Minimum rank of skew-symmetric matrices described by a graph ${ }^{W}$

IMA-ISU research group on minimum rank ${ }^{*, 1}$

A R T I C L E I N F O

Article history:

Received 2 March 2009
Accepted 18 September 2009
Available online 11 February 2010
Submitted by R.A. Brualdi

AMS classification:

05C50
15A03

Keywords:
Minimum rank
Minimum skew rank
Skew-symmetric matrix
Matching
Pfaffian
Rank
Graph
Matrix

Abstract

The minimum (symmetric) rank of a simple graph G over a field F is the smallest possible rank among all symmetric matrices over F whose $i j$ th entry (for $i \neq j$) is nonzero whenever $\{i, j\}$ is an edge in G and is zero otherwise. The problem of determining minimum (symmetric) rank has been studied extensively. We define the minimum skew rank of a simple graph G to be the smallest possible rank among all skew-symmetric matrices over F whose $i j$ th entry (for $i \neq j$) is nonzero whenever $\{i, j\}$ is an edge in G and is zero otherwise. We apply techniques from the minimum (symmetric) rank problem and from skew-symmetric matrices to obtain results about the minimum skew rank problem.

© 2009 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

The classic minimum rank problem involves real symmetric matrices described by a graph. This problem has been studied extensively and generalized to symmetric matrices over other fields; see [9] for a survey of known results and a discussion of the motivation for the minimum rank problem. In this paper, we study the problem of determining the minimum rank of skew-symmetric matrices described by a graph.

If a field F is of characteristic 2 , then the skew-symmetric matrices are the same as the symmetric matrices; and may have nonzero diagonal entries. Thus it is assumed throughout this paper that the fields under consideration do not have characteristic 2 .

1.1. Notation and terminology

An $n \times n$ matrix A over a field F is skew-symmetric (respectively, symmetric) if $A^{T}=-A\left(A^{T}=A\right)$; for $A \in \mathbb{C}^{n \times n}, A$ is Hermitian if $A^{*}=A$, where A^{*} denotes the conjugate transpose of A.

A graph is a pair $G=\left(V_{G}, E_{G}\right)$, where V_{G} is the (finite, nonempty) set of vertices of G (usually $\{1, \ldots, n\}$ or a subset thereof) and E_{G} is the set of edges (two-element subsets of vertices). These graphs are usually called simple undirected graphs. The order of a graph G, denoted $|G|$, is the number of vertices of G.

For a symmetric, skew-symmetric or Hermitian matrix, the graph of an $n \times n$ matrix A, denoted $\mathcal{G}(A)$, is the graph with vertices $\{1, \ldots, n\}$ and edges $\left\{\{i, j\}: a_{i j} \neq 0,1 \leqslant i<j \leqslant n\right\}$. Note that the diagonal is ignored in determining $\mathcal{G}(A)$ for symmetric and Hermitian matrices (the diagonal must be 0 for a skew-symmetric matrix).

The set of symmetric matrices over a field F described by G is

$$
\mathcal{S}(F, G)=\left\{A \in F^{n \times n}, A^{T}=A, \mathcal{G}(A)=G\right\} .
$$

The minimum rank of a graph G over F is $\operatorname{mr}(F, G)=\min \{\operatorname{rank} A: A \in \mathcal{S}(F, G)\}$, and the maximum nullity of G over F is $\mathrm{M}(F, G)=\max \{\operatorname{null}(A): A \in \mathcal{S}(F, G)\}$. Clearly $\mathrm{mr}(F, G)+\mathrm{M}(F, G)=|G|$. When the field is omitted it is assumed to be the real field, i.e. $\operatorname{mr}(G)=\operatorname{mr}(\mathbb{R}, G)$.

The set of skew-symmetric matrices over F described by G is

$$
\mathcal{S}^{-}(F, G)=\left\{A \in F^{n \times n}: A^{T}=-A, \mathcal{G}(A)=G\right\}
$$

The minimum skew rank of a graph G over F is defined to be

$$
\mathrm{mr}^{-}(F, G)=\min \left\{\operatorname{rank} A: A \in \mathcal{S}^{-}(F, G)\right\},
$$

and the maximum skew nullity of G over F is defined to be

$$
\mathrm{M}^{-}(F, G)=\max \left\{\operatorname{null}(A): A \in \mathcal{S}^{-}(F, G)\right\} .
$$

Clearly $\mathrm{mr}^{-}(F, G)+\mathrm{M}^{-}(F, G)=|G|$. In this paper we say that the matrix $A \in F^{n \times n}$ is optimal for G (over F) if $A \in \mathcal{S}^{-}(F, G)$ and rank $A=\mathrm{mr}^{-}(F, G)$.

Clearly the maximum rank among matrices in $\mathcal{S}(F, G)$ is $|G|$, but this need not be the case for skew rank. The maximum skew rank of a graph G is

$$
\operatorname{MR}^{-}(F, G)=\max \left\{\operatorname{rank} A: A \in \mathcal{S}^{-}(F, G)\right\}
$$

The set of Hermitian matrices described by G is

$$
\mathcal{H}(G)=\left\{A \in \mathbb{C}^{n \times n}, A^{*}=A, \mathcal{G}(A)=G\right\} .
$$

The minimum Hermitian rank of a graph G is $\operatorname{hmr}(G)=\min \{\operatorname{rank} A: A \in \mathcal{H}(G)\}$. Minimum Hermitian rank has been studied in [5], and is a lower bound on the skew rank over the real field (see Proposition 3.2).

The subgraph $G[R]$ of G induced by $R \subseteq V_{G}$ is the subgraph with vertex set R and edge set $\{\{i, j\} \in$ $\left.E_{G} \mid i, j \in R\right\}$. The subgraph induced by $V_{G} \backslash R$ is also denoted by $G-R$, or in the case $R=\{v\}$, by $G-v$. If A is an $n \times n$ matrix and $R \subseteq\{1, \ldots, n\}$, the principal submatrix $A[R]$ is the matrix consisting of the
entries in the rows and columns indexed by R, and $A(R)$ is the complementary principal submatrix obtained from A by deleting the rows and columns indexed by R. In the special case when $R=\{k\}$, we use $A(k)$ to denote $A(R)$. If $A \in \mathcal{S}^{-}(F, G)$, then by a slight abuse of notation $\mathcal{G}(A[R])$ can be identified with $G[R]$.

The adjacency matrix of $G, A_{G}=\left[a_{i j}\right]$, is a 0,1 -matrix such that $a_{i j}=1$ if and only if $\{i, j\} \in E_{G}$. The formal skew adjacency matrix of G is $X_{G}=A_{G} \circ X$ where X is a skew-symmetric matrix having $i j$-entry $x_{i j}$ for $i<j, x_{i j}$ are independent indeterminates, and o denotes the Hadamard (entrywise) product.

A path, cycle, complete graph, and complete multipartite graph will be denoted by P_{n}, C_{n}, K_{n}, and $K_{n_{1}, n_{2}, \ldots n_{t}}\left(t \geqslant 2, n_{i} \geqslant 1\right)$, respectively.

The complement of a graph $G=(V, E)$ is the graph $\bar{G}=(V, \bar{E})$, where \bar{E} consists of all two-element sets of V that are not in E. The union of $G_{i}=\left(V_{i}, E_{i}\right)$ is $\cup_{i=1}^{h} G_{i}=\left(\cup_{i=1}^{h} V_{i}, \cup_{i=1}^{h} E_{i}\right)$; a disjoint union is denoted $\dot{\cup}_{i=1}^{h} G_{i}$. The intersection of $G_{i}=\left(V_{i}, E_{i}\right)$ is $\cap_{i=1}^{h} G_{i}=\left(\cap_{i=1}^{h} V_{i}, \cap_{i=1}^{h} E_{i}\right)$. The join $G \vee G^{\prime}$ of two disjoint graphs $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is the union of $G \cup G^{\prime}$ and the complete bipartite graph with vertex set $V \cup V^{\prime}$ and partition $\left\{V, V^{\prime}\right\}$. A cut-vertex is a vertex whose deletion increases the number of connected components.

A matching in a graph G is a set of edges $\left\{i_{1}, j_{1}\right\}, \ldots,\left\{i_{k}, j_{k}\right\}$ such that all the vertices are distinct. A perfect matching in a graph G is a matching that includes all vertices of G. A maximum matching in G is a matching with the maximum number of edges among all matchings in G. The matching number, denoted match (G), is the number of edges in a maximum matching.

An important matrix function in the study of matchings is the pfaffian (see [12] for more details). Let $L=\left\{\left\{i_{1}, i_{2}\right\}, \ldots,\left\{i_{n-1}, i_{n}\right\}\right\}$ be a perfect matching in G, ordered so that $i_{1}<i_{2}, i_{3}<i_{4}, \ldots, i_{n-1}<i_{n}$ and $i_{1}<i_{3}<\cdots<i_{n-1}$. Let π_{L} be the permutation of $\{1, \ldots, n\}$ that maps k to i_{k}. For $A \in \mathcal{S}^{-}(F, G)$, the weight of L with respect to A is

$$
\mathrm{wt}_{A}(L)=\operatorname{sgn}\left(\pi_{L}\right) a_{i_{1}, i_{2}} \cdots a_{i_{n-1}, i_{n}},
$$

where $\operatorname{sgn}(\pi)$ is the sign of the permutation π. Let \mathcal{F} be the set of all perfect matchings of G. The pfaffian of A is

$$
\operatorname{pf}(A)=\sum_{L \in \mathcal{F}} \mathrm{wt}_{A}(L)
$$

where the sum over the empty set is 0 .

1.2. Known results about matchings and skew-symmetric matrices

This subsection contains results that will be used in the next section; throughout F denotes a field (which, as we have already mandated, does not have characteristic 2). We note that Theorem 1.1 and Corollary 1.5 do extend to characteristic 2. However, Corollary 1.2 , and Lemma 1.3 do not, as the identity matrix of odd order is a skew-symmetric matrix over the field of 2 elements has odd rank, determinant 1 and pfaffian 0 .

The proof of the next result is similar to the proof for the symmetric case (cf. [10, Theorem 8.9.1]).
Theorem 1.1. Let $A \in F^{n \times n}$ be skew-symmetric. Then $\operatorname{rank} A=\max \{|S|: \operatorname{det}(A[S]) \neq 0\}$.
Corollary 1.2. The rank of any skew-symmetric matrix over F is even.
The proof of the next result is similar to the proof for the symmetric case (cf. [10, Lemma 8.9.3]).
Lemma 1.3. For a nonzero skew-symmetric matrix $A \in F^{n \times n}, \operatorname{rank} A \leqslant 2 k$ if and only if there exist $\mathbf{x}_{1}, \ldots \mathbf{x}_{\mathbf{k}}, \mathbf{y}_{\mathbf{1}}, \ldots, \mathbf{y}_{\mathbf{k}} \in F^{n}$ such that $A=\sum_{i=1}^{k}\left(\mathbf{x}_{\mathbf{i}} \mathbf{y}_{\mathbf{i}}^{T}-\mathbf{y}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}}^{T}\right)$.

Theorem 1.4 [6, Theorem 9.5.2]. If $A \in F^{n \times n}$ is skew-symmetric, then $\operatorname{det} A=(\operatorname{pf}(A))^{2}$.
Corollary 1.5. Let $A \in F^{n \times n}$ be skew-symmetric. If $\mathcal{G}(A)$ has a unique perfect matching then $\operatorname{rank} A=n$.

Graphs with unique perfect matching have been characterized in [12, Corollary 5.3.12].
The statements in Observation 1.6 follow immediately from the preceding results or are established by applying the same methods used for the analogous results in the symmetric minimum rank problem.

Observation 1.6

1. $\mathrm{mr}^{-}(F, G)$ and $\mathrm{MR}^{-}(F, G)$ are always even.
2. If G has a unique perfect matching then $\mathrm{mr}^{-}(F, G)=|G|$.
3. If H is an induced subgraph of G, then $\mathrm{mr}^{-}(F, H) \leqslant \mathrm{mr}^{-}(F, G)$.
4. $\mathrm{mr}^{-}(F, G)=0$ if and only if G has no edges.
5. If the connected components of G are G_{1}, \ldots, G_{t}, then

$$
\mathrm{mr}^{-}(F, G)=\sum_{i=1}^{t} \mathrm{mr}^{-}\left(F, G_{i}\right)
$$

Corollary 1.7. Let G be a graph, and let F be a field. If G has a matching with k edges and this is the only perfect matching for the subgraph induced by the $2 k$ vertices in the matching, then $\mathrm{mr}^{-}(F, G) \geqslant 2$.

2. Results derived from the properties of skew-symmetric matrices

In this section we use properties specific to skew-symmetric matrices to obtain results about minimum skew rank. All of the results in this section are valid over any infinite field. Most are valid for finite fields, but some technical results about polynomials over finite fields are needed for the proofs; these are included in the Appendix (Section 5).

Theorem 2.1. Let G be a connected graph with $|G| \geqslant 2$ and let F be an infinite field. Then the following are equivalent:

1. $\mathrm{mr}^{-}(F, G)=2$,
2. $G=K_{n_{1}, n_{2}, \ldots, n_{t}}$ for some $t \geqslant 2, n_{i} \geqslant 1, i=1, \ldots, t$,
3. G does not contain P_{4} or the paw (see Fig. 1) as an induced subgraph.

Without the assumption that G is connected, $\mathrm{mr}^{-}(F, G)=2$ if and only if G is a union of one $K_{n_{1}, n_{2}, \ldots, n_{t}}$ and possibly some isolated vertices.

Proof. $(2 \Longrightarrow 1)$ Let $G=K_{n_{1}, n_{2}, \ldots, n_{t}}=\left(V_{1} \dot{\cup} \ldots \dot{U} V_{t}, E\right)$ where the sets $V_{k}(k=1, \ldots, t)$ are the partite sets, and let $n=\Sigma_{i=1}^{t} n_{i}$. Let $\alpha_{1}, \ldots, \alpha_{t}$ be distinct elements of F. Construct $\boldsymbol{x}, \boldsymbol{y} \in F^{n}$ such that $x_{i}=1$ for all i and $y_{j}=\alpha_{k}$ for each vertex j in V_{k}. Observe that by construction the matrix $A=\mathbf{x y}^{T}-\mathbf{y x}{ }^{T}$ is a skew-symmetric matrix with rank $A=2$. If vertex i is in partite set V_{k} and vertex j is in partite set V_{ℓ}, then $a_{i j}=\alpha_{\ell}-\alpha_{k}$, and thus $a_{i j}=0$ if and only if vertices i and j are in the same partite set. It follows that $\mathcal{G}(A)=K_{n_{1}, n_{2}, \ldots, n_{t}}$. Since $A \in \mathcal{S}^{-}(F, G)$ and $\operatorname{rank} A=2$, we conclude that

Fig. 1. Forbidden induced subgraphs for $\mathrm{mr}^{-}(F, G) \leqslant 2$.

Fig. 2. A path in the induced subgraph H that contains $K_{2} \dot{U} K_{1}$.
$\mathrm{mr}^{-}(F, G) \leqslant 2$. Since $t \geqslant 2$, each matrix in $\mathcal{S}^{-}(F, G)$ has an invertible 2×2 principal submatrix, so $\mathrm{mr}^{-}(F, G)=2$.
$(1 \Longrightarrow 3)$ This follows from Observation 1.6 since P_{4} and the paw each have a unique perfect matching.
$(3 \Longrightarrow 2)$ Suppose that G is not a complete multipartite graph. Then $|G| \geqslant 4$ and G contains $K_{2} \dot{\cup} K_{1}$ as an induced subgraph. Let H be the smallest connected induced subgraph of G that contains $K_{2} \dot{\cup} K_{1}$ as an induced subgraph. Note that since H is connected, but has the induced subgraph $K_{2} \dot{\cup} K_{1}$, we know that $|H| \geqslant 4$.

We show that if $|H|>4$, then H is not the smallest such graph. Label the vertices of an induced $K_{2} \dot{\cup} K_{1}$ by x, y, z with x and y adjacent. Since H is connected, there is a path from one of x or y to z that does not include the other ($\operatorname{say} x$). Label the additional vertices on this path w_{1}, \ldots, w_{k}. See Fig. 2 for the labeling, but note that this subgraph need not be an induced subgraph of G. Suppose $k>1$. By the minimality of H, z is not adjacent to w_{1}. Then the subgraph induced by $y, w_{1}, \ldots, w_{k}, z$ is a smaller connected induced subgraph containing an induced $K_{2} \dot{\cup} K_{1}$.

So $k=1, H$ contains the edges $\{x, y\},\left\{y, w_{1}\right\},\left\{w_{1}, z\right\}$ and H does not contain the edges $\{x, z\}$ or $\{y, z\}$. If $\left\{x, w_{1}\right\} \in E_{H}$, then H is the paw; if not $H=P_{4}$. Therefore if $G \neq K_{n_{1}, n_{2}, \ldots, n_{t}}$, then G must contain P_{4} or the paw as an induced subgraph.

The result for disconnected graphs then follows from Observation 1.6.5.
Note that $K_{n}=K_{1,1, \ldots, 1}$ and $G=K_{n_{1}, \ldots, n_{t}}$ if and only if $\bar{G}=K_{n_{1}} \dot{\cup} \ldots \dot{\cup} K_{n_{t}}$.
Remark 2.2. For a connected graph G, the equivalence that $G=K_{n_{1}, n_{2}, \ldots, n_{t}}$ for some $t \geqslant 2, n_{i} \geqslant 1, i=$ $1, \ldots, t$ if and only if G does not contain P_{4} or the paw has been established.

The proof that $(2) \Rightarrow(1)$ is clearly valid for any field with at least t elements, and it can be modified to work in a field with $t-1$ elements. The skew minimum rank $K_{n_{1}, \ldots, n_{t}}$ is larger than 2 for a finite field with fewer than $t-1$ elements, as the next example shows computationally for a specific field and graph, and Corollary 2.4 below shows more generally.

Example 2.3. We claim that $\mathrm{mr}^{-}\left(\mathbb{Z}_{3}, K_{5}\right)=4$. To see this, first note that the circulant matrix with first row $(0,1,1,-1,-1)$ is skew-symmetric and singular, and hence $\mathrm{mr}^{-}\left(\mathbb{Z}_{3}, K_{5}\right) \leqslant 4$. Second, note that if among any five vectors in \mathbb{Z}_{3}^{2}, there is a pair that are linearly dependent. Hence, each matrix of the form $x y^{T}-y x^{T}$ where $x, y \in \mathbb{Z}_{3}^{5}$ has an off-diagonal 0 . We conclude that $\mathrm{mr}^{-}\left(\mathbb{Z}_{3}, K_{5}\right)>2$. The result follows by noting that the rank of a skew-symmetric matrix is even.

Corollary 2.4. In a finite field F of order q, the following are equivalent.

1. G is connected and $\mathrm{mr}^{-}(F, G)=2$.
2. $G=K_{n_{1}, n_{2}, \ldots, n_{t}}$, where $2 \leqslant t \leqslant q+1$.

Proof. $(2 \Longrightarrow 1)$ Assume that $G=K_{n_{1}, n_{2}, \ldots, n_{t}}$ with $2 \leqslant t \leqslant q+1$. In order to construct a matrix of rank $2 \operatorname{in} \mathcal{S}^{-}(F, G)$, we first notice that $\left(\mathbf{x y}^{T}-\mathbf{y x}^{T}\right)_{i j}=x_{i} y_{j}-y_{i} x_{j}$ is nonzero if and only if the nonzero vectors $\left[x_{i}, y_{i}\right]$ and $\left[x_{j}, y_{j}\right]$ are not parallel in F^{2}. In a field of order q, we know that there are $q+1$ unique parallel classes of nonzero vectors in F^{2}. Let the elements of F be $0,1, f_{3}, f_{4}, \ldots, f_{q}$. Take the vectors $[0,1],[1,0],[1,1],\left[1, f_{3}\right], \ldots,\left[1, f_{q}\right]$ as representatives of these parallel classes. For $i=1, \ldots, n$, define $\left[x_{i}, y_{i}\right]$ to be $[0,1]$ if $i \in n_{1},[1,0]$ if $i \in n_{2}$, and $\left[1, f_{j}\right]$ if $i \in n_{j}$ and $j \geqslant 3$. The vectors $\mathbf{x}=\left[x_{i}\right]$ and $\mathbf{y}=\left[y_{i}\right]$ satisfy $\mathbf{x y}^{T}-\mathbf{y x}^{T} \in \mathcal{S}^{-}(F, G)$, so $\mathrm{mr}^{-}(F, G)=2$.
$(1 \Longrightarrow 2)$ Assume that G is connected and $\mathrm{mr}^{-}(F, G)=2$. Then we can find $\mathbf{x}, \mathbf{y} \in F^{n}$ so that $\mathbf{x y}^{T}-\mathbf{y x}^{T} \in \mathcal{S}^{-}(F, G)$. As above, $\left(\mathbf{x y}^{T}-\mathbf{y x}^{T}\right)_{i j}=x_{i} y_{j}-y_{i} x_{j}=0$ if and only if vectors $\left[x_{i}, y_{i}\right]$ and $\left[x_{j}, y_{j}\right]$ are nonzero and parallel or one of them is the zero vector. Note that $\left[x_{i}, y_{i}\right] \neq[0,0]$ for all i because otherwise G would be disconnected. Partition the vertices into sets $V_{1}, V_{2}, \ldots, V_{t}$, where vertices i and j are in the same set if and only if the vectors $\left[x_{i}, y_{i}\right]$ and $\left[x_{j}, y_{j}\right]$ are parallel. Since there are only $q+1$ parallel equivalence classes of nonzero vectors in F^{2}, we have $2 \leqslant t \leqslant q+1$. Thus G will be a complete multipartite graph with partite sets $V_{1}, V_{2}, \ldots V_{t}$ of orders $n_{1}, n_{2}, \ldots, n_{t}$, respectively, with $2 \leqslant t \leqslant q+1$.

Theorem 2.5. For a graph G and a field $F, \operatorname{MR}^{-}(F, G)=2$ match (G), and every even rank between $\mathrm{mr}^{-}(F, G)$ and $\mathrm{MR}^{-}(F, G)$ is realized by a matrix in $\mathcal{S}^{-}(F, G)$.

Proof. Let $A \in \mathcal{S}^{-}(F, G),|G|=n$, and match $(G)=m$. Then for any $\ell \times \ell$ principal submatrix B of A, $B \in \mathcal{S}^{-}(H)$ for an induced subgraph H of G. If $\ell>2 m$, then H has no perfect matching. Hence we have $\operatorname{pf}(B)=0$, which implies that det $B=0$. This holds for all $\ell>2 m$, whence rank $A \leqslant 2 m$ by Theorem 1.1. Thus $\mathrm{MR}^{-}(F, G) \leqslant 2 \operatorname{match}(G)$.

Renumber the vertices in the graph G (if necessary) such that the independent edges in a maximum matching are $\{\{1,2\},\{3,4\}, \ldots,\{2 m-1,2 m\}\}$. If X_{G} is the formal skew adjacency matrix of G, then $\operatorname{pf}\left(X_{G}[\{1, \ldots, 2 m\}]\right)$ is not the zero polynomial. Construct the matrix $B=\left[b_{i j}\right]$ over the field F by choosing values $b_{i j} \in F$ for the variables $x_{i j}$ that make $\operatorname{pf}(B[\{1, \ldots, 2 m\}]) \neq 0$. Since F has at least 3 elements, Proposition 5.4 in the Appendix shows that we can make such a choice. Thus $\operatorname{det}(B[\{1, \ldots, 2 m\}]) \neq 0$, and we can complete $B \in \mathcal{S}^{-}(F, G)$ by choosing any nonzero values for the remaining nonzero entries. Since $B \in \mathcal{S}^{-}(F, G)$ and rank $B \geqslant 2 m, \operatorname{MR}^{-}(F, G)=2 m$.

We can go from any matrix $B \in \mathcal{S}^{-}(F, G)$ to any other matrix $A \in \mathcal{S}^{-}(F, G)$ by adding (one at a time) the matrix $S_{i j}, j>i$ such that $S_{i j}[\{i, j\}]=\left[\begin{array}{cc}0 & a_{i j}-b_{i j} \\ b_{i j}-a_{i j} & 0\end{array}\right]$ and all other entries are zero. Since rank $S_{i j}=2$, we must pass through every even rank in the transition from a maximum rank matrix B to a minimum rank matrix A.

Theorem 2.6. For a graph G and a field F that has at least 5 elements, $\operatorname{mr}^{-}(F, G)=|G|=\operatorname{MR}^{-}(F, G)$ if and only if G has a unique perfect matching.

Proof. If G has a unique perfect matching, then as noted in Observation 1.6, for any field $F, \mathrm{mr}^{-}(F, G)=$ $|G|$.

Conversely, suppose $\mathrm{mr}^{-}(F, G)=|G|$. Clearly, this implies that $\mathrm{mr}^{-}(F, G)=\mathrm{MR}^{-}(F, G)$. Since every $A \in \mathcal{S}^{-}(F, G)$ has full rank, $\operatorname{det} A \neq 0$ for all $A \in \mathcal{S}^{-}(F, G)$. Applying Theorem 1.4 we determine that $\operatorname{pf}(A) \neq 0$ for $A \in \mathcal{S}^{-}(F, G)$. Since the nonzero terms of the pfaffian correspond to perfect matchings of G, G has at least one perfect matching.

It remains to show that the perfect matching is unique. Suppose that G contains at least two perfect matchings. If so, we show that there exists some $B=\left[b_{i j}\right] \in \mathcal{S}^{-}(F, G)$ with $\operatorname{pf}(B)=0$. Let X_{G} be the formal skew adjacency matrix of G, and let the $\operatorname{pf}\left(X_{G}\right)=p\left(y_{1}, \ldots, y_{k}\right)$, where y_{i} are the entries of X_{G} that appear in the pfaffian. Since there are at least two nonzero terms, by Proposition 5.6 in the Appendix, we can choose nonzero values b_{1}, \ldots, b_{k} for y_{1}, \ldots, y_{k} so that $p\left(b_{1}, \ldots b_{k}\right)=0$. By setting the entry corresponding to y_{j} equal to $b_{j}, j=1, \ldots, k$, and all other nonzero entries to any nonzero value, we can find a $B \in \mathcal{S}^{-}(F, G)$ having $\operatorname{pf}(B)=0$, which is a contradiction.

Theorem 2.7. Let T be a tree and let F be a field. Then $\mathrm{mr}^{-}(F, T)=2$ match $(T)=\operatorname{MR}^{-}(F, T)$.
Proof. By Theorem $2.5, \mathrm{mr}^{-}(F, T) \leqslant 2$ match (T). Let $\left\{v_{1}, \ldots, v_{k}\right\}$ be the vertices in a maximum matching of a graph G. The induced subgraph $H=G\left[\left\{v_{1}, v_{2}, \ldots v_{k}\right\}\right]$, is a forest that has a perfect matching. This perfect matching is unique, because if we choose any leaf of H, it is incident to only one edge, so it must be matched with its only neighbor. Excluding these two vertices, we are left with a forest which

Fig. 3. The Petersen graph P.
still has a perfect matching and still has a leaf. We continue this procedure until each vertex in H is matched. Thus $\mathrm{mr}^{-}(F, T) \geqslant 2$ match (T).

It is straightforward to find a maximum matching of a tree. Start with an empty edge set M, an empty vertex set W, and the tree (note that as vertices are deleted, the tree may become a forest). At the k th step, choose a vertex v_{k} of degree 1 , denote its unique neighbor by w_{k}, remove w_{k} (and its incident edges) from the forest, add edge $\left\{v_{k}, w_{k}\right\}$ to the matching M and add w_{k} to W. Continue with this procedure until all edges are gone. Since every edge has been removed by being incident to a w_{k}, W is a vertex cover, i.e. a subset of vertices that contains at least one endpoint of every edge. Since $\operatorname{deg} v_{k}=1$, when w_{k} is removed, v_{k} has no more edges, so M is a matching. For any graph G and vertex cover U, match $(G) \leqslant|U|[13$, p. 112]. Since $|M|=|W|, M$ is a maximum matching.

Observation 2.8. For a tree T, match (T) can be determined by starting with a vertex of degree 1 , matching it, removing both matched vertices from the graph, and continuing in this manner.

In the proof of Theorem 2.7 it was shown that a tree T has an induced subgraph H such that $\mathrm{mr}^{-}(F, T)=|H|=\mathrm{mr}^{-}(F, H)$ (and H has a unique perfect matching). This need not be true in general, as the next example shows.

Example 2.9. Let P be the Petersen graph (shown in Fig. 3).
Any matrix $A \in \mathcal{S}^{-}(F, P)$ can be put in the form

$$
A=\left[\begin{array}{cccccccccc}
0 & a & 0 & 0 & b & 1 & 0 & 0 & 0 & 0 \\
-a & 0 & c & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & -c & 0 & d & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & -d & 0 & e & 0 & 0 & 0 & 1 & 0 \\
-b & 0 & 0 & -e & 0 & 0 & 0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & g & h & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & s & q \\
0 & 0 & -1 & 0 & 0 & -g & 0 & 0 & 0 & r \\
0 & 0 & 0 & -1 & 0 & -h & -s & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & -q & -r & 0 & 0
\end{array}\right]
$$

by use of a diagonal congruence. It is straightforward to verify that every induced subgraph of order 8 has two perfect matchings. However, $\mathrm{mr}^{-}(F, P)=8$, because any choice of values of the variables makes at least one order 8 principal submatrix nonsingular. Specifically,

$$
\begin{align*}
& \operatorname{det}(A[\{1,2,3,4,5,6,7,8\}])=(e-b d g)^{2} \tag{1}\\
& \operatorname{det}(A[\{1,2,3,4,5,6,9,10\}])=(c-a d h)^{2} \tag{2}\\
& \operatorname{det}(A[\{1,2,3,4,5,6,8,9\}])=(b c g+a e h)^{2} \tag{3}
\end{align*}
$$

Substituting $e=b d g$ and $c=a d h$ into Eq. (3) results in

$$
\operatorname{det}(A[\{1,2,3,4,5,6,8,9\}])=4 a^{2} b^{2} d^{2} g^{2} h^{2} \neq 0
$$

3. Results derived using minimum rank techniques

In this section, we examine connections between the classical minimum rank (using symmetric matrices) and minimum skew rank. Minimum rank and minimum skew rank are noncomparable, but minimum Hermitian rank is a lower bound on minimum skew rank (over the real numbers).

Example 3.1. The minimum skew rank of a graph can be greater than the minimum rank of the graph: $\operatorname{mr}\left(F, K_{2}\right)=1<2=\mathrm{mr}^{-}\left(F, K_{2}\right)$. The minimum skew rank can also be less than the minimum rank: $\mathrm{mr}^{-}\left(F, K_{3,3,3}\right)=2<3=\operatorname{mr}\left(F, K_{3,3,3}\right)[5]$ (as always, char $F \neq 2$).

Proposition 3.2. $\operatorname{hmr}(G) \leqslant \operatorname{mr}^{-}(\mathbb{R}, G)$.
Proof. If $A \in \mathcal{S}^{-}(\mathbb{R}, G)$ then $i A \in \mathcal{H}(G)$ and $\operatorname{rank}(i A)=\operatorname{rank} A$, so $\operatorname{hmr}(G) \leqslant \operatorname{mr}^{-}(\mathbb{R}, G)$.
Proposition 3.3. Let $G=\cup_{i=1}^{h} G_{i}$. If F is an infinite field or if G_{i} and G_{j} have no edges in common for all $i \neq j$, then $\mathrm{mr}^{-}(F, G) \leqslant \sum_{i=1}^{h} \mathrm{mr}^{-}\left(F, G_{i}\right)$.

Proof. A skew-symmetric matrix $A \in F^{n \times n}$ of rank at most $\sum_{i=1}^{h} \operatorname{mr}^{-}\left(F, G_{i}\right)$ having $\mathcal{G}(A)=G$ can be constructed by choosing (for each $i=1, \ldots, h)$ a matrix A_{i} that realizes $\mathrm{mr}^{-}\left(F, G_{i}\right)$, embedding A_{i} in a matrix \widetilde{A}_{i} of size $|G|$, choosing $a_{i} \in F$ such that no cancellation of nonzero entries occurs, and letting $A=\sum_{i=1}^{h} a_{i} \widetilde{A}_{i}$.

3.1. Zero forcing number

An upper bound for $\mathrm{M}(F, G)$, which yields an associated lower bound for $\operatorname{mr}(F, G)$, is the zero forcing number $Z(G)$ introduced in [1]. The zero forcing number is a useful tool for determining the minimum rank of structured families of graphs and small graphs, and is motivated by simple observations about null vectors of matrices. In this subsection we extend these ideas to minimum skew rank by revising the color change rule to better exploit properties of skew-symmetric matrices, thereby creating a new zero forcing parameter.

Definition 3.4. Let $G=(V, E)$ be a graph.

- A subset $Z \subset V$ defines an initial coloring by coloring all vertices in Z black and all the vertices not in Z white.
- The skew color change rule says: If a vertex $v \in V$ has exactly one white neighbor, w, change the color of w to black. In this case we say that v forces w.
- The skew derived set of an initial coloring Z is the result of applying the skew color change rule until no more changes are possible.
- A skew zero forcing set is a subset $Z \subseteq V$ such that the skew derived set of Z is V.
- The skew zero forcing number, $Z^{-}(G)$, is the minimum size of a skew zero forcing set.

We note that the skew color change rule differs from the conventional color change rule in that it does not require the vertex $v \in V$ with exactly one white neighbor to be black.

If $\mathbf{x}=\left[x_{k}\right]$ is a nonzero null vector of the skew-symmetric matrix A whose graph is G, and i is a vertex of G, then either $x_{j}=0$ for each neighbor j of i or x_{j} is nonzero for at least two neighbors j of i. If A is a skew-symmetric matrix of nullity k, then for every set Z of cardinality $k-1$, there is a nonzero null vector \mathbf{x} of A with $x_{j}=0$ for all $j \in Z$. Thus if Z is a skew zero forcing set of G, then for each matrix in $\mathcal{S}^{-}(F, G)$ the only null vector with 0 's in positions indexed by Z is the zero vector. These ideas provide the proof of the next proposition, just as analogous statements about symmetric matrices provide the proof of Proposition 2.4 in [1].

Proposition 3.5. For any graph G and any field $F, \mathrm{M}^{-}(F, G) \leqslant \mathrm{Z}^{-}(G)$ and $\mathrm{mr}^{-}(F, G) \geqslant|G|-\mathrm{Z}^{-}(G)$.
The next example illustrates a skew zero forcing set and computation of the skew zero forcing number.

Example 3.6. Let H be the paw (see Fig. 1) with the vertices numbered as follows: the degree one vertex is number 1 , the degree three vertex is number 2 , and the two degree two vertices are numbers 3 and 4 . With this numbering, 1 can force 2 , then 3 can force 4 and 4 can force 3 , and finally 2 can force 1. Thus the empty set is a zero forcing set, so $\mathrm{Z}^{-}(H)=0$.

Proposition 3.7. Let G be a graph and let F be a field. Then $Z^{-}(G) \leqslant Z(G)$. If $\operatorname{mr}(F, G)=|G|-Z(G)$, then $\mathrm{mr}^{-}(F, G) \geqslant \operatorname{mr}(F, G)$.

Proof. Let Z be an optimal zero forcing set for the graph G, i.e, $|Z|=Z(G)$. The set Z is also a skew zero forcing set for G, although Z may not be an optimal skew zero forcing set. Thus $Z^{-}(G) \leqslant|Z|=Z(G)$. Therefore, if $\operatorname{mr}(F, G)=|G|-Z(G)$, it follows by Proposition 3.5 that $\operatorname{mr}^{-}(F, G) \geqslant$ $|G|-Z^{-}(G) \geqslant|G|-\mathrm{Z}(G)=\operatorname{mr}(F, G)$.

See [1] for a list of graphs G for which it is known that $\operatorname{mr}(\mathbb{R}, G)=|G|-Z(G)$. The zero forcing number $Z(G)$ of a graph G is never zero, because the color change rule requires a vertex to be black to force another vertex, whereas (as we saw in Example 3.6), it is possible to have $\mathrm{Z}^{-}(G)=0$.

The Cartesian product of two graphs G and H, denoted $G \square H$, is the graph with vertex set $V_{G} \times V_{H}$ such that (u, v) is adjacent to (u^{\prime}, v^{\prime}) if and only if (1) $u=u^{\prime}$ and $\left\{v, v^{\prime}\right\} \in E_{H}$, or (2) $v=v^{\prime}$ and $\left\{u, u^{\prime}\right\} \in E_{G}$.

Corollary 3.8. For any field F and any graph $G, \mathrm{mr}^{-}\left(F, G \square P_{t}\right) \geqslant(t-1)|G|$. If t is even and $|G|$ is odd, then $\mathrm{mr}^{-}\left(F, G \square P_{t}\right) \geqslant(t-1)|G|+1$.

Proof. The set of vertices in a pendant copy of G is a zero forcing set, and minimum skew rank must be even.

3.2. Cut-vertex reduction

The rank-spread of a graph G was defined in [4] and used to establish cut-vertex reduction, whereby the computation of the minimum rank of a graph with a cut-vertex could be reduced to computing the minimum rank of certain proper subgraphs. In this subsection we extend these ideas to minimum skew rank.

The skew-rank-spread of G at vertex v over a field F is defined to be

$$
\mathrm{r}_{v}^{-}(F, G)=\mathrm{mr}^{-}(F, G)-\mathrm{mr}^{-}(F, G-v) .
$$

Clearly for any vertex v of $G, \mathrm{r}_{v}^{-}(F, G)$ is either 0 or 2 .

Lemma 3.9. Let $G=\left(V=\left\{v_{1}, \ldots, v_{n}, v\right\}, E\right)$ be a graph and F a field. Then $r_{v}^{-}(F, G)=0$ if and only if there exist an optimal matrix $A^{\prime} \in F^{n \times n}$ for $G-v$ and a vector $\mathbf{b}=\left[b_{i}\right] \in$ range A^{\prime} such that $b_{i} \neq 0$ if and only if v is adjacent to v_{i}, and $\mathrm{r}_{v}^{-}(F, G)=2$ otherwise.

Proof. Suppose there exists an optimal matrix $A^{\prime} \in F^{n \times n}$ for $G-v$ and a vector $\mathbf{b}=\left[b_{i}\right] \in$ range A^{\prime} such that $b_{i} \neq 0$ if and only if v is adjacent to v_{i}. Then

$$
A=\left[\begin{array}{cc}
A^{\prime} & \mathbf{b} \tag{4}\\
-\mathbf{b}^{T} & 0
\end{array}\right] \in \mathcal{S}^{-}(F, G) .
$$

Since $\mathbf{b} \in$ range A^{\prime}, there exists $\mathbf{x} \in F^{n}$ such that $\mathbf{b}=A^{\prime} \mathbf{x}$. Since $\mathbf{x}^{T} A^{\prime} \mathbf{x}=\left(\mathbf{x}^{T} A^{\prime} \mathbf{x}\right)^{T}=-\mathbf{x}^{T} A^{\prime} \mathbf{x}, \mathbf{x}^{T} A^{\prime} \mathbf{x}=$ 0 and $\operatorname{rank} A=\operatorname{rank} A^{\prime}$. Thus $\mathrm{r}_{v}^{-}(F, G)=0$. Conversely, if $r_{v}^{-}(G)=0$, any optimal matrix A will have the form (4) with rank $A^{\prime}=\mathrm{mr}^{-}(F, G-v)$ and $\mathbf{b} \in \operatorname{range} A^{\prime}$. Since $0 \leqslant r_{v}^{-}(F, G) \leqslant 2$ and the rank of a skew matrix is even, $\mathrm{r}_{v}^{-}(F, G)=2$ if and only if $\mathrm{r}_{v}^{-}(F, G) \neq 0$.

Theorem 3.10 [8]. Let v be a cut-vertex of G. For $i=1, \ldots, h$, let $W_{i} \subseteq V(G)$ be the vertices of the ith component of $G-v$ and let G_{i} be the subgraph induced by $\{v\} \cup W_{i}$. Then over a field F,

$$
\begin{aligned}
r_{v}^{-}(F, G) & =\max _{i=1, \ldots, h} \mathrm{r}_{v}^{-}\left(F, G_{i}\right), \text { and } \\
\operatorname{mr}^{-}(F, G) & = \begin{cases}\sum_{1}^{h} \operatorname{mr}^{-}\left(F, G_{i}-v\right) & \text { if } \mathrm{r}_{v}^{-}\left(F, G_{i}\right)=0 \text { for all } i=1, \ldots, h \\
\sum_{1}^{h} \operatorname{mr}^{-}\left(F, G_{i}-v\right)+2 & \text { if } \mathrm{r}_{v}^{-}\left(F, G_{i}\right)=2 \text { for some } i, 1 \leqslant i \leqslant h\end{cases}
\end{aligned}
$$

Proof. In both cases, $\sum_{1}^{h} \mathrm{mr}^{-}\left(F, G_{i}-v\right)=\mathrm{mr}^{-}(F, G-v) \leqslant \mathrm{mr}^{-}(F, G)$. First assume that $\mathrm{r}_{v}^{-}\left(F, G_{i}\right)=$ 0 for all $i=1, \ldots, h$. Then $\sum_{1}^{h} \mathrm{mr}^{-}\left(F, G_{i}-v\right)=\sum_{1}^{h} \mathrm{mr}^{-}\left(F, G_{i}\right)$. Since v is a cut-vertex, there are no overlapping edges, and by Proposition 3.3, $\mathrm{mr}^{-}(F, G) \leqslant \sum_{1}^{h} \mathrm{mr}^{-}\left(F, G_{i}\right)$. Thus $\mathrm{mr}^{-}(F, G)=$ $\sum_{1}^{h} \mathrm{mr}^{-}\left(F, G_{i}-v\right)$.

Now assume $\mathrm{r}_{v}^{-}\left(F, G_{k}\right)=2$ for some k. Then by Lemma 3.9, for every matrix $A^{(k)}$ that is optimal for $G_{k}-v$ and vector $\mathbf{b}^{(k)}$ having a nonzero pattern reflecting the adjacencies of v within $G_{k}, \mathbf{b}^{(k)} \notin$ range $A^{(k)}$. Thus for every matrix A^{\prime} that is optimal for $G-v$ and vector \mathbf{b} having a nonzero pattern reflecting the adjacencies of v within $G, \mathbf{b} \notin$ range A^{\prime} because A^{\prime} is block-diagonal. Thus by Lemma 3.9, $\mathrm{r}_{v}^{-}(F, G)=2$.

Proposition 3.11. If F is an infinite field, G^{\prime} is connected, $|G| \geqslant 2$, and $G=G^{\prime} \vee K_{1}$, then $\mathrm{mr}^{-}(F, G)=$ $\mathrm{mr}^{-}\left(F, G^{\prime}\right)$.

Proof. Let A^{\prime} be an optimal matrix for G^{\prime}, and let $V\left(K_{1}\right)=\{v\}$. Since every row of A^{\prime} has a nonzero entry, there exists $\mathbf{b} \in$ range A^{\prime} such that every entry of \mathbf{b} is nonzero. Then by Lemma 3.9, $\mathrm{r}_{v}^{-}(G)=0$.

4. Computation of minimum skew rank of selected graphs

In this section we apply the results in the preceding sections to determine the minimum skew rank of some additional families of graphs. The minimum (symmetric) rank of these graphs is known and listed in the AIM minimum rank graph catalog [2]. We begin by defining several families of graphs.

The wheel on n vertices, denoted by W_{n}, is constructed by adding a new vertex adjacent to all vertices of the cycle C_{n-1}. The sth hypercube, Q_{s}, is defined inductively by $Q_{1}=K_{2}$ and $Q_{s+1}=Q_{s} \square K_{2}$. Clearly $\left|Q_{s}\right|=2^{s}$. The m, k-pineapple (with $m \geqslant 3, k \geqslant 1$) is $P_{m, k}=K_{m} \cup K_{1, k}$ such that $K_{m} \cap K_{1, k}$ is the vertex of $K_{1, k}$ of degree $k ; P_{5,3}$ is shown in Fig. 4.

The sth half-graph, denoted H_{s}, is constructed from (disjoint) graphs K_{s} and $\overline{K_{s}}$, having vertices $u_{1}, \ldots, u_{s}, v_{s+1}, \ldots, v_{2 s}$, respectively, by adding all edges $\left\{u_{i}, v_{j}\right\}$ such that $i+j \leqslant 2 s+1$. Fig. 5 shows

Fig. 4. The pineapple $P_{5,3}$.

Fig. 5. The 3rd half-graph H_{3}.
H_{3}, with the vertices of the K_{3} being colored black and the vertices of the $\overline{K_{3}}$ colored grey. Note that half graph H_{s} is the graph on $2 s$ vertices with the largest number of edges among graphs G such that G has a unique perfect matching (in Fig. 5, the three heavy lines are the unique perfect matching of H_{3}) [12, Corollary 5.3.14].

The necklace with s diamonds, denoted N_{s}, is a 3-regular graph on $4 s$ vertices that can be constructed from a $3 s$-cycle by appending s extra vertices, with each "extra" vertex adjacent to three sequential cycle vertices; N_{3} is shown in Fig. 6 (the coloring of the vertices is explained in the proof of Proposition 4.4).

The corona of G with H, denoted $G \circ H$, is the graph of order $|G||H|+|G|$ obtained by taking one copy of G and $|G|$ copies of H, and joining all the vertices in the i th copy of H to the i th vertex of G.

For many of the graphs we discuss, the minimum skew rank is the same over all fields (of characteristic not 2), but as we saw in Example 2.3, the minimum skew rank can differ for finite fields, and it seems plausible that like minimum (symmetric) rank, minimum skew rank can differ even over fields of characteristic zero, although we do not have an example of such a graph.

Proposition 4.1. Let F be a field.

1. $\operatorname{mr}^{-}\left(F, P_{n}\right)= \begin{cases}n & \text { if } n \text { is even, } \\ n-1 & \text { if } n \text { is odd. }\end{cases}$
2. $\mathrm{mr}^{-}\left(F, P_{m, k}\right) \geqslant 4(m \geqslant 3, k \geqslant 1)$.
3. $\mathrm{mr}^{-}\left(F, H_{s}\right)=2 s=\left|H_{s}\right|$.
4. $\mathrm{mr}^{-}\left(F, G \circ K_{1}\right)=2|G|=\left|G \circ K_{1}\right|$.

Proof

1. This is an immediate consequence of Theorem 2.7.
2. $P_{m, k}=K_{m} \cup K_{1, k}$, so by Proposition 3.3, $\mathrm{mr}^{-}\left(F, P_{m, k}\right) \leqslant \mathrm{mr}^{-}\left(F, K_{m}\right)+\mathrm{mr}^{-}\left(F, K_{1, k}\right)=4$. Since $P_{m, k}$ contains the paw as an induced subgraph, $\mathrm{mr}^{-}\left(P_{m, k}\right) \geqslant 4$.
3. H_{S} has a unique perfect matching, so Observation 1.6 applies.
4. $G \circ K_{1}$ has a unique perfect matching, so again Observation 1.6 applies.

Proposition 4.2. Over any field $F, \mathrm{mr}^{-}\left(F, C_{n}\right)= \begin{cases}n-1 & \text { if } n \text { is odd, } \\ n-2 & \text { if } n \text { is even. }\end{cases}$

Proof. Note that C_{n} has an induced P_{n-1}, so $\mathrm{mr}^{-}\left(F, C_{n}\right)$ is at least the stated rank. Define $A_{n}=\left[a_{i j}\right] \in$ $\mathcal{S}^{-}\left(F, C_{n}\right)$ by $a_{i, i+1}=1, a_{i+1, i}=-1, i=1, \ldots, n-1, a_{n, 1}=1, a_{1, n}=-1$ and all other entries are

Fig. 6. The necklace N_{3}.
zero. Since $[1,1, \ldots, 1,1]^{T} \in \operatorname{ker} A$, and if n is even, $[1,-1, \ldots, 1,-1]^{T} \in \operatorname{ker} A$, $\operatorname{rank} A$ realizes the stated minimum rank.

Since $W_{n}=C_{n-1} \vee K_{1}$, by Proposition 3.11 we have the following corollary.
Corollary 4.3. Over an infinite field $F, \operatorname{mr}^{-}\left(F, W_{n}\right)= \begin{cases}n-2 & \text { if } n \text { is even, } \\ n-3 & \text { if } n \text { is odd. }\end{cases}$

Proposition 4.4. Over any field F with at least five elements, $\mathrm{mr}^{-}\left(F, N_{s}\right)=4 s-2$.
Proof. Since N_{s} has $4 s$ vertices and more than one perfect matching (because it contains a $4 s$-cycle), by Theorem 2.6, $\mathrm{mr}^{-}\left(N_{s}\right) \leqslant 4 s-2$. The deletion of two vertices from the $3 s$-cycle that are the ends of consecutive diamonds leaves an induced subgraph with a unique perfect matching (in Fig. 6, if the two grey vertices are deleted, then the heavy edges are the unique perfect matching), so $\mathrm{mr}^{-}\left(N_{s}\right) \geqslant 4 s-2$.

Proposition 4.5. Over any field F, for $s \geqslant 2, \mathrm{mr}^{-}\left(F, C_{t} \circ K_{s}\right)= \begin{cases}3 t-1 & \text { if } t \text { is odd, } \\ 3 t-2 & \text { if } t \text { it even. }\end{cases}$
Proof. Since $C_{t} \circ K_{s}$ can be covered by t copies of K_{s+1} and one C_{t}, intersecting only at cycle vertices, by Proposition 3.3, $\mathrm{mr}^{-}\left(F, C_{t} \circ K_{s}\right) \leqslant 2 t+(t-1$ if t is odd, or $t-2$ if t is even $)=3 t-1$ if t is odd, or $3 t-2$ if t is even.

Let Z be the set of vertices consisting of all but 2 of the vertices in each K_{s} and two consecutive vertices on the cycle. Note that $|Z|=t(s-2)+2$. Then Z is a zero forcing set for $C_{t} \circ K_{s}$, so $t s+t-$ $(t(s-2)+2)=3 t-2 \leqslant \mathrm{mr}^{-}\left(C_{t} \circ K_{s}\right)$. So if t is even, $\mathrm{mr}^{-}\left(C_{t} \circ K_{s}\right)=3 t-2$. If t is odd, $3 t-2$ is odd, so $\mathrm{mr}^{-}\left(C_{t} \circ K_{s}\right)=3 t-1$.

Proposition 4.6. Over a field F such that the characteristic of F is 0 , or $|F| \geqslant 6, \mathrm{mr}^{-}\left(F, Q_{s}\right)=2^{s-1}$ for $s \geqslant 2$.

Proof. Over any field, $\mathrm{mr}^{-}\left(F, Q_{s}\right) \geqslant 2^{s-1}$ by Corollary 3.8.
Let F be as prescribed. As noted in [7, Theorem 3.14], there are nonzero scalars α, β in F such that $\alpha^{2}+\beta^{2}=1$. We define the matrices L_{s} as follows:

$$
L_{1}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \quad \text { and } \quad L_{s}=\left[\begin{array}{cc}
\alpha L_{s-1} & \beta I \\
-\beta I & -\alpha L_{s-1}
\end{array}\right]
$$

Each $L_{s} \in F^{2^{s} \times 2^{s}}$ is a skew-symmetric matrix. We show by induction that $L_{s}^{2}=-I_{2^{s}}$. This is clearly true for $s=1$. Next, we assume $L_{s-1}^{2}=-I_{2^{s-1}}$, so

$$
L_{s}^{2}=\left[\begin{array}{cc}
\alpha L_{s-1} & \beta I \\
-\beta I & -\alpha L_{s-1}
\end{array}\right]^{2}=\left[\begin{array}{cc}
\alpha^{2} L_{s-1}^{2}-\beta^{2} I & 0 \\
0 & -\beta^{2} I+\alpha^{2} L_{s-1}^{2}
\end{array}\right]=\left[\begin{array}{cc}
-I & 0 \\
0 & -I
\end{array}\right] .
$$

Define

$$
H_{s}=\left[\begin{array}{cc}
L_{s-1} & I \\
-I & L_{s-1}
\end{array}\right] .
$$

Each $H_{s} \in F^{2^{s} \times 2^{s}}$ is a skew-symmetric matrix such that $H_{s} \in \mathcal{S}^{-}\left(Q_{s}\right)$. Since

$$
\left[\begin{array}{cc}
I & 0 \\
-L_{s-1} & I
\end{array}\right]\left[\begin{array}{cc}
L_{s-1} & I \\
-I & L_{s-1}
\end{array}\right]=\left[\begin{array}{cc}
L_{S-1} & I \\
0 & 0
\end{array}\right]
$$

rank $H_{s}=2^{s-1}$. Therefore, $\mathrm{mr}^{-}\left(F, Q_{s}\right) \leqslant 2^{s-1}$ for $s \geqslant 2$.

4.1. Minimum skew rank over the real numbers

In this subsection we apply techniques that are specific to the real numbers.
A standard technique for establishing the minimum (symmetric) rank of a Cartesian product $G \square H$ is to use a Kronecker product construction to produce a matrix in $\mathcal{S}(G \square H)$ (cf. [1]) (and use the zero forcing number to bound the minimum rank from below). We adapt this method to minimum skew rank.

If A is an $s \times s$ real matrix and B is a $t \times t$ real matrix, then $A \otimes B$ is the $s \times s$ block matrix whose $i j$ th block is the $t \times t$ matrix $a_{i j} B$. Note that $(A \otimes B)^{T}=A^{T} \otimes B^{T}$, so if one of A, B is symmetric and the other is skew-symmetric, $A \otimes B$ is skew-symmetric. Let G be a graph on s vertices, let H be a graph on t vertices, let $A \in \mathcal{S}^{-}(G)$ and $B \in \mathcal{S}^{-}(H)$. Then $A \otimes I_{t}+I_{S} \otimes B \in \mathcal{S}^{-}(G \square H)$ (cf. [10, 9.7]). If \mathbf{x} is an eigenvector of A for eigenvalue λ and \mathbf{y} is an eigenvector of B for eigenvalue μ, then $\mathbf{x} \otimes \mathbf{y}$ is an eigenvector of $A \otimes I_{t}+I_{s} \otimes B$ for eigenvalue $\lambda+\mu$.

Lemma 4.7. Let $A \in \mathbb{R}^{n \times n}$ be skew-symmetric and let the distinct eigenvalues of A be $\lambda_{1}, \ldots, \lambda_{k}$ with multiplicities m_{1}, \ldots, m_{k}. Then $\operatorname{rank}\left(A \otimes I_{n}-I_{n} \otimes A\right) \leqslant n^{2}-\sum_{i=1}^{k} m_{i}^{2}$.

Proof. Since A is skew-symmetric, over \mathbb{C} there exist independent eigenvectors $\mathbf{x}_{j}^{(i)}, j=1, \ldots, m_{i}$ for λ_{i}, and thus independent null vectors $\mathbf{x}_{j}^{(i)} \otimes \mathbf{x}_{\ell}^{(i)}, 1 \leqslant j, \ell \leqslant m_{i}, 1 \leqslant i \leqslant k$. Thus viewing $A \in \mathbb{C}^{n \times n}$, $\operatorname{rank} A \leqslant n^{2}-\sum_{i=1}^{k} m_{i}^{2}$, and viewing A as a real matrix does not increase its rank.

Proposition 4.8. $\mathrm{mr}^{-}\left(\mathbb{R}, P_{s} \square P_{s}\right)=s^{2}-s=\operatorname{mr}\left(\mathbb{R}, P_{s} \square P_{s}\right)$.
Proof. Since $Z\left(P_{s} \square P_{s}\right)=M\left(\mathbb{R}, P_{s} \square P_{s}\right)=s[1]$, by Proposition 3.7, $s^{2}-s=\operatorname{mr}\left(\mathbb{R}, P_{s} \square P_{s}\right) \leqslant \mathrm{mr}^{-}(\mathbb{R}$, $\left.P_{S} \square P_{s}\right)$. But by Lemma 4.7, for any $A \in \mathcal{S}^{-}\left(\mathbb{R}, P_{S}\right)$, $\operatorname{rank}\left(A \otimes I_{n}-I_{n} \otimes A\right) \leqslant s^{2}-s$ and $A \otimes I_{n}-I_{n} \otimes$ $A \in \mathcal{S}^{-}\left(\mathbb{R}, P_{s} \square P_{s}\right)$, so $\mathrm{mr}^{-}\left(\mathbb{R}, P_{s} \square P_{s}\right) \leqslant s^{2}-s$.

Lemma 4.9. There exists $A \in \mathcal{S}^{-}\left(K_{n}\right)$ such that mult $_{A}(i)=\operatorname{mult}_{A}(-i)=\left\lfloor\frac{n}{2}\right\rfloor$ (and zero is an eigenvalue of multiplicity one if n is odd).

Proof. Let $B=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right] \oplus \cdots \oplus\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ if n is even and $B=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right] \oplus \cdots \oplus\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right] \oplus[0]$ if n is odd. Choose a real orthogonal matrix U such that $U B U^{*}$ has all off-diagonal entries nonzero. ${ }^{2}$

Proposition 4.10

$$
\operatorname{mr}^{-}\left(K_{s} \square P_{t}\right)= \begin{cases}s t-s+1 & \text { if } s \text { is odd and } t \text { is even; } \\ s t-s & \text { otherwise. }\end{cases}
$$

[^1]Proof. $s=\mathrm{Z}\left(K_{s} \square P_{t}\right) \leqslant \mathrm{Z}^{-}\left(K_{s} \square P_{t}\right)$ (the equality was established in [1]), so $s t-s \leqslant \mathrm{mr}^{-}\left(K_{s} \square P_{t}\right)$. In the case s is odd and t is even, $s t-s$ is odd, so $s t-s+1 \leqslant \operatorname{mr}^{-}\left(K_{s} \square P_{t}\right)$.

Construct $A_{s} \in \mathcal{S}^{-}\left(K_{s}\right)$ such that $\operatorname{mult}_{A}(i)=$ mult $_{A}(-i)=\left\lfloor\frac{s}{2}\right\rfloor$ (and 0 as an eigenvalue of multiplicity one if s is odd). By scalar multiplication we can construct $B_{t} \in \mathcal{S}^{-}\left(P_{t}\right)$ having eigenvalues $\pm i$, and also 0 if t is odd. Then mult $_{A_{s} \otimes I_{t}+I_{s} \otimes B_{t}}(0)=s$, except if s is odd and t is even, mult $_{A_{s} \otimes I_{t}+I_{s} \otimes B_{t}}(0)=$ $s-1$. Thus $s t-s \geqslant \mathrm{mr}^{-}\left(K_{s} \square P_{t}\right)$, except if s is odd and t is even, $s t-s+1 \geqslant \mathrm{mr}^{-}\left(K_{s} \square P_{t}\right)$.

5. Open questions

In this section we list some open questions about minimum skew rank. We assume throughout this section that the field F is infinite, because the answers differ for finite fields.

Note that for n even, [12] completely characterizes those G for which there is a unique perfect matching, hence by Theorem 2.6, the graphs for which $\mathrm{mr}^{-}(F, G)$ is as large as possible. It is natural to ask the same question for n odd, namely:

Question 5.1. Characterize G such that $\mathrm{mr}^{-}(F, G)=|G|-1$.
Examples of graphs with this property include any graph G with a vertex v such that $G-v$ has a unique perfect matching. To date these are the only known examples (over an infinite field). Example 2.3 shows $\mathrm{mr}^{-}\left(\mathbb{Z}_{3}, K_{5}\right)=\left|K_{5}\right|-1$, despite the fact that $K_{5}-v=K_{4}$ does not have a unique perfect matching for any vertex v.

Question 5.2. Characterize the graphs G such that $\mathrm{mr}^{-}(F, G)=4$.
Since 4 is the second smallest possible minimum skew rank of a graph that has an edge, Question 5.2 is related to the interesting and important results characterizing $\operatorname{mr}(G)=2$ (for symmetric matrices) in [5]. Again, Example 2.3 shows that the answer can be different over a finite field.

Question 5.3. Characterize G such that $\mathrm{mr}^{-}(F, G)=\operatorname{MR}^{-}(F, G)$.
Again, Example 2.3 shows that the answer can be different over a finite field. A graph G satisfying $\mathrm{mr}^{-}(F, G)=\mathrm{MR}^{-}(F, G)$ is said to have fixed rank (over F), since $\operatorname{rank} A$ is constant for $A \in \mathcal{S}^{-}(F, G)$.

Appendix. Polynomials over finite fields

In this appendix we establish some results about polynomials over finite fields that are needed for the proofs given in Section 2. These results may be known, but we do not have a reference.

Proposition 5.4. Let F be a field with $q \geqslant 3$ elements, and let $p\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ be a nonzero homogeneous polynomial in $F\left[x_{1}, \ldots, x_{m}\right]$ of degree d such that each monomial $x_{1}^{e_{1}} x_{2}^{e_{2}} \cdots x_{m}^{e_{m}}$ satisfies $e_{k} \leqslant 1$ for $k=$ $1,2, \ldots, m$. Then there exist $a_{1}, a_{2}, \ldots, a_{m} \in F \backslash\{0\}$ such that $p\left(a_{1}, a_{2}, \ldots, a_{m}\right) \neq 0$.

Proof. The proof is by induction on m. If $m=1, p$ has the form $c x_{1}$ or c for some nonzero c, and we may simply take $x_{1}=1$.

Assume $m \geqslant 2$ and proceed by induction. Write

$$
p\left(x_{1}, x_{2}, \ldots, x_{m}\right)=x_{m} r\left(x_{1}, \ldots, x_{m-1}\right)+s\left(x_{1}, \ldots, x_{m-1}\right)
$$

for some homogeneous polynomials r and s in $F\left[x_{1}, \ldots, x_{m-1}\right]$. If s is not the zero polynomial, then s is homogeneous of degree d and by the inductive assumption, there exist nonzero a_{1}, \ldots, a_{m-1} such that $s\left(a_{1}, \ldots, a_{m-1}\right) \neq 0$. If $r\left(a_{1}, a_{2}, \ldots, a_{m-1}\right)=0$, then $p\left(a_{1}, \ldots, a_{m-1}, 1\right) \neq 0$. Otherwise,

$$
p\left(a_{1}, \ldots, a_{m-1}, a_{m}\right) \neq 0
$$

for each a_{m} other than $-\frac{s\left(a_{1}, \ldots, a_{m-1}\right)}{r\left(a_{1}, \ldots, a_{m-1}\right)}$. Since F has at least two nonzero elements, there is such a nonzero a_{m}.

Next consider the case that s is the zero polynomial. Since p is not the zero polynomial, r is not the zero polynomial, and hence is a nonzero homogeneous polynomial in $m-1$ variables. By induction there exist $a_{1}, \ldots, a_{m-1} \in F \backslash\{0\}$ with $r\left(a_{1}, a_{2}, \ldots, a_{m-1}\right) \neq 0$, and hence $p\left(a_{1}, a_{2}, \ldots, a_{m-1}, 1\right) \neq 0$.

Lemma 5.5. Let F be a field with $q \geqslant 4$ elements, and let $t\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ be a nonzero homogeneous polynomial in $F\left[x_{1}, \ldots, x_{m}\right]$ of degree d such that each monomial $x_{1}^{e_{1}} x_{2}^{e_{2}} \cdots x_{m}^{e_{m}}$ satisfies $e_{k} \leqslant 2$ for $k=$ $1,2, \ldots, m$. Then there exist $a_{1}, \ldots, a_{m} \in F \backslash\{0\}$ such that $t\left(a_{1}, \ldots, a_{m}\right) \neq 0$.

Proof. By induction on m. If $m=1$, then $t\left(x_{m}\right)$ is $c x_{m}^{2}, c x_{m}$ or c for some nonzero c, and we may take $x_{m}=1$.

Assume $m \geqslant 2$ and proceed by induction. Write

$$
t\left(x_{1}, \ldots, x_{m}\right)=x_{m}^{2} j\left(x_{1}, x_{2}, \ldots, x_{m-1}\right)+x_{m} k\left(x_{1}, \ldots, x_{m-1}\right)+\ell\left(x_{1}, \ldots, x_{m-1}\right) .
$$

For $a_{1}, \ldots, a_{m-1} \in F \backslash\{0\}$,

$$
t\left(a_{1}, \ldots, a_{m-1}, x_{m}\right)=x_{m}^{2} j\left(a_{1}, a_{2}, \ldots, a_{m-1}\right)+x_{m} k\left(a_{1}, \ldots, a_{m-1}\right)+\ell\left(a_{1}, a_{2}, \ldots, a_{m-1}\right)
$$

is a polynomial in $F\left[x_{m}\right]$. If there is an $a_{m} \in F \backslash\{0\}$ such that $t\left(a_{1}, a_{2}, \ldots, a_{m-1}, x_{m}\right)$ evaluated at $x_{m}=a_{m}$ is nonzero, then we are done.

Otherwise, for each choice of $a_{1}, \ldots, a_{m-1} \in F \backslash\{0\}$, each nonzero element of F is a root of $t\left(a_{1}, a_{2}, \ldots, a_{m-1}, x_{m}\right)$. We claim that this cannot occur. As F has at least four elements, $t\left(a_{1}, a_{2}, \ldots, a_{m-1}, x_{m}\right)$ has at least three roots and degree at most two. Thus, $t\left(a_{1}, a_{2}, \ldots, a_{m-1}, x_{m}\right)$ is the zero polynomial for each choice of $a_{1}, \ldots, a_{m-1} \in F \backslash\{0\}$. In particular, each of the homogeneous polynomials, j, k, ℓ vanishes at each choice of $\left(a_{1}, a_{2}, \ldots, a_{m-1}\right)$ with $a_{1}, \ldots, a_{m-1} \in F \backslash\{0\}$. Hence by induction, each of j, k and ℓ is the zero polynomial, which cannot happen since t is nonzero.

Note that if F is the field with three elements, and $p(x, y)=x^{2}-y^{2}$, then $p(a, b)=0$ for each choice of $a, b \in F \backslash\{0\}$. So Lemma 5.5 needs $q \geqslant 4$.

Proposition 5.6. Let F be a field with more than three elements, and let $p\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ be a nonzero homogeneous polynomial in $F\left[x_{1}, \ldots, x_{m}\right]$ of degree d such that each monomial $x_{1}^{e_{1}} x_{2}^{e_{2}} \cdots x_{m}^{e^{m}}$ satisfies $e_{k} \leqslant 1$ for $k=1,2, \ldots, m$. Then either $p\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ has exactly one nonzero term or there exist $a_{i} \in$ $F \backslash\{0\}$ such that $p\left(a_{1}, a_{2}, \ldots, a_{m}\right)=0$.

Proof. Assume that $p\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ has at least two nonzero terms. Since p is homogeneous and has at least two nonzero terms, there is an i such that p has one term involving x_{i} and another term that does not involve x_{i}. Without loss of generality, we may take $i=m$. Write $p\left(x_{1}, \ldots, x_{m}\right)=$ $x_{m} r\left(x_{1}, \ldots, x_{m-1}\right)+s\left(x_{1}, \ldots, x_{m-1}\right)$. Since x_{m} is in some term of $p\left(x_{1}, \ldots, x_{m}\right), r$ is not the zero polynomial. Since x_{m} is not in some term of $p\left(x_{1}, \ldots, x_{m}\right), s$ is not the zero polynomial.

Consider the polynomial $t\left(x_{1}, x_{2}, \ldots, x_{m-1}\right)=r\left(x_{1}, \ldots, x_{m-1}\right) s\left(x_{1}, \ldots x_{m-1}\right)$. Note that t is homogeneous, nonzero, and the exponent of each x_{j} in each monomial is at most 2. Thus, by Lemma 5.5, there exist nonzero a_{1}, \ldots, a_{m-1} such that $t\left(a_{1}, \ldots, a_{m-1}\right) \neq 0$. Now observe that

$$
p\left(a_{1}, a_{2}, \ldots, a_{m-1}, \frac{-s\left(a_{1}, \ldots, a_{m-1}\right)}{r\left(a_{1}, \ldots, a_{m-1}\right)}\right)=0
$$

and each of $a_{1}, a_{2}, \ldots, a_{m-1}$, and $\frac{-s\left(a_{1}, \ldots, a_{m-1}\right)}{r\left(a_{1}, \ldots, a_{m-1}\right)}$ is nonzero.

References

[1] AIM Minimum Rank - Special Graphs Work Group (F. Barioli, W. Barrett, S. Butler, S.M. Cioabă, D. Cvetković, S.M. Fallat, C. Godsil, W. Haemers, L. Hogben, R. Mikkelson, S. Narayan, O. Pryporova, I. Sciriha, W. So, D. Stevanović, H. van der Holst, K. Vander Meulen, A. Wangsness Wehe). Zero forcing sets and the minimum rank of graphs, Linear Algebra Appl. 428 (2008) 1628-1648.
[2] AIM minimum rank graph catalog: families of graphs. Available at http://aimath.org/pastworkshops/catalog2.html.
[3] F. Barioli, S.M. Fallat, On the minimum rank of the join of graphs and decomposable graphs, Linear Algebra Appl. 421 (2007) 252-263.
[4] F. Barioli, S.M. Fallat, L. Hogben, Computation of minimal rank and path cover number for graphs, Linear Algebra Appl. 392 (2004) 289-303.
[5] W. Barrett, H. van der Holst, R. Loewy, Graphs whose minimal rank is two, Electron. J. Linear Algebra 11 (2004) 258-280.
[6] R.A. Brualdi, H.J. Ryser, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1991.
[7] L.M. DeAlba, J. Grout, L. Hogben, R. Mikkelson. K. Rasmussen, Universally optimal matrices and field independence of the minimum rank of a graph, under review. Available at http://orion.math.iastate.edu/lhogben/research/ISUminrank.pdf.
[8] L. DeLoss, Results on minimum skew rank of matrices described by a graph, MS Thesis, Iowa State University, May 2009.
[9] S.M. Fallat, L. Hogben, The minimum rank of symmetric matrices described by a graph: a survey, Linear Algebra Appl. 426 (2007) 558-582.
[10] C. Godsil, G. Royle, Algebraic Graph Theory, Springer-Verlag, New York, 2001.
[11] L. Hogben, H. van der Holst, Forbidden minors for the class of graphs G with $\xi(G) \leqslant 2$, Linear Algebra Appl. 423 (2007) 42-52.
[12] L. Lovasz, M. Plummer, Annals of Discrete Mathematics, North-Holland, Amsterdam, 1986.
[13] D.B. West, Introduction to Graph Theory, second ed., Prentice-Hall, New Jersey, 2001.

[^0]: * This research began at the Institute for Mathematics and Its Applications program "Linear Algebra and Applications" held at Iowa State University in July 2008. The authors gratefully acknowledge the support of IMA and NSF (DMS-0753009).
 * Corresponding author. Bryan Shader.
 ${ }^{1}$ IMA-ISU research group members: Mary Allison (mallison@uwyo.edu), Elizabeth Bodine (ebodine@math.wsu.edu); Luz Maria DeAlba (luz.dealba@drake.edu); Joyati Debnath (jdebnath@winona.edu); Laura DeLoss (delolau@iastate.edu); Colin Garnett (cgarnett@uwyo.edu); Jason Grout (grout@iastate.edu); Leslie Hogben (lhogben@iastate.edu, hogben@aimath.org); Bokhee Im (bim@chonnam.ac.kr); Hana Kim (hakkai14@skku.edu); Reshmi Nair(rnair@uwyo.edu); Olga Pryporova(olgav@iastate.edu); Kendrick Savage (klsavage@olemiss.edu); Bryan Shader (bshader@uwyo.edu); Amy Wangsness Wehe (awehe@fsc.edu).

[^1]: ${ }^{2}$ The existence of such a U can be argued by noting that for any i, j and $k \notin\{i, j\}$, and any skew-symmetric matrix $C=\left[c_{r, s}\right]$ with $c_{i k} \neq 0$, there is a suitable Given's rotation Q such that the (i, k) and (j, k) entries of $Q^{T} C Q$ are both nonzero and the (r, s)-entry of $Q C Q^{T}$ is nonzero whenever the (r, s)-entry of C is nonzero. Thus, if $C \neq 0$, then C is orthogonally similar to a matrix with no off-diagonal zeros.

