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ABSTRACT 

Though total positivity appears in various branches of mathematics, it is rather 

unfamiliar even to linear algebraists, when compared with positivity. With some 

unified methods we present a concise survey on totally positive matrices and related 

topics. 

INTRODUCTION 

This paper is based on the short lecture, delivered at Hokkaido Univer- 
sity, as a complement to the earlier one, Ando (1986). 

The importance of positivity for matrices is now widely recognized even 
outside the mathematical community. For instance, positive matrices play a 
decisive role in theoretical economics. On the contrary, total positivity is not 
very familiar even to linear algebraists, though this concept has strong power 
in various branches of mathematics. 

This work is planned as an invitation to total positivity as a chapter of the 
theory of linear and multilinear algebra. The theory of totally positive 
matrices originated from the pioneering work of Gantmacher and Krein 
(1937) and was brought together in their monograph (1960). On the other 
hand, under the influence of I. Schoenberg, Karlin published the monumental 
monograph on total positivity, Karlin (1968), which mostly concerns totally 
positive kernels but also treats the discrete version, totally positive matrices. 

Most of the materials of the present paper is taken from these two 
monographs, but some recent contributions are also incorporated. The novelty 
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is in the systematic use of skew-symmetric products of vectors and Schur 
complements of matrices as the key tools to derive the results in a transparent 
way. 

The paper is divided into seven sections. In Section 1 classical de- 
terminantal identities are proved for later use. The notions of total positivity 
and sign regularity are introduced in Section 2, and effective criteria for total 
positivity are presented. Section 3 is devoted to the study of various methods 
of production of new totally positive matrices from given ones. In Section 4 a 
simple criterion for a totally positive matrix to have a strictly totally positive 
power is given. Section 5 is devoted to the study of the relationship between 
the sign regularity of a matrix and the variation-diminishing property of the 
linear map it induces. In Section 6 the refined spectral theorems of Perron- 
Frobenius type are established for totally positive matrices. Examples of 
totally positive matrices are collected in Section 7. But the most significant 
results, concerning the total positivity of Toeplitz matrices and translation 
kernels, are only mentioned without proof. 

1. DETERMINANTAL IDENTITIES 

This section is devoted to the derivation of classical spectral and de- 
terminantal identities, which are used in the subsequent sections. The use of 
skew-symmetric products of vectors and Schur complements of matrices will 
unify and simplify the proofs. 

For each n 2 1, let %n stand for the (real or complex) linear spaces of 
(column) n-vectors x’= (xi), equipped with inner product 

(2, y’) := i x&. (1.1) 
i=l 

The canonical orthononnal basis of sn consists of the vectors < ( = <(“‘), 
i = 1,2 ,...> n, with 1 as its i th component, 0 otherwise. A vector x’= (xi) is 
positive (respectively, strictly positive), in symbols x’> 0 ( > 0), if xi > 0 
(>O)fori=1,2 ,..., n. 

A linear map from &, to 2” is identified with its n x m matrix 
A = [aij], relative to the canonical basis of .?‘$, and 2”: 

a. = (As”), eTn)), 
‘I I 

i=1,2 ,..., n, j = I,2 ,..., m. (1.2) 

The linear map A is also identified with the ordered m-tuple of n-vectors: 
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A = [Zl,Zz ,..., a’,], where 

zi = AeJ”‘), j = 1,2 ,.‘., m. (1.3) 

A is called positive (strictly positive), in symbols A > 0 (A B 0), if it 
transforms every nonzero positive vector to a positive (strictly positive) 
vector. Obviously A is positive (strictly positive) if and only if Zi > 0 ( B 0), 
i = 1,2,..., m, or equivalently, if and only if a i j > 0 ( > 0), i = 1,2,. . . , n, 
j=1,2 ,..., m. 

k 

For each k > 1, let @ X” denote the k-tensor space over 2,. The inner 
k 

product in @ X,, is determined by 

k 

The canonical orthonormal basis of @ Zn is by definition { $,“,“‘@ 3%“) 

@ . . . @qG: 1 G ii G R, j = 1,2 ,..., k}. 
k 

Each linear map A from 2, to 2” induces a linear map from @ .%‘,, 

k k 

to @ s”, called the k-tensor power and denoted by 8 A: 

*-- e~k)=(Ax’,)@(Alc’,)8 .*. @(Ax’,). (1.5) 

If B is a linear map from Xl to Zm, then it follows from (1.5) that 

(1.6) 

Let Sk denote the symmetric group of degree k, that is, the group of all 
pekrmutations of { 1,2,. . . , k}. Each n E S, gives rise to a linear map I’,‘“) of 

@ .%“, determined by 
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A k-tensor 2 is called skew-symmetric if 

PC”)2 = sgn 7r.2 n for any 7r E S,, (1.8) 

where sgn r = 1 or - 1 according as T is an even or odd permutation. The 
subspace of all skew-symmetric k-tensors over Xn is called the kth skew- 

k 

symmetric (or kth Grassmunn) space over Xn, and denoted by AZn. The 

orthogonal projection Pi”’ to i\& is given by 

Pi”) = & C sgnr. P,‘“). 
n E S, 

(1.9) 

The k-tensor 

is called the kth skew-symmetric product of the ordered k-tuple 

{ 21, 22,. . . , Sk}. Then it foil ows from (1.8) and (1.10) that 

?~~~(r) A Zr-~(a) A . . . A iTm-lckj = sgnmex, - A s2 A . . . A Sk. (1.11) 

Further, it follows from (1.4) via the definition of determinant, that 

(iTIAZ~A... Ai?k,ijlAy’,A ... A gkk> = & det[(zi, gj>], (1.12) 

where det means determinant. A consequence is that { ?‘i, ;a,. . . , ;k} is 
linearly dependent if and only if ?r A z2 A . . . A zk = 0. 

It follows from (1.5) ;nd (1.7) that, for each linear map A from 2m to 

Xn, its k-tensor power @ A intertwines P,‘“) and P,‘“) in the sense that 

PJ”).( &A) =( i A)-Pd”‘) for rr~S,. (1.13) 

k 

Therefore @ A intertwines the projections Pi”) and Pi’“‘: 

Pi”).( &A)=( &A).Pi’? (1.14) 



TOTALLY POSITIVE MATRICES 169 

k 

The restriction of @ A to the skew-symmetric space is called the k-exterior 

power of A, and denoted by AA. 
k 

I n view of (1.5), the exterior power l\A is 

determined by the formula 

A?k)=(Ai?l)A(A?2)A ... A(Ask). (1.15) 

If I, stands for the identity map of %,,, then 

h” = ZhSI”,Y (1.16) 

k 

the right-hand side being the identity map of A.%?,,. It follows from (1.5) or 

(1.15) that if B is a linear map from Sr to Xm, 

I\= (;\A)-( iZ3). (1.17) 

A conyquence of (1.16) and (1.17) is that if A is an invertible map of Xn, 

then l\A is invertible, and 

(1.18) 

When l<k<n, Qk,* will denote the totality of strictly increasing 
sequences of k integers chosen from { 1,2,. . . , n } : 

Q k,n E a= (d 

The order relation (Y Q fi for (Y, p E Qk, n means by definition that (Y~ < pi, 
i = 1,2,. . . , k. The complement a’ is the increasingly rearranged 
{1,2 ,..., n} \ a, so that 0~’ is an element of Qn_k,n. When (YE Qk,*, 

P E Q, n, and (Y n j3 = 0, their union (Y U p should be always rearranged 
increasingly to become an element of Qk+l,n. 
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For each (Y E Qk, “, its dispersion number d(a) is defined by 

k-l 

T. AND0 

d(a):= c (q+i-ei-l)=cxk-(hi-(k-l), 
i=l 

(1.20) 

with the convention d(a) = 0 for (Y E Qi, n. Then d(a) = 0 means that (Y 
consists of k consecutive integers. For (Y E Qk, ,, the a-projection of an 
n-vector x’= (xi) is the k-vector with components xa,, x,*, . . . , xak. The space 
of all a-projections is denoted by ;x&, that is, Xa is -r;” indexed by 
( (yi> as,. . * > a,&. 

Let A be an n X m matrix, (YE Qk,n, and /I E QI,m. Then A[a]p] is by 
definition the k X 1 submatrix of A using rows numbered by (Y and columns 
numbered by p. If A is considered a linear map from ,ri”, to %$, then 
A[ a]P] is one from SD to Za. When 01= fi, A[a]a] is simply denoted by 
A [ a]. Further we shall use the following notation: 

and 

AblP):=A[W], A(@] := Ab’lP], 

A(alb):=A[4P’], A(a) := A[a’]e’], 

A[-(Pl:=A[l,2,...,nlP], A[+] :=A[al1,2 ,..., m], 

A[-(/3) := A[1,2 ,..., nib’], A(cy]-] := A[a’(1,2 ,..., m]. 

Given (Y E Qk+, let us use the abbreviation 

q ( = e(“); ) := $;) A G;’ A . . . * &G+$‘. (1.21) 

Then by (1.12), {fi!Z: : a E Qk, n } becomes a complete orthonormal system 
of the k-skew-symmeitic space over &, and is taken as the canonical 

orthonormal basis of AXn. Therefore the notions of positivity for a k-skew- 

symmetric tensor and a linear map between skew-symmetric spaces always 
refer to these canonical basis. According to (1.12) and (;.21), for a linear 

map A from .%$ to X”, the (OL, /3) entry of the matrix of AA is determined 

k! = det A[a(fl 1 ‘I. (1.22) 
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k k 

Therefore AA is positive (strictly positive), in symbols l\A >, 0 ( B 0) if and 

only if det A[aI/3] >, 0 ( > 0) for any (Y E Qk, n and p E Qk,,,, or equivalently 
if and only if kiB, A zP2 A . . . Aa’p,>O(B0)forany/3EQk,n. 

In the rest of this section, we assume n = m, so that A, B are n-square 
matrices. First of all, the multiplication law (1.17) produces, via (1.22), the 
following determinantal identity: 

det(AB) [alp] = c detA[aIa].detB[wl/?] for %fiEQk,,,. 
WEOk.” 

(1.23) 

Given an n-square matrix, it is sometimes convenient to consider its 
adjoint A* and its conversion A#, whose (i, j) entries are given by Fiji and 
an ~ i + 1, n _ j + I, respectively. Then it is immediate from the definition that for 

LY, /3 E Qk,n one has det A*[cx]/?] = detA[cl!lp] and det A#[alP] = 
det A[cx”IP”], where (cx#)~ = n - q + 1, i = 1,2,. . . , k, and similarly for p”. 

For a linear map A on & we can speak about its spectrum, the set of 
complex numbers h for which XI, - A is not invertible, or equivalently 
Ax’= Xx’ has a nonzero solution x’. When Ax’= hjr’, then h is usually called 
an eigenvalue of A, and jr’ an eigenvector corresponding to X. Therefore the 
spectrum consists of all eigenvalues. Since the noninvertibility of an n-square 
matrix is equivalent to the linear dependence of its n column (or row) 
vectors, X is an eigenvalue of A if and only if it is a root of the polynomial 
det(XZ, - A) of degree n. The multiplicity of an eigenvalue X is by 
definition_ the multiplicity of h as a root of det(XZ, - A). 

Let X(A)=(X,(A),X,(A),..., X,(A)) stand for the eigenvalues of an 
n-square matrix A, arranged in modulus-decreasing order: 

with multiplicities counted. For each n-tuple of complex numbers 
{En 52,. . . ? 5, }, let diag(t,, &, . . . , 5,) denote the diagonal matrix with diago- 
nal entries {[i, [s,. . . , 5, }. Obviously the eigenvalues of this diagonal matrix 
coincide with [r, Es,. . . , E,, with multiplicities counted. A matrix A is called 
diagonulizable if it is similar to a diagonal matrix, that is, there are a diagonal 
matrix diag([,, Es,. . . , E,) and an invertible matrix T such that A = T. 

diag(E,, t2,. . . , 5,). T-‘. In this case the eigenvalues of A are just 
{~1>&?,...9 4, } with multiplicities counted. 
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THEOREM 1.1. Let A be an n-square matrix. Then for each 1~ k < n, 

the eigenvalues of the (i)- q s uare matrix ;\A are given by FlF=,X,8( A), 

a E Qk. n, with multiplicities counted. 

Proof. Since the set of diagonalizable matrices is dense in the space of 
n-square matrices, and the spectrum depends continuously on matrix entries, 
we may assume that A is diagonalizable. Therefore with Xi = Xi(A), i = 
1,2,..., n, we have A=T.diag(A,,h,,...,X,).T-’ for some invertible T. 
Then according to (1.17) and (1.18) 

-1 

. 

But it is readily seen that j\diag(h,,X,,...,h,) has eigenvalue FIk=rXa,, 

a E Qk, n. n 

Let A be an n-square matrix, 1~ k < n, and (Y, p E Qk, n. When A[o]P] 
is invertible, the Schur complement of A[o]/?] in A, in symbols A/[a]/?], is 
defined as the following (n - k)-square matrix indexed by (Y’, p’: 

A/[@] =A(@) - A(4Pl++4PI -‘+4P>. (1.24) 

When a = /3, we shall use A/a for A/[o]P]. 
For (Y E Qk, n, sgn(cr) is defined as sgn( 7) of the permutation 71 E S, that 

assigns CX~ to i for i = 1,2,. . . , k and 1~; to k + j for j = 1,2,. . , , n - k, so that 

sgn(a) = ( _ #%x k(k + l)/‘J. (1.25) 

Correspondingly, for (Y E Qk, nr let T, stand for the linear map on X;, such 
that 

T,<=<,, i=1,2 ,..., k, and TaZk+j=c;, j=1,2 ,..., n-k. (1.26) 

Obviously T, is unitary and 

detT,=sgn(cY). (1.27) 
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THEOREM 1.2. Let A be an n-square matrix, 1~ k G n, and a, 6 E &, ,,. 
If A[ a[P] is invertible, then 

detA=sgn(a)sgn(fi)detA[alP]det(A/[a(/3]). (1.28) 

If, in addition, A is invertible, so is A/[oIP] and 

A-‘@Id = (A/bIPl) -l. (1.29) 

Proof. Let us begin with the special case L-X = p = { 1,2,. . . , k }. Since A 
admits the factorization 

I,[e] 0 ][A!] A;a][ln;] Abl,;e:+,l. 
A(+]A[a] -’ Z,(a) 

(1.30) 

(1.28) is immediate, because the left and the right factors on the right hand 
side of (1.30) have determinant 1, while the middle factor has determinant 
det A[o]det(A/a). Also, (1.29) follows from (1.30), on taking inverses of 
both sides. 

Turning to the general case, consider the maps T,, Tp in (1.26). Then it 
follows immediately from (1.2) and (1.26) that, with suitable identifications of 
indices, 

(T~‘ATp)[U,...,k] =A[aIP], (T,-‘AI,)(L%..., k) = A(+% 

(T;‘ATP)(1,2 ,..., kl1,2 ,..., k] = A(@], 

(T;‘ATB)[1,2 ,..., k(1,2 ,..., k) = A[cx(@; 

hence 

(T,_l~Tp)/{l,%....k} = A/[+]. 

Now (1.28) follows from the special case proved above, by using (1.27). 
Finally (1.29) results from the following relation and the special case proved 
above: 

A-‘(PIa) = (Ti’A-‘T,)(1,2,...,k)= (T,-lATB) -l(l,2,...,k). n 



174 T. AND0 

Since an n-square matrix is approximated arbitrarily closely by matrices 
all square submatrices of which are invertible, in deriving various de- 
terminantal identities from Theorem 1.2 we can assume that all square 
submatrices of A are invertible. 

If an n-square matrix A is invertible, then 

detA-‘[4Pl = w(a)-w(P) 
det A(h) 

det A 
for a,P E ok,*. (1.31) 

This follows from (1.29) and (1.28), applied to (Y’ and @’ in place of (Y and /3. 
Let J, := diag(1, - l,l, - 1,. ..,( - l)“-‘). Since det J,,[LY]o] = sgn(cx). 
( - 1) W-1)/2 or = 0 according as o = (Y or f (Y, the following identity 
follows from (1.31), by using (1.23): 

det(J,AFIJ,) [a]~] = detdtA:a) for a,fl~Q~,~. (1.32) 

When k = 1, (1.32) means that 

.det A(j(i) 
[(i,j)entryof A-‘] =(-l)‘+’ detA , i, j = 1,2 )...) n. (1.33) 

The following identity holds for a general n-square matrix A: 

for e, P E Qk,n, (1.34) 

where 6, p = 1 or = 0 according as (Y = j3 for # p. In fact, when A is 
invertible: by (1.31) the left hand side of (1.34) is equal to 

sgn(p)detA 1 detA[aIa]detA-‘[wlp], 
UEQk.ll 

which coincides with the right hand side by (1.23). 
If KPEQ~,~ and w~EQ~,~ are such that w c CY’ and T c /I’, then 

detA[~l~ldet(A/[al~l) [471 

=sgn(cy/cuUo)sgn(p/pUT)detA[auwlpu7], (1.35) 

where sgn( (Y/e U w) and sgn( /3/p U r ) are defined as follows: let p := (Y U o 
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= h PD.. .P Pk+l) and Y:=PU~=(Y~,V~,...,Y~+~), andlet oi=pLy,> pi= 
Y (r,, i = 1,2 ,..., k. Then 

sgn( (y/a u a) = ( - py - k(k +1)/z, sgn( /j//j U q-) = ( _ l)‘iom - k(k + 1)/2_ 

(1.36) 

To see (1.35), consider the (k + I)-square matrix B = [bij], defined by 
bij = CL,, ,“,, i, j = 1,2 ,..., k + 1. Then it is readily seen that (1.35) is just (1.28) 
with B, y, u in place of A, OL, /3 respectively. An immediate consequence is 

{ (ai, Pi) entry of A/[dPl} 

=sgn(ol/cyU{1YIJ)sgn(P/PU{PI}) det+wwJIP;~]~ (13’ 

detA[dPl 
. 

Further, for any n-square A and (Y, p E Qk, n, 

det([detA[aU{~l}ISu{8;}]]i,j_1,2,,,,,n_k)=detAdetA[alP]n~k~~’. 

(1.38) 

In fact, with 5,: = sgn(cy/a U {al }) and nD! = sgn(P/b U {pi }), i, j = 
1,2,..., n - k, it follows from (1.37) that the left hand side of (1.38) is equal 
to 

n-k 

=detA[@]"-k- i~lsgn(a/aU{~I})det(A/[ulP1) 

n-k 
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But is is readily seen from (1.25) and (1.36) that 

n-k n-k 

and j~lsgn(P/PU{P;})=sgn(p), 

and (1.38) follows from (1.28). 
If A is an n-square matrix, (Y E Qn_l,n, w E QnPB+, and w c 1y, then for 

l<q<n 

detA[w]l,n)detA[a]q)=detA[w(l,q)detA[e]n) 

+detA[o]q,n)detA[e]l). (1.39) 

To see (1.39), fix p E w and let /.L := o\{ p} and v := {1,9, n}‘. Further let 
{m} = (Y \ w and B := A/[p]v]. In view of (1.35) and (1.37) on dividing 
both sides of (1.39) by det A[p]v12 and factoring out sgn(p/p U 

{P))w(~J./~U{nmI), t i is readily seen that (1.39) is equivalent to the 
following relation: 

Next it follows from (1.36) that 

sgn(v/vU{9})sgn(v/vU{1,n})=sgn(v/vU{n})sgn(v/vU{~,9}) 

=sgn(v/vU{l})sgn(v/vU{9,n}) 

=( -1y-l 

Therefore (1.39) is finally equivalent to the following relation, which is easily 
checked: 

$,,detB[p,m]l,n] =bpndetB[p,mll,q]+b,,detB[p,mlq,n]. 

We close this preliminary section with an interesting chain rule for Schur 
complements, though it is not used explicitly in the subsequent part. 
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THEOREM 1.3. Let A be an n-square matrix, and suppose that A[ al/I] is 
invertible for some a, j3 E Qk,n. Zf o, r E Q ,,“, w c a’, and r c p’, then the 
inveddity of (A/[aI/3])[ 1 ] w T is equivaknt to that of A[a u ojp u 71. In 
this case the following relation holds; 

(A/E4Pl)/[4~1 = A/[aU 4P U 71. (1.40) 

Proof. The first assertion is immediate from (1.35). And (1.40) is equiv- 
alent to the relation 

det((A/[4Pl)/bld) [Ad =det(A/[aU 4P u Tl) b.01 (1.41) 

for any ~1, v E Qp,,, such that p c (a U w)’ and v c (p U 7)‘. But again, 
according to (1.35), the left hand side of (1.41) is equal to 

sgn(w/wUp)sgn(a/aUw)sgn(a/aUwUp)sgn(7/7Uv) 

Xsgn(B/PU7)sgn(P/~U7Uv)x 
detA[aUWUplPU-rUv] 

detA[aUwlj3U7] 

while the right hand side is equal to 

sgn(aUw/aUoUp)sgn(fiU~/PU7Uv) 
detA[aUWUpIpUrUv] 

detA[aUolj3Ur] ’ 

It is readily seen from (1.36) that 

and 

which proves (1.41), and hence (1.40). 

Notes and RefHences to Section 1 

We use mostly the notations of Marcus (1973). The (‘$-square 

matrix [det 44P11,,B,Q,,m is called the kth compound of A. Theorem 1.1 is 
the Kronecker theorem, while (1.23) is the Binet-Cauchy theorem [see 
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Gantmacher (1953)]. More about tensor spaces and skew-symmetric spaces 
can be found in Marcus (1973). 

Recently de Boor and Pinkus (1982) and Brualdi and Schneider (1983) 
also used the Schur complement as a unifying principle in deriving various 
classical determinantal identities. When a = /3 the identity (1.28) in Theorem 
1.2 appeared first in Schur (1917), and the notion of Schur complement was 
explicitly introduced in Haynsworth (1968). The matrix [( - l)‘+jdet A(j]i)] 
is called the adjugate of A and is denoted by adj A; thus adj A = det A* 
],A-iJ,,. Equations (1.31) and (1.38) are known as the Jacobi identity and 
the Sylvester identity respectively. The quotient formula (1.40) in Theorem 
1.3 is due to Crabtree and Haynsworth (1969) and Ostrowski (1971). More 
about Schur complements can be found in QuelIette (1981) and Carlson 
(1986). 

2. CRITERIA FOR TOTAL POSITIVITY 

In this section we introduce fundamental notions for our theme: sign 
regularity and total positivity. 

By a signature sequence we mean an (infinite) real sequence Z= ( si) with 
].si] = 1, i = 1,2 ,... . The multiple of a signature sequence 2”” = (~1~‘) by a 
unimodular real E and the product of 2”” and another signature sequence 
g2’ = (ei2)) are those signature sequences defined by ( EE{~)) and (@)ei2)) 
respectively. 

An n X m matrix A is called sign-regular with signature z if 

k 

-?k’ j/A > 0, k=1,2 ,..., min(n,m). (2.1) 

The sign regularity of A is equivalent to the condition 

E~.Z~,AG’~~A ... AZ~,~O for PEQk,,,,, k=1,2 ,..., min(n,m), 

(2.2) 

or, by (1.22) in determinantal form, 

ekdetA[cu]/3] 20 for LYEQ~,“, /~EQ~,~,, k=1,2 ,..., min(n,m). 

(2.3) 

A is called strictly sign-regular with signature Z if >, in (2.1) is replaced by 
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>, or equivalently if >, in (2.2) [respectively (2.3)] is replaced by x=- [ > 1. 
As a special case, A is calfed totally positive if 

k 

l\A>O, k = 1,2 ,..., min(n,m), (2.4) 

or equivalently if 

% AZp, A * * * A ii+&20 for bE&,,, k=1,2 ,..., min(n,m), 

(2.5) 

or equivalently if 

det A[01 a 0 for aE@+ b E Qk+ k=1,2 ,..., min(n,m). 

(2.6) 

A is called strictly totally positive if > in (2.4) is replaced by >>, or 
equivalently if >, in (2.5) [(2.6)] is replaced by z+ [ > 1. 

For the sign regularity of A it is required to check the signs of a very 
large number of determinants. But if the rank of A is known in advance-in 
particular, if A is invertible-the necessary number of determinants to check 
can be considerably reduced. 

THEOREM 2.1. Let A be an n X m matrix of rank T, and z a signature 
sequence. Zf (2.2), or equivalently (2.3), is valid whenever d(P) < m - T, 
then A is sign-regular with signature t In particular, if (2.5), or equivalently 
(2.6), is valid whenever d(P) < m - r, then A is totally positive. 

Proof of (2.3) by induction on k. When k = 1, (2.3) is true because 
d(P) = 0 forp E Q1,m. Suppose that (2.3) is true with k - 2, k - 1 in place of 
k, but not with k. Find p E Qk,,, for which there is cx E Qk, n such that 

EkdetA[&]P] < 0, (2.7) 

and which has minimum d(P) under the above requirement. Suppose first 
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that d(a) = 0. Let 2 := d(P). Then (2.7) is possible only if 

l>m-r. 

T. AND0 

(2.8) 

We claim that for every p such that p1 < p < Pk and p P j-i 

For this, fix such p and let T = { &, &,. . . , Pkpl}. Then the claim means 
that A[ -]rU{p}] h as rank < k - 2. Let us use (1.39) in the form that for 

everywEQk_i,” with wco 

Since TU{P,,P~} =P, d(rU{P1,p})<I-l, and d(~U{p,Pk})=~l--l, 
it follows from (2.7), the induction assumption, and the minimal property of I 
that the above identity can be valid only when 

detA[w]rU{p}] =0 forany WEQ~-~,~, w c a. (2.11) 

On the other hand, according to (1.34) by (2.7) there is y E QkP2, n such that 
y c a and det A [ y ] r] # 0. In order to prove the claim, that is, rank A [ - I T U 
{p}] <k - 2, it suff’ ices to show that every row vector of A [ - ( T U { p }] is a 
linear combination of the row vectors with indices in y, or equivalently that 

detA[yu{9}1~u{p}] =O for 94~. (2.12) 

When o E (Y, (2.12) follows from (2.11). Therefore fix q 4 (Y, and let P = 

~~~,~~,~~~~=(~\Y)~~~~,~~~~=~~,,~~~~~~~=~P~,P~P~~~~~~~~~~~~~ 

d(a) =0 implies 9=jhL1 or =pa. Consider the S-square matrix B = [bi j] 
defined by 

bij=detA[yU{CLi})7U{yj}], i, j = 1,2,3. 

Then by induction assumption all bi j have same sign ek_ i, and in view of 
(1.38), all the determinants of 2x2 submatrices of B[-11) and B[-13) have the 
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same sign ~~_a&~. On the _other hand, (2.11) implies that hi, = 0 whenever 
pi z q. The claim asserts b, = 0. If b, # 0, all the above conditions can be 
consistent only when bi, = 0 whenever pi # q or bi, = 0 whenever pi + q 
according as q = p1 or = /.~s. Apply agam(1.38) to see each case leads to the 
contradiction det A [ alp] = 0. Therefore b, = 0, which establishes (2.9). Since 
(2.9) is valid for 1 ZP’s with p 4 { /?a, &, . . . , fik_ i }, we have r = rank A < 
m - 2, contradicting (2.8). This contradiction shows that (2.3) is valid for k 
whenever d( cu) = 0. This restriction d(a) = 0 can be released again by 
appealing to (1.39). This completes the induction. n 

Recall that a matrix A = [aij] is called lower (upper) triangzdar if 
a i j = 0 whenever i < j (i > j). A is called a Jacobi (or tridiagonal) matrix if 
aij = 0 whenever Ii - j( > 1. 

COROLLARY 2.2. An n-square invertible lower triangular matrix A is 
totally positive if det A[ (w(1,2,. . . , k] > 0 for every k and a E Qk. *. 

Proof. Let A be lower triangular. Since rank A = n, according to Theo- 
rem 2.1 it suffices to show that det A [ (~1 p] 2 0 for (Y, fi E Qk, n with d( fi) = 0. 
If CX~ -C pi, then det A[el/?] = 0 because of lower triangularity. If cxi > pi, let 
7 = {1,2,..., pi - l}. Then by assumption and lower triangularity 

0gdetA[aUr(1,2,...,/3k] 

=detA[auT]fiur] 

=detA[r]detA[a]P] 

B,- 1 

= iQ aiidetA[alPI. 

Since det A = FI:,,a,, f 0 and each a,, 2 0, it follows det A[aIp] > 0. 

THEOREM 2.3. Let A be an n-square Jacobi matrix. Zf A is positive, 
A > 0, and all principal minors are nonnegative, that is, det A[cu] > 0 
whenever d(a) = 0, then A is totally positive and for any ti > 0, i = 1,2,. . . , n, 

det(A+diag(t,,t,,...,t,))>detA+ fi ti. 
i=l 

(2.13) 
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Proof by induction on n. The assertion is trivial for n = 1. Assume that 
the assertion is true with n - 1 instead of n. We may obviously assume 
a,, > 0. Then by (1.35), A/(l) is again an (n - 1)-square positive Jacobi 
matrix with nonnegative principal minors, so that by the induction assump- 
tion A/{ l} is totally positive and 

det(A/{l}+diag(t,,t,,...,t,))>,det(A/{l})+ fI ti. 
i=2 

Therefore by Theorem 1.2 

det(A +diag(t,,t, ,..., t,)) 

hl 
~12~21 a12.az1 

= t,+ - - ~ 
a11 a11 + t1 

,&,...,& 

>,u,,detA/{l}+ fiti 
i=l 

=detA+ fiti. 
i=l 

It remains to show that A is totally positive. But the above argument shows 
that, by adding small ti > 0, we may assume det A > 0. In view of Theorem 
2.1 we have to check 

det A[alP] > 0 for (Y,~EQ~.~ with d(P)=O. 

For k = n, this is just the assumption. For k < n - 1, this is derived from the 
total positivity assured in induction assumption. n 

COROLLARY 2.4. lf un n-square Jacobi matrix A is totally positive, so is 
A +diag(t,, &,..., t,) foruny t,20, i=1,2 ,..., n. 

Proof. It follows from Theorem 2.3, applied to principal submatrices, 
that A +diag(t,, tz,..., t,) is a positive Jacobi matrix with nonnegative 
principal minors. n 

Now let us turn to criteria for strict sign regularity. The number of 
determinants to check is further reduced. 
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THEOREM 2.5. An n X m matrix A is strictly sign-regular with signature 
7 if s,det A[LY@] > 0 whenever (Y E Qk,n, /3 E Qk,,,, and d(a) = d(P) = 0, 
k = 1,2,. . . , min(n, m). In particular, A is strictly totally positive if 
det A[a]/?] > 0 whenever (YE Q,_, j3 E Qk,,,, and d(a) = d(P) = 0, k = 
1,2,..., min( n, m). 

Proof. Let us prove the inequalities 

~~detA[4Pl>O for ~EQ~,~, PeQk,,,,, k=1,2 ,..., min(n,m), 

(2.14) 

by induction on k. When k = 1, this is trivial because d(cx) = d(P) = 0 for 

a E Ql,n, P E Qw Assume that (2.14) is true with k - 1 in place of k. First 

fix an OLEQ~,~ with d(cw) = 0, and let us prove (2.14) with this (Y by 
induction on I := d(P). When 1 = 0, this follows from the assumption of the 
theorem. Suppose that s,det A[+] > 0 whenever y E Qk,m and d(v) Q Z- 

1. Take WY P E Qk,,,, with d(P) = 1. Then there is p such that pi < p < Pk, 

d(T u {PI, P}) s 1 - 1, and d(r U {p, Pk}) G 1 - 1, where r = 
Pk_i}. It follows from (1.39), as (2.10) in the proof of Theorem 

for any w EQ~-~,~ with w c a. Then it follows from the two induction 
assumptions that the right hand side of the above identity is nonzero with 
sign E~_~E~ whiIedetA[w]rU{p}] on the left hand side is nonzero with sign 
Ed_ i. Therefore the identity is consistent only when s,det A[ e]/3] > 0. This 
proves (2.14) for (Y E Qk, n with d(ol) = 0. Apply the same argument rowwise 
to conclude that (2.14) is generally true. H 

The same argument, combined with Corollary 2.2, yields the following. 

COROLLARY 2.6. An n-square lower triangular matrix A is totally posi- 
tive if det A[a(1,2,..., k] > 0 for every k and 1y E Qk, n with d(a) = 0. 
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We conclude this section with a theorem on approximation of a totally 
positive matrix by strictly totally positive ones. 

THEOREM 2.7. Every sign-regular matrix can be approximated arbitrarily 

closely by strictly sign-regular matrices with the same signature. In particu- 

lar, every totally positive matrix can be approximated arbitrarily closely by 

strictly totally positive matrices. 

Proof. Let A be an n x m sign-regular matrix with signature g We may 

assume n = m, by considering [ A, 0] or 
[I 
i if necessary. As will be shown in 

Section 7, there is a sequence { G, } of n-square strictly totally positive 
matrices such that G, -+ I, as p --* 00. Now let us proceed by backward 
induction on rank A. Remark that (1.17) implies 

(2.15) 

When rank A = n, the assertion follows immediately from (2.15). Assume that 
the assertion is true for all sign-regular matrices of rank k + 1. Let rank A = k, 

and take p so large that B := G,AG, is sufficiently close to A. According to 
(2.15) and (1.23) B has the property 

sidetB[a]p] >O for DL,PEQ~,~, i=1,2 ,..., k. (2.16) 

Let 

Then, for any 0 < t < 6, the matrix C := B + tEkEk+ l[ZI,O,O,. . . ,O] is sign-reg- 
ular with signature z and is of rank k + 1, because B is sign-regular with 
signature z and 

detB[Gl+ tw+l detB[o\{l}]p\{l}] if a,=P,=l, 

det BidPI otherwise. 

For small t the matrix C is sufficiently close to B, and hence to A. Now by 
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the induction assumption C can be approximated arbitrarily closely by 
strictly sign-regular matrices with signature Z. This completes the induction. 

H 

Notes and References to Section 2 
The notions of total positivity and sign regularity were introduced by 

Gantmacher and Krein (1937, 1950) with special reference to vibration of 
mechanical systems. They established almost all the fundamental results 
that will be presented in this lecture. The theory was also developed by 
Schoenberg (1930) in connection with the variation-diminishing property. 
The monograph by Karlin (1968), w lc h’ h mainly concerns the theory of totally 
positive and sign-regular kernels, devotes some attention to the exposition of 
totally positive and sign-regular matrices. 

The criterion for strict total positivity, Theorem 2.5, was proved by 
Fekete (1913); its improvement, Theorem 2.1, is due to Cryer (1976). As a 
generalization of Jacobi matrices, A = [a i j] is called m-banded, or an m-band 
matrix, if aij = 0 for Ii - jl> m. A criterion for total positivity of a band 
matrix is found in Metelmann (1973). Lewin (1980) showed that a matrix of 
the form A = I, - B with positive B has totally positive inverse only when A 
is a Jacobi matrix. The approximation theorem 2.7 is in Whitney (1952). 

3. PERMANENCE OF TOTAL POSITIVITY 

This section is devoted to canonical methods of production of new totally 
positive matrices from given totally positive ones. 

Obviously, if A is sign-regular with signature Z, so are the adjoint A* and 
the conversion A#. 

THEOREM 3.1. Zf A is an n x m sign-regular matrix with signature z,+ 
and B is an m x 1 sign-regular matrix with signature zB, then the product AB 
is sign-regular with signature zA. F*. In this case AB becomes strictly sign-reg- 

ular if A is strictly sign-regular and B is of rank min( m, l), or if A is of rank 

min(n, m) and B is strictly sign-regular. In particular if A, B are (strictly) 
totally positive, so is AB. 

This is an immediate consequence of (1.17) or (1.23). 
The sum of two totally positive matrices is not totally positive in general. 

Therefore a square matrix A can rarely generate a totally positive one-param- 

eter semigroup, that is, exp(tA) rarely is totally positive for all t > 0. 
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THEOREM 3.2. An n-square matrix A generates a totally positive one- 
parameter semigroup exp(tA) if and only if A = .$I, + B for smne real [ and 
a totally positive Jacobi matrix B. 

Proof. Suppose first that A is of the form mentioned. Then since 

exp( tA) = eEt exp( tB) 

the total positivity of exp(tA) results from Theorem 3.1, because, for the 
totally positive Jacobi matrix B, I, + (t/p)B is again totally positive by 
Corollary 2.4. 

Suppose conversely that exp(tA) is totally positive for all t > 0. In view of 
Theorem 2.3, it suffices to show that A is a real Jacobi matrix with 
nonnegative off-diagonal. Since 

A=jizf(exp(tA)-I,)}, 

all off-diagonal entries of A are nonnegative because exp( tA) > 0. Finally 
a, j = 0 whenever Ii - j] > 1. In fact, if i + 1 < j, say, 

detexp(tA)[i,i+l]i+l,j] 20 for t > 0 

implies 

O<jizfdet(Z+tA)[i,i+l]i+l,j] 

= lim { tai,i+lai+l,j - (I+ tai+,,i+,laij} 

tlo 

= - aij. n 

THEOREM 3.3. Let A be an n X m sign-regular matrix with signature F. 

(a) A[o]p] is sign-regular with signature z for every a E Qk.n and 

P 6 QL 11,. 
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(b) A/a’ is sign-regulur with signature Zti=(~,_k~,_k+i)i if n = m, 
a E Qk, n with consecutive components (i.e. d(a) = 0), and A(a) is invertible. 

(c) ],,A-‘],, is sign-regular with signature Z, = (E,,E~_~)~, with convention 
~~=l forj<O, ifn=mandAisinvertible. 

In particular, if A is totally positive, so are A[aI/3], A/a’, and ],,A-‘.&. 

Proof. (a) is trivial. (b) follows from (1.35) and (c) from (1.32). n 

COROLLARY 3.4. Let A = [ai .] = [ Zl, tit,. . . ,<n] be an-n-square totally 
positive matrix. lf alk # 0, then the matrix B = [b,, &, . . . , b,] defined by 

Zi=Zi i=1,2,..., k a& gi=$i--Zk, i=k+l,...,n, 
alk 

becomes totally positive. 

Proof. By Theorem 2.7 we may assume det A > 0. Since obviously 
det B = det A, according to Theorem 2.1 it suffices to show that 

&/diilA *-* /dj>O for l<i<j<n. (3.1) 

If j G k or i < k d j, then 

and (3.1) is valid because A is totally positive. If k < i, consider the n-square 
matrix C = [Zk, Zk+i ,..., Zn,O ,..., 01. Then it is readily seen from the defini- 
tion of C/{ 1 } that 

&+1,&+2 ,..., &,,o ,..., o] = [ 1 A . 
Now (3.1) follows from the total positivity of C/{ 1) by Theorem 3.3. n 

A factorization A = BC is called an LU (UL) factorization if B (C) is 
lower triangular and C (B) is upper triangular. 

THEOREM 3.5. Let A be an n X m totally positive matrix with n > m. 
Then A admits an LU factorization A = ALA, and a UL factorization 
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A = AoAL, where A,, A, are n-square totally positive matrices, and A<,, A, 

are n X m totally positive matrices. 

Proof. By considering the n-square matrix [ A,O], our proof can be 
confined to the case n = m. Further, with the help of conversion, it suffices 
to treat only the LU-factorization. 

When n = 1, everything is trivial. Assume that the assertion is true with 
n - 1 in place of n. Now let 

s,:= [fiTl,Z2 )...) ~_,,O,~,~+, ,..., <_l]> j = 1,2 ,...,n-1. 

Clearly Sj is a positive, upper triangular Jacobi matrix, hence totally positive 
by Theorem 2.3. If a’, = Zs = . . . = Zk_ r = 0 but Zk # 0, then 

A= [Zk,&+r ,..., Z,,,O ,..., O]S:P’, 

and the matrix [Zk,Zk+, ,..., Z”,O ,..., 0] is totally positive. Applying this 

procedure to {Zk+.,,Zk+,,..., Z,,} and so on, we arrive at a factorization: for 

some w E Q,,” and k,>O, i=1,2 ,..., 1, 

A = Bskrsk, I . . . Sk1 
WI WI 1 WI* 

yhere B = [ 6,, &, . . . , &] is a totally positive matrix such that gi = 0 implies 
bj=O, j=i+l,i+Z ,..., n. If B[l]-] # 0, take the largest i for which 
bIi # 0. We claim b,,i_l# 0. Otherwise, bIi # 0, b,,,_,=_O, and det 
B[l,j(i-l,_i] >,O imply bj,i+l=O for j=1,2,...,n, that is, b,_,=O, con- 
tradicting b, # 0. Now B admits a factorization B = CU where 

c:= b’ 
[ 

l,...,&J& b 
bl i ~~i&l,~i+l,...,~” 
1.1-l 1 

and 

u:= zl,...,fT_,, 
[ 

bl i 
---<_l+<,~+l,..., fg . 
bl,i-l 1 

U is a positive, upper triangular Jacobi matrix, hence totally positive by 
Theorem 2.3. The total positivity of C follows from Corollary 3.4, because by 



TOTALLY POSITIVE MATRICES 189 

the maximum property of i: 

gj = gj - 
blj + 

--hi-l’ 
bl,i-1 

j=i+l,i+Z ,..., 72. 

Repeating this procedure, we arrive at a factorization B = D. U,,Upp 1 . . . U, 
where each Uj is upper triangular, tridiagonal, and totally positive while D is 
a totally positive matrix such that D[ 111) = 0: 

A = D. U&l_ 1. . . u s’yjk1 . . . SW”:. 
1 WI WI-1 (3.2) 

Apply the corresponding procedure to the row vectors of D to get a 
factorization 

A=S*ils*i2...s*inaL L 
‘I T!2 7.2 1 2” . Lq.F4-pUp_1.~~ u,s;;s,k;;;~ *. SW”:, (3.3) 

where each L, is a lower triangular totally positive Jacobi matrix, and 

-Qm,n and ji>O, i=1,2 ,..., m, while F is a totally positive matrix such 
that F [ l(1) = 0 and F( 1111 = 0. Since F( 1) is an (n - 1)-square totally posi- 
tive matrix, a:coTding to thejnduction-assumption it admits an LU factoriza- 
tion F( 1) = FLFu where FL and F, are (n - 1)-square totally positive 
matrices. Now by (3.3) the n-square matrices A, and A, defined by 

and 

A,= K ’ U,U,_l...U~Sw”:Swk:I:...S,k: 
[ 1 0 P” 

are totally positive, and produce an LU factorization A = ALA,,. This 
completes the induction. n 

COROLLARY 3.6. Every invertible n-square upper (lower) triangular, 
totally positive matrix is the product of a certain number of n-square upper 
(lower) triangular, totally positive Jacobi matrices. 
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Proof by induction on n. The case n = 1 is trivial. Assume that the 
assertion is true with n - 1 in place of R, and let A be an n-square invertible 
upper triangular totally positive matrix. Checking the proof of Theorem 3.5 
will show that S’s do not appear and the matrix D in the factorization (3.2) 
is also upper triangular. Since 

D= [d;l D;l)] 

and D(1) is an (n - 1)-square invertible upper triangular totally positive 
matrix, by the induction assumption we have D(1) = WiWs. * * cs for some 
(n - 1)-square upper triangular totally positive Jacobi matrices Wi, i= 
1,2 ,..., s. Let 

d”” 0 

wi= 6 [ 1 tii ’ 

Then A = W,W, * * + W; U&J, _ i . . . U, is an expected factorization. n 

Beside the usual order relation A >, B between two n-square re$ matriy, 

let us introduce a stronger one: A 2 B means by definition that AA > AB 

for k = 1,2,. . . , in other words, 

det A[a]P] 2 det B[cll]p] for any k and (Y,P E Qkzn. (3.4) 

In this notation, A ‘2 0 means that A is totally positive. The relation A ‘2 B 

implies A[ajP]‘$)B[aIj3] for any o,/3eQk+, but not A-B$‘O. Also 

does not imply 

A/(l) (&/{I} or ],,A-‘J,,TJ,,B~‘J,,. 

THEOREM 3.7. Zf A is an n-square totally positive matrix, and a = 

{L2,...,k} or = {k,k+l,..., n}, then 

A[cu] ?A,‘a’, (3.5) 

provided that A(a) is invertible. 
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Prooffor the case (Y= {1,2,..., k}. In view of (1.35), (3.5) is equivalent 
to the inequalities 

detA[wUa’lruo’] <detA[olr]detA(cu’) 

for u,~EQ[,” with W,TC(Y. 

To prove these inequalities, by fixing o, r and considering the matrix 
A [ w u (~‘17 U a’] in place of A, it suffices to establish the following general 
assertion: for any m-square totally positive matrix B 

detBgdetB[1,2 ,..., j]detB[j+l,j+2 ,..., m] 

for j=1,2 ,..., m-l. (3.6) 

Let us prove (3.6) by induction on m. When m = 2, it is true because 
b,, > 0, b,, >, 0 imply 

det B = b,,b, - b,,b,, d b,,b,,. 

Assume that the assertion is true for all the cases of order less than m. The 
m-square matrix B under consideration can be assumed to have b,, > 0. 

Then if k > 1, by (1.28) 

det B[1,2,..., k]detB[k+l,k+2,...,m] 

= det(B/{1})[2,3,..., k].b,,.detB[k+l,k+2 ,..., m]. 

Since the matrix B[l, k + 1, k +2,. . . , m] of order less than m is totally 
positive, the induction assumption yields 

b,,detB[k+l,k+2,..., m] >,detB[l,k+l,k+2 ,..., m] 

=b,,det(B/{l})[k+l,k+2,...,m]. 

Use again the induction assumption on the matrix B/{ l} of order m - 1, 
which is totally positive by Theorem 3.3, to get 

det B[1,2,..., k]detB[k+l,k+2,...,m] 

> b,,det(B/{1})[2,3,..., k]det(B/{l})[k+l,k+2,...,m] 

>b,,det(B/{1})[2,3,...,m] =detB. 

When k = 1, proceed just as above with B/{ m } instead of B/{ l}. 
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COROLLARY 3.8. lf an n-square totally positive matrix A is invertible, 
then 

det A[cu] >O foreverykand (YEQ~,~. (3.7) 

Proof by induction on n. The case n = 1 is trivial. Assume that the 
assertion is true with n - 1 in place of n. If cxi > 1, then det A[ o] > 0 follows 
from the induction assumption applied to A(l), which is invertible by (3.6) 
and totally positive. If (pi = 1, then by (3.6) a,, > 0 and by (1.35) 

detA[ar] =~,,det(A/{l})[~\{l}]. 

Now det A[ e] > 0 follows from the induction assumption applied to A/{ l}, 
which is invertible by (1.28) and totally positive by Theorem 3.3. n 

Application of LU and UL factorization in Theorem 3.4 gives rise to 
other inequalities. 

THEOREM 3.9. If A is an n-square totally positive matrix, and a = 

{I,%..., k} or ={k+l,k+2 ,..., n}, then 

A[a] - A/c/;0 (3.8) 

provided that A(cu) is invertible. 

Proof for the case a= {k+l,k+2,...,n}. Let A= ALA, be an LU 
factorization with totally positive A,, A,, guaranteed by Theorem 3.5. Then 
by definition 

A[a] -A/e’= A[(Y]oL)A(oL)-~A((YJ(Y] 

Since A,[a(cu) and A,(cu]a] are totally positive, so is their product 
AL[~Ia)AU(~Jcx]. Finally, a proof for the case (Y= {1,2,...,k} is accom- 
plished by using UL factorization. n 
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Notes and References to Section 3 
The characterization of totally positive semigroups, Theorem 3.2, is in 

Karlin (1968, p. 115) and related to Loewner (1955). A semigroup of totally 
positive Jacobi matrices with respect to the Hadamard (i.e. Schur) product 
was studied by Markham (1970). The LU factorization, Theorem 3.5, was 
proved by Cryer (1973,1976); see also Rainey and Halbetler (1972). Inciden- 
tally the use of Schur complements in LU factorization is also seen in 
Neumann (1981). A check of the proof of Theorem 3.5 wilI show, on the 
basis of Theorem 1.3, that when A is invertible, the kth column of A, is a 
positive scalar multiple of the kth column of A/{ 1,2,. . . , k - l} augmented 
by 0 at the top 1,2,. . . , k - 1 positions. Representation of an (infinite) totally 
positive matrix as a product of totally positive Jacobi matrices was studied by 
de Boor and Pinkus (1982) and by Cavaretta, Dahmen, Miccelli, and Smith 
(1981). The fundamental determinantal inequality (3.6) is due to Gantmacher 
and Krein (1937). This inequality is valid under a slightly weaker condition; 
see in this respect KoteljanskiI (1963a). 

4. OSCILLATORY MATRICES 

An n-square matrix A is called oscillatory if it is totally positive and a 
certain power A?-’ becomes strictly totally positive. In this section we shall 
present a simple criterion for a totally positive matrix to be oscillatory. 

Let us start from simple remarks. An oscillatory matrix is invertible, and 
its adjoint is also oscillatory. Therefore, by Corollary 3.8, if an n-square matrix 
A = [a i j] is oscillatory, then det A [ CX] > 0 for LY E Qk, n. 

THEOREM 4.1. Let A be an n-square oscillatory matrix. Then the follow- 
ing hold: 

(a) ],,A-‘1” is oscillatory. 
(b) A[ a] and A/& are oscillatory for evey a E Qk, n with consecutive 

components, i.e. such that d(a) = 0. 

Proof. Suppose that A is totally positive and AP is strictly totally 
positive. 

(a): ],,A - ‘.I, is totally positive, and (J,A-‘J,,)P = J,( A?‘- ‘J,, is strictly 
totally positive by Theorem 3.3. Thus J, A - ‘_/, is oscillatory. 

(b): Let us prove first the oscillatoriness of A[ a] for the case (Y = 
{1,2,..., n-l}. Let B=A[1,2 ,..., n-l].Takefi,rEQk,n_l,andlet p:= 
p U { n } and v := r U { n }. By (1X3), det AP[ ~1~1 > 0 implies that there is a 
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sequence aCi) E Qk+i,“, i = O,l,. . . , p, such that o (0) = p, u(P) = v, and 

fjpt A [ ,(i-l)l,(O] > 0. 

Let 5(‘) be the element in Q,__ r obtained by deleting the last component 
from ,ci). Since A[o ci- ‘) cJi)] is totally positive with positive determinant, by ) 

(3.6) 

det B[ G(i-l)1&i)] =detA[~(ip’)I&(i)] >O, i = 1,2 ,...,P. 

Then again, by the total positivity of B and (1.23) 

det Bp[_?17] > fi det B[5(“)19(‘)] > 0, 
i=l 

which proves the strict total positivity of B. The case A [2,3,. . . , n] is treated 
similarly. The oscillatoriness of A[a] for (Y E Q,_ with d(a) = 0 is shown by 
backward induction on k. Finally the oscillatoriness of A/a’ follows from 
(1.29) by appealing to (a). n 

The following gives a surprisingly simple criterion for oscillatoriness. 

THEOREM 4.2. An n-square totally positive matrix A = [aii] is oscilla- 
tory if and only if it is invertible and 

ai i+l>O, aifl i>O, i = 1,2 ,...,n - 1. (4.1) 

The “only if” part is easy. In fact, by Theorem 4.1, B := A[i, i + l] is 
oscillatory, and BP > 0 for some p. But this is possible only when a i, i + i > 0 
and a,+i i > 0. The “if” part is more difficult, and is proved as a conse- 
quence of a more general result (Theorem 4.5). 

COROLLAFtY 4.3. Let A, B be n-square totally positive matrices. lf A is 
oscillatory and B is invertible, then AB and BA are oscillatory. 

Proof. Since B is invertible, bii > 0 for i = 1,2,. . . , n. Then by (1.23) 
both AB and BA satisfy the condition (4.1) along with A. W 

The following theorem presents an extension of the condition (4.1) for 
oscillatory matrices. 
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THEOREM 4.4. Let A be an n-squure totally positive matrix. If A is 
invertible and satisfies (4.1), then det A[ a]/31 > 0 for every pair a, /3 E Qk, n 
such that 

JCXi-/?i]<l and max(cyi,Pi)<min(cyi+,,Pi+,), i=1,2 ,..., k, (4.2) 

wherea -p /ccl- /c+1=a. 

Proof by induction on k. The case k = 1 follows from (3.7) and the 
assumption (4.1). Fix k, and assume that the assertion is true for every pair in 

Qk-l,ll satisfying (4.2) with k - 1 instead of k. Take any pair a, /3 E Qk,n 
satisfying (4.2). If d(a) = d(P) = 0, then (4.2) is consistent only when cx = /3. 
Thus in this case det A[a]P] > 0 results from (3.7), which is valid for every 
in_ve%ble tot$ly positiv? matrix. Now assuming d(p) > 0, let B = A[ a]/?] = 
[bs,, bs,, . . ., bs,], each bpi being a k-vector. We have to show that det B = 
detA[a]P]=O p ro uces a contradiction. First, it follows from induction d 
assumption that 

detB[a,,(YZ,...,(Yk-11P1,P2,...yPk-ll ‘0 

and 

detB[ar,,ar,,...,~Y,IP,,P3,...‘Pkl ‘02 

which implies, together with total positivity, 

Then det B = 0 guarantees that for some ti E R 

k-l 

g,k = C ti’fl, with &+O. (4.4) 
i=l 

Now substitute the expression (4.4) for & in (4.3) to get 

(4.5) 

Since d( fi) > 0, the ordered set y := { j 4 p: [I < j < fik} is nonempty. Let 
US show that for every j E y the a-projection bj of Zj is linearly dependent 
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on &r,, $r,, . . . , z;Bk_,, or equivalently 

(4.6) 

To this end, take i such that pi < j < pi+ i. Then since A[aI/3 U { j }] is totally 
positive, 

and 

(4.7) 

Now substitute the expression (4.4) for $, in (4.7) to get 

(-l)k-l(&,,,A ... A$, AgjA$+,A ... Az;D,_,>-o. (4.8) 

It is clear that (4.3) (4.5), (4.7) (4.8) and [i # 0 are consistent only if the 
equality occurs in (4.8), or equivalently (4.6) is valid. This argument shows 
that the matrix A[ aI/3 U y] has rank k - 1. Consider the ordered set 7 := { i 
4 (Y: 01~ < i < +}. Now the above argument applied to row vectors yields 
finally that A[(Y U TIP U y] has rank k - 1. Finally it follows from (4.2) and 
d(P)>OthatthereisoEQk,” suchthatd(w)=O,wcaU7,andocpUy. 
Then since A[a U TIP u y] is of rank k - 1, det A[o] = 0, which is a con- 
tradiction as remarked earlier. This completes the proof. n 

The “if” part of Theorem 4.2 will follow from the following more general 
result. 

THEOREM 4.5. Let Aj i = 1,2,. . . , p be n-square, invertible totally posi- 
tive matrices and p >, n - 1. If every Ai satisfies (4.1), then the product 

Al&L. . ’ A, is strictly totally positive. 

Proof. In view of Theorem 2.5 it suffices to show that 

det(A,A,..+A,)[olJP] >O 

whenever a, p E Qk,*, d(a) = d(P) = 0. (4.9) 
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Assuming fir >, or, let w(O) = (Y and &‘) = p. Define o(l) E Qk,” for I = 
1,2,..., P-lby 

~~z)=min{~i,oi+m~(Z+i-~,O)}~ i=1,2 k. ,***> 

Then it is readily seen that each pair w(‘-‘), w(l) satisfies (4.2); hence by 
Theorem 4.4, det AI[~(‘-‘)I~(‘)] > 0, I = 1,2,. . . , p. Therefore it follows from 
(1.23) and the total positivity that 

proving (4.9). 

COROLLARY 4.6. 

(a) Zf A is an n-square oscillatory matrix, then A”-’ is strictly totally 
positive. 

(b) Zf A is an n-square, invertible sign-regular matrix such that aii # 0, 
i=1,2,..., n, and a,,i+lai+l i > 0, i = 1,2 ,..., n - 1, then A2(“-l) is strictly 
totally positive. 

Proof. (a) follows immediately from Theorem 4.5. In (b), A2 for A is 
totally positive and satisfies (4.1). Now appeal to (a). n 

Notes and References to Section 4 
The oscillatoriness of a Schur complement, Theorem 4.1(b), is in 

Markham (1970a). We closely followed Gantmacher and Krein (1937, 1950) 
in proving Theorem 4.5 and hence Theorem 4.2. Radke (1968) showed that 
an invertible totally positive matrix is oscillatory if it is irreducible. 

5. VARIATION OF SIGNS 

This section is devoted to characterizations of sign regularity of a matrix 
in terms of some variation-diminishing properties of the linear map it 
induces. 

By a sign sequence of a real n-vector x’ we understand any signature 
sequence zfor which &iri = Ixil, i = 1,2,..., n. The number of sign changes 
of x’ associated to c denoted by U(q), is the number of indices i such that 
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&i&i+ 1 
< 0, 1 6 i 6 n - 1, that is, 

Now the maximum [minimum] variation of signs, V’+(T+) [F(T)], is by 
definition the maximum [minimum] of q(F) when Z runs over all sign 
sequences of 2. Obviously 

If any component of x’ does not vanish, a sign sequence of ? is uniquely 
determined; hence K(Z) = *v;(S). Th is common value is called the exact 

variation of signs and is denoted by V-(9. The following hold: 

v-+(Z)+ vl(l,jr’) = 7qq-t ~+(l,lc’) = n-1 for SE 93”. (5.1) 

In fact, when E’ runs over all sign sequences of x’, I,,?’ runs over all sign 
sequences of I,,?‘, and 

V(Z) + %Y(],C) = n - 1, 

which immediately yields (5.1). 
If a sequence ZP, p = 1,2,. . . , converges to x’, then 

This is also immediate from the definition. 

LEMMA 5.1. Let zl, z2,. . . , kim be real n-vectors and n > m. In order that 

V’-+(c~zl[iai) G m - 1 whenever ti E R, i = 1,2 ,..., m, and I?lyz’=115il f 0, it 
is necessary and sufficient that ~2~ A Z2 A . . ’ A Z,,, be strictly definite, i.e. 

>> 0 or -=x 0. 

Proof. To see sufficiency, suppose that Zr A ki2 A . . . A a,,, B 0, say, 
and that V+(E~_“=l[iZi) > m for some choice ti E R, i = 1,2,. . . , m, with 
Cy= r].$i] # 0. Let b’ = ET= ,tiZi. Then b’ is n_onzero, because Zr, ZZ,. . . , iim are 
linearly independent. It follows from V+(b) > m that for some (Y E Q,,,+ r, n 
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the a-projection of b’ has maximum variation m. Obviously the a-projections 
g of Zi, i=1,2 ,..., m, also satisfy ZI A $s A . * * A Zm x=- 0. Therefore, by 
considering the o-projection if necessary, we may assume that n = m + 1 and 
(- l)‘-lgi >, 0, i = 1,2,. . . , n. Further, g:) := ~?r A . *- Az<_~ A 4+, 

A . . . AZ”, i=1,2 ,..., n, form a complete orthogonal basis of AR”, so that 

cil A ci2 A * ’ . A &, = and li>O, i=1,2 ,..., n. 

On the other hand, since b’ is a linear combination of Z’r, kiz,. . . , ii,,,, and 
6= I;=&<, by (1.11) 

Then ci > 0, and ( - l)‘-‘bi > 0, i = 1,2,. . . , n, imply bi = 0, i = 1,2,. . . , n, 

and hence b = 0, a contradiction. This completes the proof of sufficiency. 
Let us turn to the proof of necessity. Since *v;(O) = n - 1 and m < n, the 

assumption implies first that Zr, ~?a,. . . , iim are linearly independent, that is, 
zr A 2s A ’ * * A Zm # 0. Let A = [ZI,ZS ,..., a’,]. Then by (1.11) 

cil A & A . . . A ii,,, = c det A[+]<:, 
aEQ,,” 

and we have to show that det A[+] > 0 (or < 0) uniformly for all (Y E Q,,,,. 
Any two different (Y, /3 E Q,,, can be joined by a sequence Jp) E Q,,, n, 
p=O,l,..., k, such that cw = o(O), fi = tick) and for each i = 1 2 , >..*, k there is 
rti) E Qm+l,n such that o(~-‘) c 7(i) and Ji) c T(~). Since the inequality 
det A [ al-1 det A [ p I-] > 0 follows from the inequalities 

detA[ cJ~-~)]-] det A [ w(‘)l-] > 0, i = 1,2 ,. . . , k, 

considering, in the ith step, the T(‘)-projection, we may assume from the first 
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that n = m + I. Now as in the first part, 

i=l 

with li = det A( ij-], 

and we have to show that {,lj > 0, i, j = 1,2,. . . , n. If li = 0 for some i, by 
(1.11) 

hence 6 becomes a linear combination of a’,, Za, . . . , Z,?,,,, but 9’+ (6) = n - I 
= m, a contradiction. Further, if not all lj have the same sign, then 

512,+ 1 < 0 for some 1. Then, as above, 

and { [+ lZl + [,Zl+ 1 becomes a linear combination of a’,, Za, . . . , ii,,,. But since 

U,+ 1 < 0, we have -Y;({,+,Zl + l,Z!+ i) = n - I = m, a contradiction. This 
completes the proof of necessity. W 

THEOREM 5.2. Let .A? be a (real linear) subspace of R” and 0 -C 

dim.(d) < n. Then the following conditions are mutually equivalent: 

(a) ^Y;(?)<dimn(&)-I for O+?E.A. 

(b) f(y’) 2 dim.(&) for 0 # GE _A? I, the orthocomplement in R”. 

Proof. Take complete orthonormal bases a’,, kis,. . . , ci,, for -M, and 
Z”,+,,Z,,,+, ,..., a‘, for _&I, and let A= [Zi,Zs ,..., Z,,]. Then A is unitary 
and we may assume det A = I. According to Lemma 5.1, (a) implies that 
a’, A ci2 A . . . A ti,, >> 0 or << 0, which is equivalent, by (1.22), to the 
statement that det A[ or(I, 2,. . . , m] is nonzero and has one and the same sign 
for all CYE Q,,,. Since by (1.32) and det A = I 

det(J,AJ,)(culI,2,..., m) =det(J,A*~‘J,)((Y(1,2,...,m) 

=detA*[I,2,... mla] = det A[cx11,2 ,..., m], 

det(l,AJ,,)[~lm + 1,. . . , n] is nonzer_o and has one and the same sign for all 

r E Qn--m,w or equivalently, with bi := J,, AJ,,g, i = m + 1, m + 2,. . . , n, we 
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have &,+r A &,,+s A *.a A g,, Z+ 0 or +K 0. But obviously gi = ( - l)‘J,,Zi; 
hence J,,Zm+ r A I,$,,,+, A * . . A I,@,, is strictly definite. Then again by 
Lemma 5.1, V+ (I,$) < n - m - 1 for 0 # ij~ .M I. Now apply (5.1) to get 
(b). Thus (a) implies (b). (b) * (a) is proved similarly. n 

A local version of Theorem 5.2 gives the following characterization of 
strict sign regularity in terms of a variation-diminishing property. 

THEOREM 5.3. Let A be an n X m real matrix with n >, m. Then A is 
strictly sign-regular if and only if the real linear map A j%nn R” to R” 
diminishes variation of signs in the sense that 

T+(Ax’) d C(T) for 0zx’~R”. (5.3) 

Proof. Suppose that A = [Zr, Z2,. . . , a’,] is strictly sign-regular with 
signature Z Take any 0 # ZE R”, and let k := ~C(X?). Then there exist 

Pt~~Qk+1,rn such that &<wi<&+r, i=1,2,...,k+l (with Pk+s=~) 
such that, for each i = 1,2,. . . , k + 1, the components xi have constant sign 
for all j between pi and q, with sign alternating alo_g i, and that x~= 0 if 
{;pr, j>ok+r, or oi< j<&+, for some i. Let bi:=Cp,GjGw,xjaj, i= 

, , . . . , k + 1. Then obviously Ax’= Ci(E+tbi. Now the strict sign regularity of 
A implies that 

~~+pi~~Aii~~A .*. Azjk ,2-o + for &~j~<:~, i=1,2 ,..., k+l, 

so that 

&, A & A + . . A 6k+l B 0 or C+C 0. 

Then Lemma 5.1 yields that 

proving (5.3). 
Suppose conversely that A = [ Zl, Z2,. . . , a’,] satisfies the condition (5.3). 

For each w E Qk, m and Ei E R, i = 1,2,. . . , k, with C:= r I,$‘,] # 0, obviously 
VI(C:X,[iZl,) < k - 1; hence by assumption 
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Then it follows from Lemma 5.1 that Zti, A ZU, A . . . A iim, is strictly 
definite. A will be strictly sign-regular if the sign of Z, A ZU, A . . . A iTw,, 
depends only on k. For k = m this is trivial. Fix l,< i < m - 1 and take 

dJEQk,tC As remarked in the proof of Lemma 5.1, there is a sequence 
U(P) E Qk, m, p = 0, 1,. . . , 1, such that (Y = o(O), /3 = o(‘), and there is a se- 
quence T(P) E Qk+ ,, m with titi) c ,ci), diwl) c T(~), i = 1,2,. . ., 1. Therefore, 
for our purpose it suffices to prove that, for each r E Qk+ r, n, and 1~ i < k + 1, 
a’,,/+.. Aa’,_/a’ A .*. Aa’ and a’ A ... Aii A a’ 

A ... Ai&_ have the :ame sign. By r&&s of conti&ity argument this &I? 
be established if 

is strictly definite for each 0 < t < 1. But the strict definiteness follows from 
Lemma 5.1, via (5.3), because for any ti E R, i = 1,2,. . . , k, with C~=,l~il # 0, 

i-l k+l 

c 6j<i+&((l-t)<,+t<,+,)+ c tie’, 
j=l j=i+2 ’ 

n 

Sign regularity is characterized by a weaker variation-diminishing prop- 
erty. 

COROLLARY 5.4. Let A be an n X m real matrix of rank m. Then A is 

sign-regular if and only if 

VI(M) <K(Z) for O#?ER”‘. (5.4) 

Proof. As shown in Section 7, there is a sequence of n-square, strictly 
totally positive matrices G,, p = 1,2,. . . , such that G, + I, as p + co. 
Suppose first that A is sign-regular. Since A is injective by assumption, G,A 
is strictly sign-regular, and G,A + A as p + cc. Then Theorem 5.3 guaran- 
tees that 

V’+(G,Ax’) < YC(? > for O#?ER~‘, 

which yields (5.4) via (5.2). Suppose conversely that (5.4) is valid. By 
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Theorem 5.3, applied to G,, 

V-+(G,Ar’) < +‘I(AX’) for O+ZER”, 

because A is injective. Now (5.4) combined with Theorem 5.3 shows that 
G,,A is strictly sign-regular for p = 1,2,. . . . Then obviously A is sign-regular. 

n 

By using the duality relation (5.1), we can speak about some variation- 
augmenting properties. 

COROLLARY 5.5. Let A be an n x m real matrix of rank m. Then ],,A],,, 
is strictly sign-regular (respectively, sign-regular) if and only if 

n-m+V+(?)<VI(AZ) (??+(A?)) for 0#x'~R". 

When n = m, sign regularity admits several cousin characterizations. 

THEOREM 5.6. Let A be an n-squure invmtible real matrix. Then the 
following conditions are mutually equivalent: 

(a) A is sign-regular. 
(b) -Y,(Ax?) < V+(x?) for all iE R". 
(c) K(Ax?) < V+(xT for all 2~ R". 
(d) $‘-(A%‘) < K(Z) for all ?E R". 

Proof. (a) - (b): If A is sign-regular (and invertible), so is _/,A- ‘J,, by 
Theorem 3.2. Then (b) follows from Corollary 5.5, on replacing A and x’ by 
A- ’ and Ar’ respectively. (b) * (c) is trivial. (c) * (d) results on replacing 2 
by G,i and taking the limit as p + 00, where G, is a strictly totally positive 
matrix in the proof of Corollary 5.4. Finally (d) * (a) follows from Corollary 
5.4. W 

Notes and References to Section 5 

The theory of variation-diminishing linear maps originated with 
Schoenberg (1930). Schoenberg and Whitney (1951) also studied cyclic 
variation-diminishing linear maps; the cyclic maximum variation of signs of a 
vector x’, for instance, is defined as the maximum of V+(sk’), k = 1,2,, . . , n, 
where the ith component of Z(k) is given by xk+i_l (mod n). 
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6. EIGENVALUES AND EIGENVECTORS 

In this section we shall study spectral properties of sign-regular or totally 
positive matrices. The key tool for this is the classical results of Perron and 
Frobenius for positive matrices. Let us formulate the most elementary part of 
the Perron-Frobenius theorem, necessary for our purpose. 

LEMMA 6.1. lf A is an n-square positive matrix, A > 0, then the first 
eigenvalue is real nonnegative, X1(A) > 0, and there is a positive eigenvector 

C1 > 0 corresponding to X1(A). Zf A is strictly positive, A >> 0, then h I( A) 

> IX 2( A)J, and each eigenvector corresponding to A 1( A) is a scalar multiple 

of a strictly positive one ii1 >> 0. 

THEOREM 6.2. Zf A is an n-square, strictly sign-regular matrix with 

signature 2, then all eigenvalues of A are real and distinct, and 

~W) > l~k+lwl’ k=1,2 ,..., n, (6.1) 

where ho = 1 and h,+,(A)=O, and the corresponding eigenvectors 

ii,,u’,,..., G,, can be so chosen that each rTk is a real vector and 

ii,Au’,A *.. Aiik>>O, k=1,2 ,..., n. (6.2) 

Proof by induction. The case k = 1 is immediate from Lemma 6.1, 
because eiA x== 0 by assumption. Suppose that 2,,$ m < n and (6.1) and (6.2) 

are true for alI k with 1~ k < m - 1. Since E; AA B 0 by assumption, and 

its first eigenvalue is e,ny==,xi( A) by Theorem 1.1, it follows again from 
Lemma 6.1 that 

Then (6.1) for k = m results from the induction assumption. Now since 
h,(A) is real, ii,,, can be chosen a real vector, and c1 A iis A . . . A ii,,,,, 

tn 

becomes a nonzero real eigenvector of E; AA, corresponding to its first 

eigenvalue.ThenbyLemma6.1,with~=lor = -1, $~u’,r\u’,A ... AC,,, 

z+ 0. Now replace u’, by [u’, if necessary, to get (6.2) for k = m. n 
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The set of real eigenvectors { S,, zia, . . . , tin } possesses interesting oscil- 
latory properties. For their formulations, we need some definitions. To each 
real n-vector x’, assign the piecewise linear function x(t) for 1 < t < n, 
defined by 

x(t) = (k + l- t)x, + (t - I+/(+1 if k<t<k+l. (6.3) 

The nodes of x(t) are the roots of the equation x(t) = 0, arranged in 
increasing order. Two ordered sequences [r < 5s < * . - < (k and 91~ na < 
. . . <n)7k+1aresaidtobeinter&ingif r~~<.$~<n~+r, i=l,2,...,k. 

THEOREM 6.3. Let A be an n-square, strictly sign-regular matrix. Then 
its real eigenvector iik, corresponding to the kth eigenvalue, has exact k - 1 
variations of sign: 

V-(ii-/J = k - 1, k=1,2 ,..., n. (6.4) 

Furthermore the nodes of uk( t ) and those of uk + 1( t ) are interlacing. 

Proof. By Theorem 6.2, for each k we have iir A iis A . . . A iik >> 0 or 
-=x 0; hence “v; ( iZk) < k - 1 by Lemma 5.1. To see Y ( Gk) > k - 1, accord- 
ing to (5.1) it suffices to show V+ (J,,Zk) < n - k. Consider J, A- ‘I,,, which is 
again strictly sign-regular by Theorem 3.3. Since JnGk is an eigenvector of 
J,A-‘I, corresponding to l/h,(A) = hn_k+l(J,,APIJ,), the above argument 
yields ~?+(J,ii~) < n - k. This proves (6.4). 

Next we claim that for 16 k Q n - 1 

whenever 5,5~R and 151+151+0. (6.5) 

Since again ii1 A . . . A u’k A tik+ 1 >> 0 or << 0, Lemma 5.1 guarantees 

Apply the same argument to J,u’,, J”Z”_r,. . . , J,,iik, which are the first 
n - k + 1 eigenvectors of the strictly sign-regular matrix J, A- ‘J,, to see 
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Hence (5.1) yields (6.5): 

Now let us turn to the proof of the second assertion. Let x(t) = am and 

Y(t) = u k+l(t). In view of (6.4), x(t) and y(t) have k - 1 and k nodes, 
respectively, and none of these nodes is integer. Let t, < t, < . . . < t, be the 
nodes of y(t). Then for the second assertion, it suffices to show that x(t) has 
at least one node in each open interval (t), t,, r), 1 = 1,2,. . . , k - 1. For this 
purpose, (6.5) will be used in the following form: if I.$\+ [cl # 0 and 1 < j < n, 

whenever ,$‘x( j) + <y(j) = 0. (6.6) 

Suppose that x(t) has no node in the interval (tl, t,,,), that is, x(t) > 0, say, 
on this interval. We claim that x(t) > 6 > 0 uniformly on the closed interval 
[tr, t,,,]. Otherwise, x(tl) = 0, say. Take i such that i - 1 < t, < i. Since x(t) 
is linear for i - 1~ t < i, we have x(i - 1)x(i) < 0, and with the choice 

~ = _ y(i) - di - 1) 
x(i) - x(i - 1) ’ 

[x(t) + y(t) vanishes for all i - 1~ t < i, contradicting (6.6). By the defini- 
tion of nodes, y(t) is definite, >, 0 say, on the interval [tl, t,, 1]. Now let n be 
the minimum of 17 > 0 for which - qy(t)+ x(t) has a node s say, t, < s < 
t,, 1. Since by the minimum property - qy(t) + x(t) >, 0 on the interval, and 
- qy( t) + x(t) is piecewise-linear as (6.3) this is possible only when s is an 
integer or - qy(t) + x(t) vanishes identically on the interval j - 1~ t < j 
containing s. But each of these possibilities produces a contradiction to (6.6). 

If A is an n-square strictly sign-regular matrix, its adjoint A* is again 
strictly sign-regular, and by Theorem 6.2 the real eigenvectors { i?i, CZ,. . . , i?,, } 
of A* are so chosen that 

iYIAi&A ..*Ai&~O, k=1,2 ,..., n. (6.7) 

The properties (6.2) and (6.7) of the eigenvectors of A and A* characterize 
strict sign-regularity in some sense. 
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THEOREM 6.4. If an n-square invertible real matrix A has n real eigen- 
values with distinct mod&i and the real eigenvectors iik of A and Ck of A*, 
corresponding to A,(A) = X,(A*), are so chosen to satisfy (6.2) and (6.7): 

ii1 A ii2 A . * * Au’,>0 and iYIr\~~A ... Au’,BO, k = 1,2 ,..., n, 

then some power of A is strictly sign-regular. 

Proof. Let X,=h,(A), k=1,2 ,..., n, and let V=[GI,Gz ,,.., u’,] and 
v= [C&C..,..., i?J. Then U and V are invertible, 

A = U.diag(X,, h, ,..., x”)*u-‘, A* =V-diag(h,, X, ,..., X,).V-‘, 

(6.8) 

and 

(X,( > (h,( > * * * > (A,( > 0. (6.9) 

Since obviously (iii, Cj) = 0 for i + j, (6.8) implies 

U-’ = diag(p,, ps,..., P”)V” (6.10) 

for some nonzero pi, i = 1,2,. . . , n. These pi are all positive, because 

k 

0 < (ii1 A c2 A .-- A i&,i?l A 8s A ... A ck)= n pi-', k=1,2 ,..., n. 
i=l 

By (1X3), for any positive integer p and a, /3 E Qk,n it follows from (6.8) and 
(6.10) that 

det Ap[al/3] = c detU[alw]- 
aEQk,n 

= c detU[(ujw]. fiX 
WEQk.n 

( i=l -,)‘.( i&%+)-detVIBld 

=( filh)‘( ~~~pj)detu[.ll,2,...,k]detV[~ll,2,...,k] 

+ c detU[+l-( f!Aui)‘( ifilpm,)-defVIBl~l. 
WEQkn 

wz (1,2,...,k) 
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(6.9) implies that 

ifIllAil > ifIllAu,l for wEQ~,~, w+{1,2 ,..., k}, 

while (6.2) and (6.7) imply that 

U[aJ1,2,..., k] >O and V[p]l,2,...,k] >O for o,P E Qk,". 

Then for sufficiently large p, det AP[ (Y] /?I is nonzero and has the same sign as 
(FIf= rX i)’ for every e, P E Qk, “, that is, AP is strictly sign-regular. n 

Our next task is the comparison of the eigenvalues of A with those of 
A[ CX] for suitable (Y. 

THEOREM 6.5. lf A is an n-square oscillatory matrix, then for every 
a E Qk,n (1 < k < n - 1) with consecutive components, i.e. d(a) = 0, 

‘j(A) > ‘j(A[aI) > Xn+j-k(A)> j=1,2 k, 7..‘, (6.11) 

and 

XI(A) > Aj(A/a’) > Xn+j-k(A)> j=1,2 k. ,*.*1 (6.12) 

Proof. Let us prove (6.11) by backward induction on k. When k = n - 1, 
wehave (~={1,2 ,..., n-l}or ={2,3 ,..., n}.Supposingo={1,2 ,..., n- 
l}, let B=A[cu]. Clearly Aj:=Aj(A), j=1,2,...,n are the only nodes of 
the polynomial d*(t) := det A, where A, := tZ, - A, while h j( I?), j = 
1,2,. . . ) n - 1, are the only nodes of the polynomial d B(t) := det B, where 
B, := tZ,_, - B. To see (6.11) for this CX, it suffices to show that 

dB(Xi)dB(Ai+l) co> i=1,2 ,..., n-l. (6.13) 

Consider the vectors St with real parameter t, defined by 

q := [( -l)ntidetA,[ali)]l~i~tl. 

Then (1.31) yields that A,x’, = d,(t)<, so that 

Azii = h j?A , j = 1,2 ,..., n. 
1 

(6.14) 
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The nth component x,(n) of Zf clearly coincides with d,(t), while the first 
component x,( 1) admits the representation 

r,(l)= 5 t”-j 1 detA[w\{n}]w\{l}]. (6.15) 
j=2 WEQ,,” 

w,=l, &Ii=” 

We claim that x,(l) > 0 for all t > 0. In fact, since ds(t) has only n - 1 
nodes, for some j we have x,,,(n) = d,(hj) # 0. Then by (6.14), SAj is a 
nonzero real eigenvector of oscillatory matrix A, corresponding to A j = h j( A), 
and its first component ~~~(1) does not vanish, because ZA, has exactly j - 1 
variations of sign by Theorem 6.3. On the other hand, )since A is totally 
positive, (6.15) shows that x,(l) is a polynomial of 1 with nonnegative 
coefficients. Then x,(l) > 0 for all t > 0. Now by (6.14), for each i, SA is the 
ith eigenvector of A with positive first component. Then it follows from 
Theorem 6.3 that the nth component of Z,,i has sign ( - l)‘-‘. This estab- 
lishes (6.13), because xx,(n)=dB(Xi), i=1,2 ,..., n. The proof of (6.11) for 
(Y= {2,3 ,..., n} is similar. 

Suppose that (6.11) is true for k > 1, and take a E Qk_r, n with d(a) = 0. 
We may assume that a={i,i+l,...,i+k-2) and i+k-lgn. Now 

apply the above argument to the k-square oscillatory matrix A[ a u { i + 

k - 1}] to get 

j = 1,2 ,...,k-1. 

On the other hand, the induction assumption implies 

Aj(A)>Aj(A[CYU{i+k-l}])>h”+j_k(A), j=1,2 k. ,..*1 

These together prove (6.11) for the case k - 1, completing induction. The 
case 2 < i is treated similarly. 

Finally (6.12) follows from (6.11). In fact, J,,A - ‘1, is again oscillatory and 
~~a~-lIn,bl = J,(A/~‘)-‘4, by n eorem 4.2. Now apply (6.11), remarking 

1 
- = h”_j+l(J,A-lJ”) and ’ 
‘j(A) h j(A/a’) =X,-j+,((J”A-‘~~)[(yI). w 
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With the help of the approximation theorem 2.7, some of the above 
results can be generalized to the case A is sign-regular or totally positive. Let 
us present sample results. 

COROLLARY 6.6. If A is an n-square, sign-regular matrix with signature 
C then all its eigenvalues are real, and 

-hk( A) > 0, k=1,2 ,..., rank(A). 
&k-l 

Zf A is totally positive, then for any a E Qk, n (16 k < n - 1) with consecu- 
tive components, i.e. d(a) = 0, 

AI(A) a Xj(A[a]) 2 h,+j-k(A), j=1,2 k. ,...> 

Given a real n-vector x’= (xi), let us denote by Ic’* = (XT ) its decreasing 
rearrangement: 

x:>x;> ... ax,* and XT =xnCi) for some T ES,. (6.16) 

A real n-vector Ir’ is said to be major&d by another, g-in symbols 
S< g--if 

i xi= i yi and 2 XI< 5 y:, k=1,2 ,..., n-1. (6.17) 
i=l i=l i=l i=l 

Obviously the inequality C:= rx* < C:= r y: in (6.17) can be replaced by 
cy= k+rXT 2 CT-k+r!/i*. 

The majorization relation is known to produce a lot of inequalities, based 
on the following fact: %‘< ij if and only if for any convex continuous function 
Q(t) on ( -CYS,OO) 

2 'Cxi) G iI '(Yi>' (6.18) 
i=l i=l 

THEOREM 6.7. Let A = [aij] be an n-square_mutrix~ and s’< A) := (a ii), 
the diagonal of A. If A is totally positive, then 6(A) -C A( A). 
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Proof by induction on n. When n = 1, everything is trivial. Assume that 
the assertion is true with n - 1 in place of n. Since CFZ’=,hi(A) = C:=$,(A) 
and A,(A) = AT(A), i = 1,2 ,..., n, by definition and Corollary 6.6, it suffices 
to show that 

~ Xi(A) ~ ~ ‘,“(A) for k=1,2 ,..., n-l. (6.19) 
i=l i=l 

Let S,(A) = 6,*(A) and S,,(A) = 6,*(A). C onsidering the conversion if neces- 
sary, we may assume p < 9. Let B = A(n) and C = A(1). Since B and C are 
(n - l)-square totally positive matrices, the induction assumption yields that 

i=l i-l 

n-1 n-1 

and C A,(C)< C S?(C), 
i=k i=k 

k=1,2 ,..., n-l. (6.20) 

Since 6,*(B) = 6,*(A), i = 1,2,. . . , p, by definition and since X,(A) >, h,(B), 
i=1,2 ,. . . , n - 1, by Corollary 6.6, (6.20) implies (6.19) for k = 1,2,. . . , p. 
Instead proving (6.19) for k > p, let us show the inequality 

i X,(A)< i S,*(A). 
i=k+l i=k+l 

(6.21) 

Since SF(A) = SEi(C), i = p + 1, p +2 ,..., n, and A,_,(C) > A,(A), i = 
2,3,..., n, by Corollary 6.6, (6.20) implies (6.21). n 

Notes and References to Section 6 
Lemma 6.1 is a small part of Perron (1907) and Frobenius (1908, 1909). 

More about positive matrices can be found in Gantmacher (1953). The reality 
and simplicity of eigenvalues (Theorem 6.2) and the interlacing property of 
nodes of eigenvectors (Theorem 6.3) were the starting points of the 
Gantmacher-Krein theory, with motivation from the vibration of mechanical 
systems. Theorem 6.4 is also due to Gantmacher and Krein (1960); see also 
SevEuk (1978). For the reality of eigenvalues, Koteljanskii (1963b) presented 
some generalization. See Karlin and Pinkus (1974) for some results related to 
Theorem 6.5. The majorization result, Theorem 6.7, was proved by Garloff 
(198213). The majorization concept plays an important role in various places 
of analysis. More about majorization can be found in Ando (1986) and 
Marshall and Olkin (1979). 
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7. SOME EXAMPLES 

In this last section we present some examples of totally positive matrices 
and characterizations of those matrices. 

I. Totally Positive Kernels 
Most of nontrivial totally positive matrices are obtained by restricting 

totally positive kernels to suitable finite subsets. 
Let I, A be totally ordered sets (usually subintervals of R or Z). A 

real-valued function K(s, t ) for s E I?, t E A is called a totally positive kernel 

if the matrix [K(si> tj)li,j=1,2,,,.,n is totally positive for every choice si < ss 
< . . . < s, and t, < t, < . . . < t,. Strict total positivity of a kernel is defined 

correspondingly. 
Here are some production formulas for totally positive kernels. If K(s, t) 

is totally positive and f(s), g(t) are positive functions on I and A respec- 
tively, then the kernel f(s)K(s, t)g( t) is totally positive. If K( s, t ) is totally 
positive, and if G’(S) is a monotone increasing map from a totally ordered set 
I’, to I, and #(t ) is a monotone increasing map from a totally ordered set A r 
to A, then K( +( s), G(t)) is a totally positive kernel on I, x A 1. If both 
kernels L(s, t) and M(s, t) are totally positive and da( .) is a measure on I, 
then the kernel 

K(u,v):= TJI(s,u)M(s,v)du(s), 
/ 

u,veA, (7.1) 

is totally positive on A x A, provided that the integral exists. This is just a 
modification of Theorem 3.1. 

Now let us turn to construction of concrete examples. 

(a) For any real (~~20, k=l,2,...,n, the kernel K(s,t):=C;!,a,sktk 
is totally positive on R, x R,. Indeed, K(s, t) is a composition of the type 
(7.1) with L(k, t) = M(k, t) = tk on Z, XR,. The total positivity of the 
kernel L( k, t) is a consequence of the Vandermonde determinant: 

(7.2) 

(b) For any u > 0 the kernel K( s, t ) := exp( ast) is totally positive on 
R, X R,, as a limit of kernels of type (a). This kernel is strictly totally 
positive on R X R too. Consequently exp[ - a( s - t )2] is strictly totally posi- 
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tive on R X R because 

exp[ - a(s - t)“] = exp( - as2)exp(2ast)exp( - at2). 

(c) For p = 1,2,. . . the n-square matrices 

are strictly totally positive by (b), and G, + I, as p + co. This sequence has 
already been used several times in the previous sections. 

(d) For each 0 < X < 1 and 0 z p E R, consider the weighted mean on 

R+ xR+ 

MX,p(S,t):= {Xsp+(l-A)tp}l’p. (7.3) 

Then MA,p(~, t) or l/MA,,(s, t) is totally positive according as p < 0 or 
p > 0. This follows from the observation that for any y > 0 

1 I 0 
/ 

du 
-=- 
(s+tJY T(Y) --oo 

euseut- 
lujlPY ’ 

(7.4) 

where I( *) is the gamma function, and that the kernel exp(zls) is totally 
positive on R _ X R +. 

(e) The kernel K( s, t ) := min( s, t ) is totally positive on R + x R +, because 

K(s, t) = lim M.&s, t). 
p* --oo (7.5) 

(f) If f( t ), g( t ) are positive function on R + such that h( t ) := f( t )/g( t ) is 
nondecreasing, then the kernel 

K(s, t) := f(min(s, t))g(max(s, t)) 

is totally positive on R + X R +, because 

K(s, t) = min{ h(s), h(t)}g(min(s, t))g(max(s, t)) 

= g(s).min{ h(s), h(t)} *g(t). 

For (I > 0, with g(t) = exp( - at) and h(t) = exp(2ut), the kernel 
exp( - uls - tl) is totally positive on R, xR,. 
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(9) Let {bili=l,z ,.,,, n and {ci>i=1,2 ,..., n be positive sequences. Then the 
n-square matrix [ bminci, jfmaxci, j) ] is totally positive if and only if b, /cl < 
b,/c, < ’ . . < b,,/c,. This follows immediately from (f). A matrix of this 
type is called a Green matrix. 

Il. Hurwitz Matrix 

It is a celebrated theorem of A. Hurwitz that a polynomial p(z) = doz” 
+ dlznP1 + . . . + d n of real coefficients (d, > 0) has all its zeros in the open 
left half plane Re z -C 0 if and only if the n-square matrix 

d, d, d, d, d, ... 

d, d, d, d, d, ... 

0 d, d, d, d, ... 

H’= [dzjpil = 0 d, d, d, d . . . 
6 

. . . . . 

. . . . . 

;, (j ;, (j ;, . . . 

0 

0 

0 

0 ’ (7.6) 

k_ 

where d, = 0 for k < 0 or > n, has positive leading principal minors: 

detH[1,2 ,..., k] >O, k=1,2 ,..., n. (7.7) 

Such a polynomial p(z) is called a Hwwitz polynomial, and the matrix H is 
the Hunoitz matrix associated with it. 

Let us show, by induction on n, that the Hurwitz matrix is totally 
positive. When n = 1, everything is trivial. Assume that the assertion is true 
with n - 1 in place of n. Since d, > 0 for a Hurwitz matrix (7.6), it follows 
from (1.35) that the (n - 1)-square matrix G := H/{ l}, indexed by 2,3,. . . , n, 

has also positive leading principal minors: 

detG[2,3 ,..., k] >O, k=2,3 ,..., n. (7.6) 

Let gj, j=2,3 ,..., n, be the row (n - I)-vectors of G, and c = d,/d,. Then 
the (n - l)-square matrix F, indexed by 2,3,. . . , n, whose row vectors 4 are 
defined by 

A:= &p and xj_l:=g2j_1, &j:=gij-Cg',j_l for j2-2, (7-g) 

has also positive leading principal minors. A glance will show that F is of the 
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form (7.6) with n - 1 instead of n, and dj instead of dj, where 

dij = dzjtl and dij_, = dzj - cd2j+l, j=O,l,Z ,.... (7.10) 

Then according to the induction assumption, F is totally positive, and so is 
the n-square matrix 

F”:= 0 0 
[ 1 0 F’ 

Now it is readily seen from (7.10) that 

ZZ(n-l,n)=((S+i(l,-&)]SZ%*)(n-l,n), (7.11) 

where S = [0, $r, &, . . . , e” _ r 1. The matrices S and S * are totally positive, and 
so is the positive upper triangular matrix S + (c/2)( I, - J,). Now the total 
positivity of H follows from (7.11) by Theorem 3.1 and Theorem 2.1. 

ZZZ. Toeplitz Matrices 
For a (bi-)infinite sequence { an : - 00 < n < 00 }, the matrix 

[ai_j]i,j=r,z,,,,iscalledits Toeplitzmutrix,andthefunction f(z)=COOma,,z” 
its generating function. A complete characterization of the total positivity of 
(all finite sections of) a Toeplitz matrix has been established in a series of 
papers: Aissen, Schoenberg, and Whitney (1952) Whitney (1952) and Edrei 
(1952, 1953a, b). 

A Toephtz matrix [a,_ j] is totally positive if and only if the generating 
function f(z) = Pmanz” is of the form 

fi(l+ant,fi 1+ p” 

f(m)=Czxexp(ylz+y). A 
i 1 

y%4l$(l-~)~ 

where k is an integer, C > 0, yr, y_ r 2 0, and a,, P,, p,, S, > 0 are such that 
CP(% + P” + P, + 8”) < co. 
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When a, = 0 for n < 0, the Toeplitz matrix is totally positive if and only 
if the generating function is of the form 

l%lf %4 
f(z) =Ceyz i 

lx-P,4 ’ 

where C 2 0, y >, 0, and CX,,, fi, > 0 are such that C~(CX, + &) < co. 
The proofs of these results, based heavily on the theory of analytic 

functions, are beyond the scope of the present paper. 
When applied to a polynomial, the above characterization implies that a 

polynomial p(z) = doz” + dry”-‘+ . . . + d, (d, > 0) has all its zeros on 
the negative real axis if and only if the infinite matrix [d,+j_i]i,j=1,2,,, is 
totally positive, where d, = 0 for k < 0 or > n. Remark that the Hurwitz 
matrix H, introduced in Section 7.11, is a submatrix of T, namely H = T [ n + 1, 
n-t2 ,..., 2n12,4 ,..., 2n]. 

IV Pdya Frequency Function 
A function f(t) on ( - co, co) is called a Pdya frequency function if the 

kernel K( s, t ) := f(s - t ) is totally positive. The following remarkable char- 
acterization is due to Schoenberg (1953); f(t) is a Polya frequency function if 
and only if its bilateral Laplace transform exists in an open strip containing 
the imaginary axis and has the form 

J 
m m exda,,t) 

_me-S’f(s)ds=Cexp(yt2+St).~ l+a t , 
n 

where C > 0, y >, 0, 8 and (Y, are real such that 0 < y + Eyla,,[’ < cc. 
The proof of this result is beyond the scope of the present paper. 

Notes and References to Section 7 
The monograph by Karlin (1968) contains very many examples of totally 

positive kernels. Total positivity of various generalized means is seen in 
Carlson and Gus&on (1983). A kernel K(s, t) on an inverval of the real line 
is called extended strictly totally positive if for every n 

ai+j-2 

det asi-~Jtj-~K(S’t) ‘O’ 1 i,j=1,2,.. ,n 
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Extended strict total positivity implies strict total positivity. In this connec- 
tion, Burbea (1974, 1976) defined the extended strict total positivity of a 
kernel K(z, W) of complex variables by 

ai+j-2 

det azi-lawj-~K(Z~w) #O 1 i,j=1,2 ,..., n 

and established the extended strict total positivity of reproducing kernels of 
certain HiIbert spaces of analytic functions. 

A proof of the Hurwitz theorem can be found in Gantmacher (1937). The 
total positivity of a Hurwitz matrix was proved by Asner (1970) and 
Kemperman (1982). 

For the proof of characterizations of a totally positive Toeplitz matrix and 
a totally positive translation kernel, we refer to the original papers cited in 
the text and the monograph by Karlin (1968, Chapters 7-8). Lorenz and 
Mackens (1979) gave a characterization of total positivity of the inverse of a 
banded Toeplitz matrix. 

I would like to express my deepest gratitude to Miss Yukiko Ito for her 
superb typing and unlimited patience. 
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