. Since

1
A=lim = tA) -1
ll{r(l)t{eXp( )-1.},

all off-diagonal entries of A are nonnegative because exp(tA) > 0. Finally
a;; = 0 whenever |i — j| > 1. In fact, if i +1<7j, say,

detexp(tA)[i,i+1|i+1,§]>0 for t>0
implies

1
0 < lim ?det(I +tA)[i,i+1]i+1, ]
L0

= ltiir(l){ta.‘,wlanl,j —(1+ tai+1,i+1)aij}

TueoreM 3.3. Let A be an n X m sign-regular matrix with signature &.

(a) Ala|B] is signregular with signature € for every a€Q, , and

B € Ql,m‘
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(b) A/a’ is sign-regular with signature €,=(g,_i&,_;,;); if n=m,
a € Q, , with consecutive components (i.e. d(a) =0), and A(a) is invertible.

(c) J,A™'], is sign-regular with signature €, = (e,¢, _;);, with convention
€= 1 for j <0, if n=m and A is invertible.

In particular, if A is totally positive, so are A[alB], A/a’, and J,A7Y],.

Proof. (a) is trivial. (b) follows from (1.35), and (c) from (1.32). ]

CoroLLARY 3.4. Let A=[a,;]=[a},ay,...,a,] be an n-square totally
positive matrix. If a,, # 0, then the matrix B=[b,, b,,..., b,] defined by
. . N R a,;
b=a, i=12,...,kand b;=a,— —a,, i=k+1,....,n,
ik

becomes totally positive.

Proof. By Theorem 2.7 we may assume det A > 0. Since obviously
det B = det A, according to Theorem 2.1 it suffices to show that

Ab  A--Ab>0 for l<i<j<n. (3.1)

and (3.1) is valid because A is totally positive. If k < i, consider the n-square
matrix C = [&}, a8, q,--.,d,,0,...,0]. Then it is readily seen from the defini-
tion of C/{1} that

o . 0
[Bis1Brianein Bu0,...0] = [C/{l} ]

Now (3.1) follows from the total positivity of C/{1} by Theorem 3.3. ]

A factorization A = BC is called an LU (UL) factorization if B (C) is
lower triangular and C (B) is upper triangular.

Tueorem 3.5. Let A be an n X m totally positive matrix with n > m.
Then A admits an LU factorization A= A, A, and a UL factorization
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A=A, A, , where A, A, are n-square totally positive matrices, and A ,, A,
are n X m totally positive matrices.

Proof. By considering the n-square matrix [A,0], our proof can be
confined to the case n = m. Further, with the help of conversion, it suffices
to treat only the LU-factorization.

When n = 1, everything is trivial. Assume that the assertion is true with
n — 1 in place of n. Now let

S,:: [61’62""’6]"1’0’61’ jHloeee n l]

Clearly S, is a positive, upper triangular Jacobi matrix, hence totally positive
by Theorem 2.3. If @, =d,= -+ =a,_,=0but @, # 0, then

= = s k-1
A=[d,,@ .- @,,0,...,0]SF Y,

n?

and the matrix [@}, @}, p5--.»@,,0,...,0] is totally positive. Applying this
procedure to { @} 1, @y, 9,---» @, } and so on, we arrive at a factorization: for
some w€Q, , and k;>0,i=12,..., l,

A = BSkiSki 1 ... §k1,
wpwr-y wy

where B = [b " b2, .o ] is a totally positive matrix such that b 0 implies
b =0, j=i+1,i+2,...,n. If B[1}]#0, take the largest i for which
bh #0. We claim b, ,_laé 0. Otherwise, b,;#0, b, =0, and det

B[1,jli—1,i]>0imply b; ;, ,=0for j=12,...n, that is, b, _; =0, con-
tradicting b, # 0. Now B admlts a factorization B CU where

and

U:= [61,---’61'1,19

1,i—1

U is a positive, upper triangular Jacobi matrix, hence totally positive by
Theorem 2.3. The total positivity of C follows from Corollary 3.4, because by



TOTALLY POSITIVE MATRICES 189
the maximum property of i:

b, ; Z .
i_ 1> j=i+l,i+2,...,n.

b,=b,

Pl by

Repeating this procedure, we arrive at a factorization B=D-U,U,_,--- U,
where each U, is upper triangular, tridiagonal, and totally positive while D is
a totally positive matrix such that D[1|1)=0:

A=D-UU,_,---USksk-1... gk, (3.2)

wpTw g

Apply the corresponding procedure to the row vectors of D to get a
factorization

A= S:hs;:jz ... Sf,',‘,j"'Lle ~-L,yF-UU,_,--- U15£:8k1-1 ... S“’j:, (3.3)

wr-1

where each L, is a lower triangular totally positive Jacobi matrix, and
T€Q, ,and j;>0,i=12,...,m, while F is a totally positive matrix such
that F[1]1) =0 and F(1{1] = 0. Since F(1) is an (n — 1)-square totally posi-
tive matrix, according to the induction assumption it admits an LU factoriza-
tion F(l)= F Lﬁ v Where F ;. and F y are (n —1)-square totally positive
matrices. Now by (3.3) the n-square matrices A; and A, defined by

A, =S*h§*ie...S*in], [, L fu 0
L ) Ty Ton 1~2-+ Mg ~
0 F,
and
V 0
Ay= 1:)11 £ UU,_y- - USLSL- - Sk
U

are totally positive, and produce an LU factorization A= A, A,. This
completes the induction. [ |

CoroLrLarY 3.6. Every invertible n-square upper (lower) triangular,
totally positive matrix is the product of a certain number of n-square upper
(lower) triangular, totally positive Jacobi matrices.
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Proof by induction on n. The case n =1 is trivial. Assume that the
assertion is true with n — 1 in place of n, and let A be an n-square invertible
upper triangular totally positive matrix. Checking the proof of Theorem 3.5
will show that S’s do not appear and the matrix D in the factorization (3.2)
is also upper triangular. Since

D =
0 D(1)
and D(1) is an (n — 1)-square invertible upper triangular totally positive
matrix, by the induction assumption we have D(1)=WW,- . W for some

(n —1)-square upper triangular totally positive Jacobi matrices W,, i=
1,2,...,s. Let

di{* 0
W, = A |
oW
Then A=WW,---W.-UU,_,"--U, is an expected factorization. |

Beside the usual order relation A > B between two n-square real matnies
let us introduce a stronger one: A B means by definition that AA > AB

for k=1,2,..., in other words,

det A[a|f] > det B[a|B]  forany kand a,B€Q; ,. (3.4)

In this notation, A 0 means that A is totally positive. The relatlon A B
implies A[a],B] [a|,B] for any a, B € Q; ., but not A — B 0 Also

) (1)
A>B>0

does not imply
A/{l} B/{l} or J A~ 1] ]B 'J,.-

TueoreM 3.7. If A is an n-square totally positive matrix, and a=
{L,2,....,k} or ={k,k+1,...,n}, then

A[a] A/a (3.5)

provided that A(a) is invertible.
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Proof for the case a= {1,2,...,k}. In view of (1.35), (3.5) is equivalent
to the inequalities

det AloUa’|TUa’] < det A[w|7]det A(a’)
for w,7€Q,, with w,7Ca.

To prove these inequalities, by fixing w,7 and considering the matrix
Alw U a’|TU a’] in place of A, it suffices to establish the following general
assertion: for any m-square totally positive matrix B

det B<det B[1,2,..., j]det B[j+1,j+2,...,m]
for j=1,2,....m—1. (3.6)

Let us prove (3.6) by induction on m. When m = 2, it is true because
b, =0, by, = 0 imply

det B=b,;byo — b oby, < by by,

Assume that the assertion is true for all the cases of order less than m. The
m-square matrix B under consideration can be assumed to have b,;>0.
Then if k> 1, by (1.28)

det B[1,2,...,k]det B[k +1,k+2,...,m]
=det(B/{1})[2,3,....,k]-b,,-det B[k + 1,k +2,...,m].

Since the matrix B[l,k+1,k+2,...,m] of order less than m is totally
positive, the induction assumption yields

by,det Blk+1,k+2,...,m]>det B[1,k+1,k+2,...,m]
=b,, det(B/{1})k+1,k+2,...,m].

Use again the induction assumption on the matrix B/{1} of order m —1,
which is totally positive by Theorem 3.3, to get

det B[1,2,...,k]det B[k +1,k+2,...,m] .
> by, det(B/{1})[2,3,..., k]det(B/{1})[k +1,k +2,...,m]
> b, det(B/{1})[2,3,...,m] = det B.

When k =1, proceed just as above with B/{m} instead of B/{1}. |
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CoroLLARY 3.8. If an n-square totally positive matrix A is invertible,
then

det Ala] >0  foreverykand a€Q, . (3.7)

Proof by induction on n. The case n=1 is trivial. Assume that the
assertion is true with n — 1 in place of n. If a; > 1, then det A[«a] > 0 follows
from the induction assumption applied to A(1), which is invertible by (3.6)
and totally positive. If a; =1, then by (3.6) a,, > 0 and by (1.35)

det Ala] =, det(A/{1})[a\(1}].

Now det A[a] > 0 follows from the induction assumption applied to A /{1},
which is invertible by (1.28) and totally positive by Theorem 3.3. m

Application of LU and UL factorization in Theorem 3.4 gives rise to
other inequalities.

Tueorem 3.9. If A is an n-square totally positive matrix, and a=
(L2,....,k} or ={k+1,k+2,...,n}, then

1)
Ala]—A/a’ >0 (3.8)
provided that A(a) is invertible.

Proof for the case a={k+1,k+2,...,n}. Let A=A; A, be an LU
factorization with totally positive A;, A, guaranteed by Theorem 3.5. Then
by definition

Ala]l — A/’ = Alaja)A(a) "' Aala]
= AL[a|a)AU("‘)'(AL(O‘)AU(O‘)) \l'AL(“)AU(U‘Ia]
= AL["‘|“)AU(0‘|0‘]-

Since A;[aje) and A (ala] are totally positive, so is their product
A, lala)A(aja). Finally, a proof for the case a={1,2,...,k} is accom-
plished by using UL factorization. n
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Notes and References to Section 3

The characterization of totally positive semigroups, Theorem 3.2, is in
Karlin (1968, p. 115) and related to Loewner (1955). A semigroup of totally
positive Jacobi matrices with respect to the Hadamard (i.e. Schur) product
was studied by Markham (1970). The LU factorization, Theorem 3.5, was
proved by Cryer (1973, 1976); see also Rainey and Halbetler (1972). Inciden-
tally the use of Schur complements in LU factorization is also seen in
Neumann (1981). A check of the proof of Theorem 3.5 will show, on the
basis of Theorem 1.3, that when A is invertible, the kth column of A; is a
positive scalar multiple of the kth column of A /{1,2,..., k — 1} augmented
by 0 at the top 1,2,..., k — 1 positions. Representation of an (infinite) totally
positive matrix as a product of totally positive Jacobi matrices was studied by
de Boor and Pinkus (1982) and by Cavaretta, Dahmen, Miccelli, and Smith
(1981). The fundamental determinantal inequality (3.6) is due to Gantmacher
and Krein (1937). This inequality is valid under a slightly weaker condition;
see in this respect Koteljanskii (1963a).

4. OSCILLATORY MATRICES

An n-square matrix A is called oscillatory if it is totally positive and a
certain power AP becomes strictly totally positive. In this section we shall
present a simple criterion for a totally positive matrix to be oscillatory.

Let us start from simple remarks. An oscillatory matrix is invertible, and
its adjoint is also oscillatory. Therefore, by Corollary 3.8, if an n-square matrix
A =[a,;] is oscillatory, then det A[a] > 0 for a € Q; .

THEOREM 4.1. Let A be an n-square oscillatory matrix. Then the follow-
ing hold:

(@) JLA™J is oscillatory.
(b) Ala] and A /a’ are oscillatory for every a € Q, , with consecutive
components, i.e. such that d(a)=0.

Proof. Suppose that A is totally positive and A? is strictly totally
positive.

(a): J,A™'], is totally positive, and (J,A )P = J(AP)"Y], is strictly
totally positive by Theorem 3.3. Thus J,A~!J, is oscillatory.

(b): Let us prove first the oscillatoriness of A[a] for the case a=
{1,2,...,n—1}. Let B=A[1,2,...,n—1]. Take 8,71 € Q; , |, and let p:=
Bu{n} and v:=1U{n}. By (1.23), det A?[u]r] > O implies that there is a
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sequence 'V € Q. ,, i=0,1,...,p, such that w® =p, &® =y, and

P
ITdet A~ Djw®] > 0.
i=1

Let &) be the element in Q; , , obtained by deleting the last component
from «®. Since A[w ™ P}w("] is totally positive with positive determinant, by
(3.6)

det B[&0 V3P| =det A[&¢ V@] >0, i=1,2,...,p.

Then again, by the total positivity of B and (1.23),
p .
det B*[B|7] = [] det B[&“~D)a*] > 0,
i=1

which proves the strict total positivity of B. The case A[2,3,...,n] is treated
similarly. The oscillatoriness of A[a] for a € Q; , with d(a)=0 is shown by
backward induction on k. Finally the oscillatoriness of A /a’ follows from
(1.29) by appealing to (a). ]

The following gives a surprisingly simple criterion for oscillatoriness.

THEOREM 4.2.  An n-square totally positive matrix A =[a,;] is oscilla-
tory if and only if it is invertible and

a >0, a;,,,>0, i=12,...,n-1 (4.1)

INES!

The “only if” part is easy. In fact, by Theorem 4.1, B:= A[i,i+1] is
oscillatory, and B? >> 0 for some p. But this is possible only when a, ;. ;>0
and a;,; ;> 0. The “if” part is more difficult, and is proved as a conse-
quence of a more general result (Theorem 4.5).

CoroLLARY 4.3. Let A, B be n-square totally positive matrices. If A is
oscillatory and B is invertible, then AB and BA are oscillatory.

Proof. Since B is invertible, b;; >0 for i =1,2,...,n. Then by (1.23)
both AB and BA satisfy the condition (4.1) along with A. [ ]

The following theorem presents an extension of the condition (4.1) for
oscillatory matrices.
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TueoreM 4.4. Let A be an n-square totally positive matrix. If A is

invertible and satisfies (4.1), then det A[a|B]> 0 for every pair o, BEQ, ,
such that

la, — B| <1 and max(a;, B;) <min(a;,;,B;,1), i=12,....k, (4.2)
where o =B =00

Proof by induction on k. The case k=1 follows from (3.7) and the
assumption (4.1). Fix k, and assume that the assertion is true for every pair in
Qx_ 1, satisfying (4.2) with k —1 instead of k. Take any pair o, € Q, ,
satlsfymg (4.2). If d(a)=d(B) =0, then (4.2) is consistent only when a = g.
Thus in this case det A[a|B8] > O results from (3.7), which is valid for every
invertible totally positive matrix. Now assuming d(B)>0,let B= Ala|f] =
[b b bB ], each b,j being a k-vector. We have to show that det B =
det A[aI,B] 0 produces a contradiction. First, it follows from induction
assumption that

detB[al’a2""’ak—l‘Bl’st---anvl] >0

and
det B[ ay, a3, ..., ay| By, Bss---» Bk] > 0,
which implies, together with total positivity,
by Abg A---Abg 20 and by Abg A - Abg20. (4.3)

Then det B = 0 guarantees that for some £, € R

Zébﬂ with £, #0. (4.4)
i=1

Now substitute the expression (4.4) for I;Bk in (4.3) to get
(—1)* "%, by Aby A+ Aby_ >0. (4.5)

Since d(f3) > 0, the ordered set y:= {j & B: B8, < j <P} is nonempty. Let
us show that for every j € y the a-projection b; of a ; is linearly dependent
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on by, b ,..., b, |, or equivalently
b;ANbg ANbg A+ Abg  =0. (4.6)

To this end, take i such that B, < j < B, . Then since A[a}B U {j}] is totally
positive,

bg N+ ANbg AbijAbg A---Aby >0
and

bg, A+ Nby ANb;AbBg A+ Abg>0. (4.7)
Now substitute the expression (4.4) for Eﬂk in (4.7) to get
(=1)"'¢,-bg A+ Aby AbyAbg A Aby >0 (48)

It is clear that (4.3), (4.5), (4.7), (4.8), and £, # 0 are consistent only if the
equality occurs in (4.8), or equivalently (4.6) is valid. This argument shows
that the matrix A{a|8 U ] has rank k — 1. Consider the ordered set 7:= {i
& a:a, <i<a,). Now the above argument applied to row vectors yields
finally that A{aU 7|8 U y] has rank k — 1. Finally it follows from (4.2) and
d(B) > 0 that there is w € Q. such that d(w)=0,wCaUr,and wC B U Y.
Then since A[{aU 7|8 U Y] is of rank k —1, det A[w] =0, which is a con-
tradiction as remarked earlier. This completes the proof. n

The “if” part of Theorem 4.2 will follow from the following more general
result.

THEOREM 4.5. Let A, i=1,2,..., p be n-square, invertible totally posi-
tive matrices and p > n— 1. If every A, satisfies (4.1), then the product
A A, -+ A, is strictly totally positive.

Proof. In view of Theorem 2.5 it suffices to show that
det(A A, A )[a]B] >0

whenever a,B€Q; ., d(a)=d(B)=0. (4.9)
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Assuming B, > a,, let @@ =a and w® =pB. Define "€ Q, , for 1=
1,2,....,p—1by

o =min{B;, a; +max(l +i—-k,0)}, i=12,.. k.

Then it is readily seen that each pair w! D, o satisfies (4.2); hence by
Theorem 4.4, det A,[w " P|0P] >0, I=1,2,..., p. Therefore it follows from
(1.23) and the total positivity that

P
det(A;Ay---A,)[alB] > T det A [0 D] >0,
1=1

proving (4.9). [ ]

COROLLARY 4.6.

(@) If A is an n-square oscillatory matrix, then A"~ ! is strictly totally
positive.

(b) If A is an n-square, invertible sign-regular matrix such that a,; # 0,
i=12,...,n,anda; ;. ,a;,,,>0,i=12,...,n—1, then A"~V is strictly
totally positive.

Proof. (a) follows immediately from Theorem 4.5. In (b), A® for A is
totally positive and satisfies (4.1). Now appeal to (a). [ ]

Notes and References to Section 4

The oscillatoriness of a Schur complement, Theorem 4.1(b), is in
Markham (1970a). We closely followed Gantmacher and Krein (1937, 1950)
in proving Theorem 4.5 and hence Theorem 4.2. Radke (1968) showed that
an invertible totally positive matrix is oscillatory if it is irreducible.

5. VARIATION OF SIGNS

This section is devoted to characterizations of sign regularity of a matrix
in terms of some variation-diminishing properties of the linear map it
induces.

By a sign sequence of a real n-vector ¥ we understand any signature
sequence g for which gx, =|x,], i =1,2,...,n. The number of sign changes
of ¥ associated to &, denoted by (), is the number of indices i such that
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£8,,<0,1<ign~—1, thatis,

(g(g) = % Z (1 - £i£i+l)‘

Now the maximum [minimum] variation of signs, ¥ (¥) [¥(x)], is by
definition the maximum [minimum] of #(¢) when € runs over all sign
sequences of x. Obviously

07 (f)<s7, (¥)sn-1 for ¥ R".

If any component of ¥ does not vanish, a sign sequence of ¥ is uniquely
determined; hence ¥ (¥) =¥ (X). This common value is called the exact
variation of signs and is denoted by ¥7(x). The following hold:

Y )+ ¥ (J)=7% (F)+7¥.(Jf)=n—1 for TeR" (5.1)

In fact, when € runs over all sign sequences of ¥, J ¢ runs over all sign
sequences of ] ¥, and

¢(€)+€(J,e)=n—1,

which immediately yields (5.1).
If a sequence fp, p=12,..., converges to x, then

Y (¥)< lim ¥ (%,) and lim ¥, (%,) <7 (F). (52)

p— o0 p— o0

This is also immediate from the definition.

LeEmMa 5.1. Leta|,d,,...,a,, be real n-vectors and n > m. In order that
Y, &a)<m—1 whenever §, €R, i=12,...,m, and L7 ||§,|#0, it
is necessary and sufficient that @, A @y A - -+ A @, be strictly definite, i.e.
>0 or <.

Proof. To see sufficiency, suppose that a, A dy A -+ Aa,, >0, say,
and that ¥ (X7.,§,a;)>m for some choice £, €R, i=1,2,...,m, with
€] # 0. Let b=X7 ¢,@;. Then b is nonzero, because @}, @, ..., a,, are

linearly independent. It follows from ¥~ +(5) > m that for some a€Q,,
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the a-projection of b has maximum variation m. Obviously the a-projections

a; of a@,, i=12,...,m, also satisfy @ A @4 A --- A @, > 0. Therefore, by

considering the a-projection if necessary, we may assume that n =m +1 and

(- D', >0, i=12,...,n Further, €),:=&, A - A& _, A&,
i (§) 1 m 1 i+1

A--- Ae,,i=12,...,n, form a complete orthogonal basis of /\R", so that

n

=Z§i€(/;) and §, >0, i=1,2,...,n.
i=1

TIANTN - AT,

m

On the other hand, since b is a linear combination of a,,a,,...,a,,, and

b=Y"_ b, by (L11) "

i1

Then ;>0 and (—1))"'b,>0, i=1,2,...,n, imply b;=0,i=1,2,...,n,
and hence b= 0, a contradiction. This completes the proof of sufficiency.

Let us turn to the proof of necessity. Since ¥7, (0)=n —1 and m < n, the
assumption implies first that a’, @’,...,a,, are linearly independent, that is,
NGy A -+ Nd,#0. Let A=[a},d,,...,a,]. Then by (1.11)

TYATyA - AT, = Y detAlal-]él,

aeom.n

and we have to show that det A[al] > 0 (or < 0) uniformly for all a € Q,, ,..
Any two different a, € Q,, , can be joined by a sequence w® e (O
p=0,1,...,k, such that a = w©®, 8 =™ and for each i =1,2,..., k there is
19 e€Q, 1, such that w"Vc7® and o c 1. Since the inequality
det A[al-]det A[ B]-] > O follows from the inequalities

det A[w(-D|-]det A[w®|-] >0, i=1,2,... k,

considering, in the ith step, the 7()-projection, we may assume from the first
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that n =m + 1. Now as in the first part,

n
TANTA - NT,= 2 5€0  with  §=det A(il-],

i=1

and we have to show that {,.{j >0,4,j=12,...,n. If {;=0 for some i, by
(1.11)

N ~ T -
e'_/\al/\.../\am=(_1)' ey NEp N - ANE =0
hence ¢€; becomes a linear combination of @}, d,,...,a,,, but ¥, (e))=n—1
=m, a contradiction. Further, if not all ¢ j have the same sign, then
$,$,, 1 <0 for some I. Then, as above,

(& + 8 )AT AT A - AT,

= {( _1)111§1+1§1+( "1)l§1§1+1}'51/\ e N ANg =0,

and {,, ,e; + {;€),, becomes a linear combination of @\, a,...,d,,. But since
$81.1<0, we have 7. ({;, e, +{€;.,)=n—1=m, a contradiction. This
completes the proof of necessity. [ ]

TueoreM 5.2. Let # be a (real linear) subspace of R" and 0 <
dim z( A ) < n. Then the following conditions are mutually equivalent:

(@) Y ()< dimg(A)—1 for 0¥ € A.
(b) ¥ (§) > dimg(A) for 0+ y & A *, the orthocomplement in R".

Proof. Take complete orthonormal bases &),d.,,....a,, for #, and
@y 1y pyigs-e-r@, for M+, and let A=[d|,d,,...,a,]. Then A is unitary
and we may assume det A =1. According to Lemma 5.1, (a) implies that
Ay ANdyA -+ Ad, >0 or <0, which is equivalent, by (1.22), to the
statement that det A[a|1,2,...,m] is nonzero and has one and the same sign
for all a € Q,, .. Since by (1.32) and det A =1

—

det(J,Al,)(all,2,...,m) = det(J,A* '], )(all,2,...,m)

=det A*[1,2,...m|a] =det A[a]1,2,...,m],

det(J,AJ)[7|m +1,..., n] is nonzero and has one and the same sign for all
TE€Q, . . or equivalently, with b;:=J AJ ¢, i=m+1,m+2,....,n, we
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have b, a1 A b, iz AT A I; >0 or < 0. But obviously b, =(—1)].a;
hence J. @, . A ]ﬂam +o N oo ALd, is strictly definite. Then again by
Lemma 5.1, ¥, (J. ) sn—m—1 for 0# < # *. Now apply (5.1) to get
(b). Thus (a) implies (b). (b) = (a) is proved similarly. ]

A local version of Theorem 5.2 gives the following characterization of
strict sign regularity in terms of a variation-diminishing property.

THEOREM 5.3. Let A be an n X m real matrix with n > m. Then A is
strictly sign-regular if and only if the real linear map A from R™ to R
diminishes variation of signs in the sense that

¥, (AT )<7.(F) for 0#FR™ (5.3)

Proof. Suppose that A =[a},d,,...,d,,] is strictly sign-regular with
signature & Take any 0# X< R™, and let k:=%" (¥). Then there exist
B,wE Q) m such that B;<w;<B,,, i=12,...,k+1 (with B;,,=00)
such that, for each i =1,2,...,k +1, the components x; have constant sign
for all j between B; and w,, with sign alternating along i, and that x; i= =0 if
]<,Bl, > wrip OF W <]<,Bl+1 for some i. Let b,: =g <jcuX@) i=

,k +1. Then obv10usly AT =Tk! llb Now the strict sign regularity of
A implies that

@ NG N Ady >0 for Bi<fi<w

so that

ByAbyA -+~ Ab, ;> 00r <0.

Then Lemma 5.1 yields that

k+1
K(Af)=1f+( T B,»)<k=1f_(f'),
i=1

proving (5.3).

Suppose conversely that A =[d|, @,,...,d,,] satisfies the condition (5.3).
For each we Q, ,, and §,€R, i=1, 2 .., k, with T¥_,|£,] # 0, obviously
¥ (ke ..,) < k —1; hence by assumptlon

k k
V+( Z siawi) =V+(A Z ‘Eié:.:,.) <k -
i=1

i=1
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Then it follows from Lemma 5.1 that &, NG N Nd, s strictly
definite. A will be strictly sign-regular if the sign of 6’ Ad, /\ AT,
depends only on k. For k=m this is trivial. Fix 1 gl’c -1 and take
a, B €Q,; . As remarked in the proof of Lemma 5.1, there is a sequence
P eQ, ., p=0,1,...,1, such that a=w®, B=w", and there is a se-
quence 7 € Q. with 0P @ "D =12, L Therefore
for our purpose it suffices to prove that, foreach r€ Q, | . and I<igk+1,
En/\ e ANd, AN, Ao Ad, and d, A AT, Aa
A -+« Ad_  have the same sign. By means of continuity argurnent this W1]l
be estabhshed if

—

a, A na, AN(L-t)a, +d,

71

Yna, A-ond

i+1 Tive Tk 1

is strictly definite for each 0 <t < 1. But the strict definiteness follows from
Lemma 5.1, via (5.3), because for any §, € R, i =1,2,..., k, with £¥_,|£,| # 0,

i—1 k+1

Y ge +6((-t)e +@, )+ X e | <k-1. -

i=1 j=i+2

Sign regularity is characterized by a weaker variation-diminishing prop-
erty.

CoRroLLARY 5.4. Let A be an n X m real matrix of rank m. Then A is
sign-regular if and only if

Y (AX )< ¥ (¥)  for 0+£XeR™ (5.4)

Proof. As shown in Section 7, there is a sequence of n-square, strictly
totally positive matrices G, p=L2,.., such that G,—1, as p—co.
Suppose first that A is sign-regular. Since A is injective by assumption, G, A
is strictly sign-regular, and G,A — A as p — oo. Then Theorem 5.3 guaran-
tees that

V. (GAY )<¥ (¥) for 0#x€R™,

which yields (5.4) via (5.2). Suppose conversely that (5.4) is valid. By
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Theorem 5.3, applied to G,,
7. (G,AT )< ¥ (Ax) for 0+X€R™,

because A is injective. Now (5.4) combined with Theorem 5.3 shows that
G, A is strictly sign-regular for p=1,2,.... Then obviously A is sign-regular.
|

By using the duality relation (5.1), we can speak about some variation-
augmenting properties.

CoroLLARY 5.5. Let A be an n X m real matrix of rank m. Then J AJ,,
is strictly sign-regular (respectively, sign-regular) if and only if

n—m+¥%, ()<Y (AY) (V. (AX)) for 0+=X<R™
When n = m, sign regularity admits several cousin characterizations.

THEOREM 5.6. Let A be an n-square invertible real mairix. Then the
following conditions are mutually equivalent:

(a) A is signregular.

(b) ¥, (AX) < ¥V (X)) fordll ¥ € R".
(¢) Y_(AX) < ¥.(X) forall ¥ R".
(d) ¥V (A< Y. (X) forall ¥R

Proof. (a)=(b): If A is sign-regular (and invertible), so is J,A7!J, by
Theorem 3.2. Then (b) follows from Corollary 5.5, on replacing A and ¥ by
A~! and AX respectively. (b) = (c) is trivial. (c) = (d) results on replacing ¥
by G,x and taking the limit as p — oo, where G, is a strictly totally positive
matrix in the proof of Corollary 5.4. Finally (d) = (a) follows from Corollary
54. |

Notes and References to Section 5

The theory of variation-diminishing linear maps originated with
Schoenberg (1930). Schoenberg and Whitney (1951) also studied cyclic
variation-diminishing linear maps; the cyclic maximum variation of signs of a
vector %, for instance, is defined as the maximum of ¥, (¥®), k=1,2,....n
where the ith component of ¥% is given by x,,, ; (mod n).

L)
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6. EIGENVALUES AND EIGENVECTORS

In this section we shall study spectral properties of sign-regular or totally
positive matrices. The key tool for this is the classical results of Perron and
Frobenius for positive matrices. Let us formulate the most elementary part of
the Perron-Frobenius theorem, necessary for our purpose.

Lemma 6.1.  If A is an n-square positive matrix, A >0, then the first
eigenvalue is real nonnegative, A (A) = 0, and there is a positive eigenvector
i, = 0 corresponding to A (A). If A is strictly positive, A > 0, then A ,(A)
> |Ag(A)}, and each eigenvector corresponding to A (A) is a scalar multiple
of a strictly positive one i, > 0.

TueoreMm 6.2. If A is an n-square, strictly sign-regular matrix with
signature &, then all eigenvalues of A are real and distinct, and
€k
—A(A)> A, (A)), k=1.2,...,n, (6.1)

k—1

where ¢, =1 and A, (A)=0, and the corresponding eigenvectors
iy, Uy, ..., U, can be so chosen that each u, is a real vector and

U AUy A - At >0, k=1,2,...,n. (6.2)

Proof by induction. The case k=1 is immediate from Lemma 6.1,
because ¢; A > 0 by assumption. Suppose that 2'< m < n and (6.1) and (6.2)

are true for all k with 1 <k <m — 1. Since ¢,- A A > 0 by assumption, and

its first eigenvalue is €,I17 A,(A) by Theorem 1.1, it follows again from
Lemma 6.1 that

m~—1

MA) = TTA(A) > TT A A ()]

n
§;

Il

i=1 &}

Then (6.1) for k =m results from the induction assumption. Now since

A (A) is real, @, can be chosen a real vector, and ;AU A - -+ A,
m

becomes a nonzero real eigenvector of ¢, A A, corresponding to its first

eigenvalue. Then by Lemma 6.1, with §=1or = =1, £ 4, AU, A --- AW,
> 0. Now replace i, by ¢4, if necessary, to get (6.2) for k = m. m
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The set of real eigenvectors { i, il,,..., #, } possesses interesting oscil-
latory properties. For their formulations, we need some definitions. To each
real n-vector X, assign the piecewise linear function x(¢) for 1<t <n,
defined by

x(t)=(k+1—t)x, +(t —k)x,., if k<t<k+1l. (6.3)

The nodes of x(t) are the roots of the equation x(¢)=0, arranged in
increasing order. Two ordered sequences §, <§,< -+ <§; and 5, <7, <
+ <My, are said to be interlacing if n, <&, <., i=12,..., k.

THEOREM 6.3. Let A be an n-square, strictly sign-regular matrix. Then
its real eigenvector @, corresponding to the kth eigenvalue, has exact k — 1
variations of sign:

V(&) =k-1, k=1,2,...n. (6.4)

Furthermore the nodes of u,(t) and those of u, , |(t) are interlacing.

Proof. By Theorem 6.2, for each k we have u} A ti, A -+ A > 0or
<< 0; hence 7. (#,) <k —1 by Lemma 5.1. To see ¥ (i;) = k — 1, accord-
ing to (5.1) it suffices to show ¥~ (J,%,) < n — k. Consider J,A '], which is
again strictly sign-regular by Theorem 3.3. Since J i, is an eigenvector of
J,A1], corresponding to 1/A,(A)=X,_,.,(J,A"].), the above argument
yields ¥7, (J,u;) < n — k. This proves (6.4).

Next we claim that for 1 <kgn—1

V(& + Sy 1) — 1 < V(80 + Sily )

whenever £,{ &R and |§|+[{|#0. (6.5)
Since again &, A - AULA G, ;>0 or < 0, Lemma 5.1 guarantees

Apply the same argument to J,i,, J.@,_,,..., ] @, which are the first
n — k +1 eigenvectors of the strictly sign-regular matrix J,A~'] , to see

V+(§]nak + §]nﬁk+l) n- k.
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Hence (5.1) yields (6.5):
V_(§t + 8t ) =n— 1~ ¥, (&4, + {10, y)
>k=1>7, (¢80, +{0,,,) - 1.

Now let us turn to the proof of the second assertion. Let x(¢) = u,(¢) and
y(t)=u,, (t). In view of (6.4), x(t) and y(t) have k—1 and k nodes,

respectively, and none of these nodes is integer. Let ¢, <t, < --- <¢; be the
nodes of y(#). Then for the second assertion, it suffices to show that x(¢) has
at least one node in each open interval (¢,,¢,,,), [=1,2,..., k— 1. For this

purpose, (6.5) will be used in the following form: if |§|+ |{|# 0and 1 < j <n,

{&(j-D+Ly(G -1} {(Ex(G+ D) +{w(j +1)} <0

whenever £x(j)+¢y(j)=0. (6.6)

Suppose that x(t) has no node in the interval (¢,,¢,, ), that is, x(¢) > 0, say,
on this interval. We claim that x(¢) > 8 > 0 uniformly on the closed interval
[} t;5 ). Otherwise, x(¢;) = 0, say. Take i such that i — 1 <t¢, <1i. Since x(t)
is linear for i — 1 <t < i, we have x(i — 1)x(i) <0, and with the choice

_ ) —y(i-1)
() —x(i—1)

£x(t)+ y(t) vanishes for all i —~ 1 <t < i, contradicting (6.6). By the defini-
tion of nodes, y(t) is definite, > 0 say, on the interval [¢,, ¢, ,]. Now let n be
the minimum of n > 0 for which — ny(t)+ x(¢) has a node s say, {;<s <
t,.,- Since by the minimum property — ny(t)+ x(¢) > 0 on the interval, and
— ny(t)+ x(¢t) is piecewise-linear as (6.3), this is possible only when s is an
integer or — ny(t)+ x(t) vanishes identically on the interval j—1<1t < j
containing s. But each of these possibilities produces a contradiction to (6.6).

|

If A is an n-square strictly sign-regular matrix, its adjoint A* is again
strictly sign-regular, and by Theorem 6.2 the real eigenvectors { &}, Ds, ..., U, }
of A* are so chosen that

GYATyA - AT>0, k=1,2,...n. (6.7)

The properties (6.2) and (6.7) of the eigenvectors of A and A* characterize
strict sign-regularity in some sense.
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THEOREM 6.4. If an n-square invertible real matrix A has n real eigen-
values with distinct moduli and the real eigenvectors i, of A and U, of A*,
corresponding to A (A) = A (A*), are so chosen to satisfy (6.2) and (6.7):

UyAUgA - ANt >0 and O, Ay A -+ AT >0, k=1,2,...,n,

then some power of A is strictly sign-regular.

Proof. Let A=A (A), k=1,2,...,n, and let U= [, t,,..., u,] and
V =[9¥), Oy,-.., D,]. Then U and V are invertible,

A=U-diag(A;, Ag,..., A,)- UL, A* =V-diag(A;, Ag,enn, A,) V7L,

(6.8)
and
Afl>Agl> -+ >|A,|>0. (6.9)
Since obviously (i, 0;) = 0 for i # j, (6.8) implies
U~!=diag(p;, pg---» 0,)V * (6.10)

for some nonzero p,, i =1,2,...,n. These p; are all positive, because
k
O< (B AtUgA - Nilp, 3 AT A - AT =[]0 k=12,..,n.

By (1.23), for any positive integer p and a, 8 € Q, ,, it follows from (6.8) and
(6.10) that

det AP[a|B] = ) detU[a]w]-(in)\wi)p-detU“l[wM]

“’Eok,n =1

Yy detU[a]w]-( :

w Eok,n

WEl .

i=1

i=1 i=1

k P/ k
I1 >\,.) ( I p,,)detu[au,z,..., k]detV[B]L,2,...,k]

+ Y  detU[ae] ( Ik'[ Awf)p(ilipw.-) -det V[ B|w].

weO , i=1
w#*{1,2,..., k}
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(6.9) implies that

k k
[Ting>TTA,l  for ©w€Qy,. w=*{1.2,...k)},
i=1

i=1
while (6.2) and (6.7) imply that
Ulal,2,....k] >0 and V[B|1,2,....,k] >0  for a,BEQ; ,.

Then for sufficiently large p, det AP{«|B] is nonzero and has the same sign as
(T15_A,)?P for every a, B € Q; ., that is, A” is strictly sign-regular. n

Our next task is the comparison of the eigenvalues of A with those of
Al«] for suitable a.

TuaeoreMm 6.5. If A is an n-square oscillatory matrix, then for every
a€Q, . (1 <k<n-—1) with consecutive components, i.e. d(a) =0,

A(A)>N(Ala]) > A, (A),  j=12,...k, (6.11)
and

)\j(A)>>\j(A/a’)>)\n+j_k(A), j=12,..., k. (6.12)
Proof. Let us prove (6.11) by backward induction on k. When k=n —1,
we have o= {1,2,...,n—1} or ={2,3,...,n}. Supposing a= {1,2,...,n—
1}, let B= Afa]. Clearly )\j:= A(A), j=12,...,n are the only nodes of
the polynomial d,(t):=detA, where A, :=tI,— A, while A(B), j=
1,2,...,n—1, are the only nodes of the polynomial dg(¢):= det B, where

B,:==tl,_, — B. To see (6.11) for this a, it suffices to show that
dg(X)dg(N,,,) <0, i=1,2,...,n—1. (6.13)

Consider the vectors ¥, with real parameter ¢, defined by
— n+i .
X, = [(—l) detAt[a|z)]lsi<n.
Then (1.31) yields that A%, = d ,(¢)e,, so that

AX, =A%, , j=L2,...n (6.14)
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The nth component x(n) of ¥, clearly coincides with dg(t), while the first
component x,(1) admits the representation

x,(1)=‘Zi:2t"_" Z(‘,) det Afo\{n}lw\{1}]. (6.15)

w1=l,w’-=n

We claim that x,(1)>0 for all ¢ > 0. In fact, since dg(t) has only n—1
nodes, for some j we have x, (n)=dg(A;)+ 0. Then by (6.14), x)\ is a
nonzero real eigenvector of oscﬂlatory matrix A correspondmg toA;= by (A),
and its first component x,\j(l) does not vanish, because ¥’ %), has exactly ] -1
variations of sign by Theorem 6.3. On the other hand, since A is totally
positive, (6.15) shows that x,(1) is a polynomial of ¢ with nonnegative
coefficients. Then x,(1) > 0 for all ¢ > 0. Now by (6.14), for each i, ¥, is the
ith eigenvector of A with positive first component. Then it follows from
Theorem 6.3 that the nth component of ¥, has sign (— 1)L, This estab-
lishes (6.13), because x, (n) =dg(A;), i =1,2,...,n. The proof of (6.11) for
a={2,3,...,n} is similar.

Suppose that (6.11) is true for k > 1, and take a € Q, _, , with d(a)=0.
We may assume that a= {i,i+1,...,i+k—2} and i+k—1<n. Now
apply the above argument to the k-square oscillatory matrix AlaU {i+
k—1}] to get

A(Alau{i+k=1}])>A(Ala]) > A p(Alau{i+k-1}]),

On the other hand, the induction assumption implies
A(A) >N (AlaU{i+k=1}]) >N, (A4), j=12,.. k.

These together prove (6.11) for the case k — 1, completing induction. The
case 2 < i is treated similarly.

Finally (6.12) follows from (6.11). In fact, J, A '], is again oscillatory and
(J,LA7 Y )[a] =J(A/a’)" Y, by Theorem 4.2. Now apply (6.11), remarking
that

1
A(a)

A_ji(J,ATY,) and =Ml (A7) [e]). m

'
A(A/e)



210 T. ANDO

With the help of the approximation theorem 2.7, some of the above
results can be generalized to the case A is sign-regular or totally positive. Let
us present sample results.

CoroLLARY 6.6. If A is an n-square, sign-regular matrix with signature
&, then all its eigenvalues are real, and

€

A (A)>0, k=1,2,...,rank( A).
€r_1

If A is totally positive, then for any a € Q) ,, (1 <k <n —1) with consecu-
tive components, i.e. d(a) =20,

A(A) SN (Ala) > A, 4(4), =12 k.

Given a real n-vector ¥ = (x,), let us denote by ¥'* = (x¥) its decreasing
rearrangement:

x¥>xy> - >2x¥ and x*=x,, forsome 7€S8,. (6.16)

A real n-vector X is said to be majorized by another, ¥—in symbols
X< y—if

k k
Yx,= Yy and Y xr< Y y* k=12,..,n-1. (6.17)

i=1 i=1 i=1 i=1

Obviously the inequality Y¥_,x* <¥*_,y* in (6.17) can be replaced by
z:'il=—'k+ 1xi* = 2?=k+ 1yi*'

The majorization relation is known to produce a lot of inequalities, based
on the following fact: ¥ < ¢ if and only if for any convex continuous function
®(t) on (— 00, 0)

Y o(x)< ¥ 0(y,). (6.18)

i=1 i=1

TueoreMm 6.7.  Let A=[a,;] be an n-square matrix, and 5(A) = (a;),
the diagonal of A. If A is totally positive, then §(A) < A(A).
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Proof by induction on n. When n =1, everything is trivial. Assume that
the assertion is true with n — 1 in place of n. Since X7_ A (A)=2%7_,5,(A)
and A, (A)=A¥(A), i=1,2,...,n, by definition and Corollary 6.6, it suffices
to show that

k k
Y A(a)= Y 8*(A)  for k=1,2,...,n-1 (6.19)

i=1 i=1

Let 8,(A)=8(A)and §,(A)=87(A). Considering the conversion if neces-
sary, we may assume p < g. Let B= A(n) and C = A(1). Since B and C are
(n — 1)-square totally positive matrices, the induction assumption yields that

k n—1 n—1

k
E Ai(B)Z Z 8i*(B) and ;k}\‘(c)g 'gkai*(C)’

i=1 i=1

k=1,2,...,n—1. (6.20)

Since 8*(B) =8*(A), i=L12,..., p, by definition and since A,(A) > A(B),
i=1,2,...,n—1, by Corollary 6.6, (6.20) implies (6.19) for k=1,2,...,p.
Instead proving (6.19) for k > p, let us show the inequality

T A(A)< T 8(A). (6.21)

i=k+1 i=k+1

Since 8*(A)=8*,(C), i=p+Lp+2,...,n, and A,_(C)2A,(A), i=
2,3,..., n, by Corollary 6.6, (6.20) implies (6.21). a

Notes and References to Section 6

Lemma 6.1 is a small part of Perron (1907) and Frobenius (1908, 1909).
More about positive matrices can be found in Gantmacher (1953). The reality
and simplicity of eigenvalues (Theorem 6.2) and the interlacing property of
nodes of eigenvectors (Theorem 6.3) were the starting points of the
Gantmacher-Krein theory, with motivation from the vibration of mechanical
systems. Theorem 6.4 is also due to Gantmacher and Krein (1960); see also
Sevéuk (1978). For the reality of eigenvalues, Koteljanskii (1963b) presented
some generalization. See Karlin and Pinkus (1974) for some results related to
Theorem 6.5. The majorization result, Theorem 6.7, was proved by Garloff
(1982b). The majorization concept plays an important role in various places
of analysis. More about majorization can be found in Ando (1986) and
Marshall and Olkin (1979).
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7. SOME EXAMPLES

In this last section we present some examples of totally positive matrices
and characterizations of those matrices.

L Totally Positive Kernels

Most of nontrivial totally positive matrices are obtained by restricting
totally positive kernels to suitable finite subsets.

Let I, A be totally ordered sets (usually subintervals of R or Z). A
real-valued function K(s,t) for s€T, t € A is called a totally positive kernel
if the matrix [K(s;,t;)]; ;=12 , is totally positive for every choice s, <s,
<.+ . <s,and t, <t,< --- <t,. Strict total positivity of a kernel is defined
correspondingly.

Here are some production formulas for totally positive kernels. If K(s, )
is totally positive and f{(s), g(t) are positive functions on I' and A respec-
tively, then the kernel f(s)K(s,t)g(t) is totally positive. If K(s, ) is totally
positive, and if @(s) is a monotone increasing map from a totally ordered set
T, to T', and (¢) is a monotone increasing map from a totally ordered set A |
to A, then K(¢(s), ¥(t)) is a totally positive kernel on I'; X A . If both
kernels L(s,t) and M(s, t) are totally positive and da(-) is a measure on T,
then the kernel

K(u,u)==j;L(s,u)M(s,v)do(s), u,vEA, (7.1)

is totally positive on A X A, provided that the integral exists. This is just a
modification of Theorem 3.1.
Now let us turn to construction of concrete examples.

(a) For any real a; >0, k=1,2,...,n, the kernel K(s,t)=X5_oa,skt*
is totally positive on R, XR,. Indeed, K(s,¢) is a composition of the type
(7.1) with L(k,t)=M(k,t)=1t* on Z, XR,. The total positivity of the
kernel L(k, ) is a consequence of the Vandermonde determinant:

det[t;];:?:;::’,"'l= I (tj—t,-). (7.2)

(b) For any ¢ > 0 the kemel K(s,t):=exp(ost) is totally positive on
R, XR,, as a limit of kernels of type (a). This kernel is strictly totally
positive on R XR too. Consequently exp[ — o(s — t)?] is strictly totally posi-
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tive on RXR because
exp[ —o(s— t)z] = exp( — 0s?) exp(20st ) exp( — ot2).

(c) For p=1,2,... the n-square matrices

exp| —
p

are strictly totally positive by (b), and G, > I, as p — oo. This sequence has
already been used several times in the previous sections.

(d) For each 0 <A <1 and 0 # p €R, consider the weighted mean on
R, XR,

G =

P

My (s, t)={As?+(1—A)eP} 7. (7.3)

Then M, (s,t) or 1/M, (s,t) is totally positive according as p <0 or
p > 0. This follows from the observation that for any y > 0

(S+t)7 F(Y)'/ “S utlull y? (7-4)

where I'(+) is the gamma function, and that the kernel exp(us) is totally
positive on R_ XR,.
(e) The kernel K(s, t) = min(s, t) is totally positive on R, XR ,, because

K(s,t)= lim M, (s,t). (7.5)

(®) If f(t), g(t) are positive function on R, such that h(t) = f(t)/g(t) is
nondecreasing, then the kernel

K(s,t) = f(min(s,t))g(max(s,t))
is totally positive on R, X R, because
K(s,t)=min{h(s), h(t)}g(min(s,t))g(max(s,t))
=g(s)-min{h(s), h(t)}-g(t).

For o> 0, with g(t)=exp(— ot) and h(t) = exp(20t), the kernel
exp( — o|s — t|) is totally positive on R, XR,.
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,,,,,,,,,,, . be positive sequences. Then the
n-square matrix [By,i;, j\Cmaxi, ) 15 totally positive if and only if b, /¢, <
by/cy< -+ <b, /c, This follows immediately from (f). A matrix of this
type is called a Green matrix.

II.  Hurwitz Matrix

It is a celebrated theorem of A. Hurwitz that a polynomial p(z)=d,z"
+dz" '+ .- +d, of real coefficients (d, > 0) has all its zeros in the open
left half plane Re z < 0 if and only if the n-square matrix

'd, d, d; d, d, 0 ]
dy dy d, dg dg 0
meldd=o o a @ a o 0| 09
o 0 0 0 o - 4
where d; =0 for k <0 or > n, has positive leading principal minors:
det H[1,2,....k] >0, k=12, n. (7.7)

Such a polynomial p(z) is called a Hurwitz polynomial, and the matrix H is
the Hurwitz matrix associated with it.

Let us show, by induction on n, that the Hurwitz matrix is totally
positive. When n = 1, everything is trivial. Assume that the assertion is true
with n — 1 in place of n. Since d, > 0 for a Hurwitz matrix (7.6), it follows
from (1.35) that the (n — 1)-square matrix G == H/{1}, indexed by 2,3,...,n,
has also positive leading principal minors:

detG[2,3,...,k] >0, k=2,3,...,n. (7.8)
Let gj, i=2,3,...,n, be the row (n — 1)-vectors of G, and ¢ =d, /d,. Ihen

the (n — 1)-square matrix F, indexed by 2,3,..., n, whose row vectors f] are
defined by

fo=§&,, and f2]‘—1:=§2j—1’ fzj:=§2j-C§2,“l for j>2, (7.9)

has also positive leading principal minors. A glance will show that F is of the
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form (7.6) with n — 1 instead of n, and d i instead of d i where
djj=dy;,y and dj;  =dy;—cdyj, j=0,12,.... (7.10)

Then according to the induction assumption, F is totally positive, and so is
the n-square matrix

S

Now it is readily seen from (7.10) that
c .
H(n—1,n)= ({s+ 5(1,,—],,)}31«*s='=)(n-1,n), (7.11)

where S = [0, &}, &,,...,¢€,_,]. The matrices S and S* are totally positive, and
so is the positive upper triangular matrix S +(c/2)(1, — J,). Now the total
positivity of H follows from (7.11) by Theorem 3.1 and Theorem 2.1.

II1. Toeplitz Matrices

For a (bi)infinite sequence {a,: — o < n < oo}, the matrix
[a;_;]i j=1.2,.. is called its Toeplitz matrix, and the function f(z)=X% a,z"
its generating function. A complete characterization of the total positivity of
(all finite sections of) a Toeplitz matrix has been established in a series of
papers: Aissen, Schoenberg, and Whitney (1952), Whitney (1952), and Edrei
(1952, 1953a,b).

A Toeplitz matrix [a;_,] is totally positive if and only if the generating
function f(z)=2X%_a,z" is of the form

Iz:i[(l+anz)1&f[(l+%)
a-ga11-2)

>

flz)= Czkexp(‘ylz + 1;_1)

where k is an integer, C> 0, v;,v_, >0, and a,, B,, p,., 8, > 0 are such that
Y¥(a, +B,+p,+8,) <.
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When a, =0 for n <0, the Toeplitz matrix is totally positive if and only
if the generating function is of the form

11+ a,2)
fz)=Cor bt
[10-42)

where C> 0, y >0, and a,, B8, > 0 are such that X(«, + 8,) < .

The proofs of these results, based heavily on the theory of analytic
functions, are beyond the scope of the present paper.

When applied to a polynomial, the above characterization implies that a
polynomial p(z)=dyz"+d;z" '+ --- +d, (d,>0) has all its zeros on
the negative real axis if and only if the infinite matrix [d,,; ], j_10 i
totally positive, where d, =0 for k <0 or > n. Remark that the Hurwitz
matrix H, introduced in Section 7.11, is a submatrix of T, namely H=T[n +1,
n+2,...,2n12,4,...,2n].

IV Pélya Frequency Function

A function f(¢) on ( — 00, 00) is called a Polya frequency function if the
kernel K(s,t):= f(s —t) is totally positive. The following remarkable char-
acterization is due to Schoenberg (1953); f(t) is a Polya frequency function if
and only if its bilateral Laplace transform exists in an open strip containing
the imaginary axis and has the form

” © exp(a,t
f e*stf(s)ds=cexp(.yt2+8t).l—I—le—)_’
o 1 1+a,t

where C> 0, ¥ >0, § and a, are real such that 0 <y + X%« |? < o0.
The proof of this result is beyond the scope of the present paper.

Notes and References to Section 7

The monograph by Karlin (1968) contains very many examples of totally
positive kernels. Total positivity of various generalized means is seen in
Carlson and Gustafson (1983). A kernel K(s, t) on an inverval of the real line
is called extended strictly totally positive if for every n

i+j-2

det | ————K(s, ¢ > 0.
€ dst=1gti-t (3 )i,]'=l,2,...,n
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Extended strict total positivity implies strict total positivity. In this connec-
tion, Burbea (1974, 1976) defined the extended strict total positivity of a
kernel K(z, w) of complex variables by

ai+j—2

and established the extended strict total positivity of reproducing kernels of
certain Hilbert spaces of analytic functions.

A proof of the Hurwitz theorem can be found in Gantmacher (1937). The
total positivity of a Hurwitz matrix was proved by Asner (1970) and
Kemperman (1982).

For the proof of characterizations of a totally positive Toeplitz matrix and
a totally positive translation kernel, we refer to the original papers cited in
the text and the monograph by Karlin (1968, Chapters 7-8). Lorenz and
Mackens (1979) gave a characterization of total positivity of the inverse of a
banded Toeplitz matrix.

I would like to express my deepest gratitude to Miss Yukiko Ito for her
superb typing and unlimited patience.
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