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1. Introduction

The classic minimum rank problem involves real symmetric matrices described by a graph. This

problem has been studied extensively and generalized to symmetric matrices over other fields; see

[9] for a survey of known results and a discussion of the motivation for the minimum rank problem.

In this paper, we study the problem of determining the minimum rank of skew-symmetric matrices

described by a graph.

If a field F is of characteristic 2, then the skew-symmetric matrices are the same as the symmetric

matrices; and may have nonzero diagonal entries. Thus it is assumed throughout this paper that the

fields under consideration do not have characteristic 2.

1.1. Notation and terminology

An n × n matrix A over a field F is skew-symmetric (respectively, symmetric) if AT = −A(AT = A);
for A ∈ Cn×n, A is Hermitian if A∗ = A, where A∗ denotes the conjugate transpose of A.

A graph is a pair G = (VG , EG), where VG is the (finite, nonempty) set of vertices of G (usually

{1, . . . , n} or a subset thereof) and EG is the set of edges (two-element subsets of vertices). These

graphs are usually called simple undirected graphs. The order of a graph G, denoted |G|, is the number

of vertices of G.

For a symmetric, skew-symmetric or Hermitian matrix, the graph of an n × n matrix A, denoted

G(A), is the graph with vertices {1, . . . , n} and edges {{i, j} : aij /= 0, 1� i < j � n}. Note that the

diagonal is ignored in determining G(A) for symmetric and Hermitian matrices (the diagonal must

be 0 for a skew-symmetric matrix).

The set of symmetric matrices over a field F described by G is

S(F , G) = {A ∈ Fn×n, AT = A, G(A) = G}.
The minimum rank of a graph G over F is mr(F , G) = min{rank A : A ∈ S(F , G)}, and the maximum

nullity of G over F is M(F , G) = max{null(A) : A ∈ S(F , G)}. Clearly mr (F , G) + M(F , G) = |G|.When

the field is omitted it is assumed to be the real field, i.e. mr(G) = mr(R, G).
The set of skew-symmetric matrices over F described by G is

S−(F , G) = {A ∈ Fn×n : AT = −A, G(A) = G}.
Theminimum skew rank of a graph G over F is defined to be

mr−(F , G) = min{rank A : A ∈ S−(F , G)},
and themaximum skew nullity of G over F is defined to be

M−(F , G) = max{null(A) : A ∈ S−(F , G)}.
Clearly mr−(F , G) + M−(F , G) = |G|. In this paper we say that the matrix A ∈ Fn×n is optimal for G

(over F) if A ∈ S−(F , G) and rank A = mr−(F , G).
Clearly the maximum rank among matrices in S(F , G) is |G|, but this need not be the case for skew

rank. Themaximum skew rank of a graph G is

MR−(F , G) = max{rank A : A ∈ S−(F , G)}.
The set of Hermitian matrices described by G is

H(G) = {A ∈ Cn×n, A∗ = A, G(A) = G}.
The minimum Hermitian rank of a graph G is hmr(G) = min{rank A : A ∈ H(G)}. Minimum Hermi-

tian rank has been studied in [5], and is a lower bound on the skew rank over the real field (see

Proposition 3.2).

The subgraph G[R] of G induced by R ⊆ VG is the subgraph with vertex set R and edge set {{i, j} ∈
EG|i, j ∈ R}. The subgraph induced by VG \ R is also denoted by G − R, or in the case R = {v}, by G − v.

If A is an n × n matrix and R ⊆ {1, . . . , n}, the principal submatrix A[R] is the matrix consisting of the
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entries in the rows and columns indexed by R, and A(R) is the complementary principal submatrix

obtained from A by deleting the rows and columns indexed by R. In the special case when R = {k}, we

use A(k) to denote A(R). If A ∈ S−(F , G), then by a slight abuse of notation G(A[R]) can be identified

with G[R].
The adjacency matrix of G, AG = [aij], is a 0, 1-matrix such that aij = 1 if and only if {i, j} ∈ EG . The

formal skew adjacency matrix of G is XG = AG ◦ X where X is a skew-symmetric matrix having ij-entry

xij for i < j, xij are independent indeterminates, and ◦ denotes the Hadamard (entrywise) product.

A path, cycle, complete graph, and complete multipartite graph will be denoted by Pn, Cn, Kn, and

Kn1,n2,...nt (t � 2, ni � 1), respectively.

The complement of a graph G = (V , E) is the graph G = (V , E), where E consists of all two-element

sets of V that are not in E. The union of Gi = (Vi, Ei) is ∪h
i=1Gi = (∪h

i=1Vi,∪h
i=1Ei); a disjoint union

is denoted ∪̇h

i=1Gi. The intersection of Gi = (Vi, Ei) is ∩h
i=1Gi = (∩h

i=1Vi,∩h
i=1Ei). The join G ∨ G′ of

two disjoint graphs G = (V , E) and G′ = (V ′, E′) is the union of G ∪ G′ and the complete bipartite

graph with vertex set V ∪ V ′ and partition {V , V ′}. A cut-vertex is a vertex whose deletion increases

the number of connected components.

A matching in a graph G is a set of edges {i1, j1}, . . . , {ik , jk} such that all the vertices are distinct. A

perfect matching in a graph G is a matching that includes all vertices of G. A maximum matching in G

is a matching with the maximum number of edges among all matchings in G. The matching number,

denoted match(G), is the number of edges in a maximummatching.

An importantmatrix function in the study ofmatchings is the pfaffian (see [12] formore details). Let

L = {{i1, i2}, . . . , {in−1, in}} be a perfect matching in G, ordered so that i1 < i2, i3 < i4, . . . , in−1 < in
and i1 < i3 < · · · < in−1. Let πL be the permutation of {1, . . . , n} that maps k to ik . For A ∈ S−(F , G),
the weight of L with respect to A is

wtA(L) = sgn(πL)ai1,i2 · · · ain−1,in ,

where sgn(π) is the sign of the permutation π . Let F be the set of all perfect matchings of G. The

pfaffian of A is

pf(A) = ∑
L∈F

wtA(L),

where the sum over the empty set is 0.

1.2. Known results about matchings and skew-symmetric matrices

This subsection contains results that will be used in the next section; throughout F denotes a field

(which, as we have already mandated, does not have characteristic 2). We note that Theorem 1.1 and

Corollary 1.5 do extend to characteristic 2. However, Corollary 1.2, and Lemma1.3 donot, as the identity

matrix of odd order is a skew-symmetricmatrix over the field of 2 elements has odd rank, determinant

1 and pfaffian 0.

The proof of the next result is similar to the proof for the symmetric case (cf. [10, Theorem 8.9.1]).

Theorem 1.1. Let A ∈ Fn×n be skew-symmetric. Then rank A = max{|S| : det(A[S]) /= 0}.
Corollary 1.2. The rank of any skew-symmetric matrix over F is even.

The proof of the next result is similar to the proof for the symmetric case (cf. [10, Lemma 8.9.3]).

Lemma 1.3. For a nonzero skew-symmetric matrix A ∈ Fn×n, rank A� 2k if and only if there exist

x1, . . .xk , y1,. . .,yk ∈ Fn such that A = ∑k
i=1(xiy

T
i − yix

T
i ).

Theorem 1.4 [6, Theorem 9.5.2]. If A ∈ Fn×n is skew-symmetric, then det A = (pf(A))2.

Corollary 1.5. Let A ∈ Fn×n be skew-symmetric. If G(A) has a unique perfect matching then rank A = n.
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Graphs with unique perfect matching have been characterized in [12, Corollary 5.3.12].

The statements in Observation 1.6 follow immediately from the preceding results or are established

byapplying the samemethodsused for theanalogous results in the symmetricminimumrankproblem.

Observation 1.6

1. mr−(F , G) and MR−(F , G) are always even.

2. If G has a unique perfect matching then mr−(F , G) = |G|.
3. If H is an induced subgraph of G, then mr−(F ,H) �mr−(F , G).
4. mr−(F , G) = 0 if and only if G has no edges.

5. If the connected components of G are G1, . . . , Gt , then

mr−(F , G) =
t∑

i=1

mr−(F , Gi).

Corollary 1.7. Let G be a graph, and let F be a field. If G has a matching with k edges and this is the only

perfect matching for the subgraph induced by the 2k vertices in the matching, thenmr−(F , G) � 2.

2. Results derived from the properties of skew-symmetric matrices

In this section we use properties specific to skew-symmetric matrices to obtain results about

minimum skew rank. All of the results in this section are valid over any infinite field. Most are valid for

finite fields, but some technical results about polynomials over finite fields are needed for the proofs;

these are included in the Appendix (Section 5).

Theorem 2.1. Let G be a connected graph with |G| � 2 and let F be an infinite field. Then the following are

equivalent:
1. mr−(F , G) = 2,

2. G = Kn1,n2,...,nt for some t � 2, ni � 1, i = 1, . . . , t,
3. G does not contain P4 or the paw (see Fig. 1) as an induced subgraph.

Without the assumption that G is connected, mr−(F , G) = 2 if and only if G is a union of one Kn1,n2,...,nt
and possibly some isolated vertices.

Proof. (2 
⇒ 1) Let G = Kn1,n2,...,nt = (V1 ∪̇ · · · ∪̇ Vt , E) where the sets Vk(k = 1, . . . , t) are the

partite sets, and let n = �t
i=1ni. Let α1, . . . ,αt be distinct elements of F . Construct x, y ∈ Fn such

that xi = 1 for all i and yj = αk for each vertex j in Vk . Observe that by construction the matrix

A = xyT − yxT is a skew-symmetric matrix with rank A = 2. If vertex i is in partite set Vk and vertex

j is in partite set V�, then aij = α� − αk , and thus aij = 0 if and only if vertices i and j are in the same

partite set. It follows that G(A) = Kn1,n2,...,nt . Since A ∈ S−(F , G) and rank A = 2, we conclude that

Fig. 1. Forbidden induced subgraphs for mr−(F , G) � 2.
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Fig. 2. A path in the induced subgraph H that contains K2 ∪̇ K1.

mr−(F , G) � 2. Since t � 2, each matrix in S−(F , G) has an invertible 2 × 2 principal submatrix, so

mr−(F , G) = 2.

(1 
⇒ 3) This follows from Observation 1.6 since P4 and the paw each have a unique perfect

matching.

(3
⇒ 2) Suppose that G is not a complete multipartite graph. Then |G| � 4 and G contains K2 ∪̇ K1

as an induced subgraph. Let H be the smallest connected induced subgraph of G that contains K2 ∪̇ K1

as an induced subgraph. Note that since H is connected, but has the induced subgraph K2 ∪̇ K1, we

know that |H| � 4.

We show that if |H| > 4, then H is not the smallest such graph. Label the vertices of an induced

K2 ∪̇ K1 by x, y, z with x and y adjacent. Since H is connected, there is a path from one of x or y to z

that does not include the other (say x). Label the additional vertices on this pathw1, . . . ,wk . See Fig. 2

for the labeling, but note that this subgraph need not be an induced subgraph of G. Suppose k > 1. By

the minimality of H, z is not adjacent tow1. Then the subgraph induced by y,w1, . . . ,wk , z is a smaller

connected induced subgraph containing an induced K2 ∪̇ K1.

So k = 1, H contains the edges {x, y}, {y,w1}, {w1, z} and H does not contain the edges {x, z} or

{y, z}. If {x,w1} ∈ EH , thenH is the paw; if notH = P4. Therefore ifG /= Kn1,n2,...,nt , thenGmust contain

P4 or the paw as an induced subgraph.

The result for disconnected graphs then follows from Observation 1.6.5. �

Note that Kn = K1,1,...,1 and G = Kn1,...,nt if and only if G = Kn1 ∪̇ · · · ∪̇ Knt .

Remark 2.2. For a connected graph G, the equivalence that G = Kn1,n2,...,nt for some t � 2, ni � 1, i =
1, . . . , t if and only if G does not contain P4 or the paw has been established.

The proof that (2) ⇒ (1) is clearly valid for any fieldwith at least t elements, and it can bemodified

to work in a field with t − 1 elements. The skew minimum rank Kn1,...,nt is larger than 2 for a finite

field with fewer than t − 1 elements, as the next example shows computationally for a specific field

and graph, and Corollary 2.4 below shows more generally.

Example 2.3. We claim that mr−(Z3, K5) = 4. To see this, first note that the circulant matrix with

first row (0, 1, 1,−1,−1) is skew-symmetric and singular, and hence mr−(Z3, K5) � 4. Second, note

that if among any five vectors in Z2
3, there is a pair that are linearly dependent. Hence, each matrix

of the form xyT − yxT where x, y ∈ Z5
3 has an off-diagonal 0. We conclude that mr−(Z3, K5) > 2. The

result follows by noting that the rank of a skew-symmetric matrix is even.

Corollary 2.4. In a finite field F of order q, the following are equivalent.

1. G is connected and mr−(F , G) = 2.
2. G = Kn1,n2,...,nt , where 2� t � q + 1.

Proof. (2 
⇒ 1) Assume that G = Kn1,n2,...,nt with 2� t � q + 1. In order to construct a matrix of

rank 2 in S−(F , G), we first notice that (xyT − yxT )ij = xiyj − yixj is nonzero if and only if the nonzero

vectors [xi, yi] and [xj , yj] are not parallel in F2. In a field of order q, we know that there are q + 1 unique

parallel classes of nonzero vectors in F2. Let the elements of F be 0, 1, f3, f4, . . . , fq. Take the vectors

[0, 1], [1, 0], [1, 1], [1, f3], . . . , [1, fq] as representatives of these parallel classes. For i = 1, . . . , n, define
[xi, yi] to be [0, 1] if i ∈ n1, [1, 0] if i ∈ n2, and [1, fj] if i ∈ nj and j � 3. The vectors x = [xi] and y = [yi]
satisfy xyT − yxT ∈ S−(F , G), so mr−(F , G) = 2.
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(1 
⇒ 2) Assume that G is connected and mr−(F , G) = 2. Then we can find x, y ∈ Fn so that

xyT − yxT ∈ S−(F , G). As above, (xyT − yxT )ij = xiyj − yixj = 0 if and only if vectors [xi, yi] and

[xj , yj] are nonzero and parallel or one of them is the zero vector. Note that [xi, yi] /= [0, 0] for all

i because otherwise G would be disconnected. Partition the vertices into sets V1, V2, . . . , Vt , where

vertices i and j are in the same set if and only if the vectors [xi, yi] and [xj , yj] are parallel. Since there

are only q + 1 parallel equivalence classes of nonzero vectors in F2, we have 2� t � q + 1. Thus Gwill

be a complete multipartite graph with partite sets V1, V2, . . . Vt of orders n1, n2, . . . , nt , respectively,
with 2� t � q + 1. �

Theorem 2.5. For a graph G and a field F, MR−(F , G) = 2match(G), and every even rank between

mr−(F , G) andMR−(F , G) is realized by a matrix in S−(F , G).

Proof. Let A ∈ S−(F , G), |G| = n, and match(G) = m. Then for any � × � principal submatrix B of A,

B ∈ S−(H) for an induced subgraphH of G. If � > 2m, thenH has no perfect matching. Hencewe have

pf(B) = 0, which implies that det B = 0. This holds for all � > 2m, whence rank A� 2m by Theorem

1.1. Thus MR−(F , G) � 2match(G).
Renumber the vertices in the graphG (if necessary) such that the independent edges in amaximum

matching are {{1, 2}, {3, 4}, . . . , {2m − 1, 2m}}. If XG is the formal skew adjacency matrix of G, then

pf(XG[{1, . . . , 2m}]) is not thezeropolynomial. Construct thematrixB = [bij]over thefield F bychoos-
ing values bij ∈ F for the variables xij thatmakepf(B[{1, . . . , 2m}]) /= 0. Since F has at least 3 elements,

Proposition 5.4 in the Appendix shows that we canmake such a choice. Thus det(B[{1, . . . , 2m}]) /= 0,

andwe can complete B ∈ S−(F , G) by choosing any nonzero values for the remaining nonzero entries.

Since B ∈ S−(F , G) and rankB � 2m, MR−(F , G) = 2m.

We can go from any matrix B ∈ S−(F , G) to any other matrix A ∈ S−(F , G) by adding (one at a

time) the matrix Sij , j > i such that Sij[{i, j}] =
[

0 aij − bij
bij − aij 0

]
and all other entries are zero. Since

rank Sij = 2, we must pass through every even rank in the transition from a maximum rank matrix B

to a minimum rank matrix A. �

Theorem 2.6. For a graph G and a field F that has at least 5 elements, mr−(F , G) = |G| = MR−(F , G) if
and only if G has a unique perfect matching.

Proof. IfG has a unique perfectmatching, then as noted inObservation 1.6, for anyfield F ,mr−(F , G) =
|G|.

Conversely, suppose mr−(F , G) = |G|. Clearly, this implies that mr−(F , G) = MR−(F , G). Since
every A ∈ S−(F , G) has full rank, det A /= 0 for all A ∈ S−(F , G). Applying Theorem 1.4 we deter-

mine that pf(A) /= 0 for A ∈ S−(F , G). Since the nonzero terms of the pfaffian correspond to perfect

matchings of G, G has at least one perfect matching.

It remains to show that the perfectmatching is unique. Suppose that G contains at least two perfect

matchings. If so, we show that there exists some B = [bij] ∈ S−(F , G) with pf(B) = 0. Let XG be the

formal skew adjacency matrix of G, and let the pf(XG) = p(y1, . . . , yk), where yi are the entries of

XG that appear in the pfaffian. Since there are at least two nonzero terms, by Proposition 5.6 in the

Appendix, we can choose nonzero values b1, . . . , bk for y1, . . . , yk so that p(b1, . . . bk) = 0. By setting

the entry corresponding to yj equal to bj , j = 1, . . . , k, and all other nonzero entries to any nonzero

value, we can find a B ∈ S−(F , G) having pf(B) = 0, which is a contradiction. �

Theorem 2.7. Let T be a tree and let F be a field. Thenmr−(F , T) = 2match(T) = MR−(F , T).

Proof. By Theorem2.5,mr−(F , T) � 2match(T). Let {v1, . . . , vk} be the vertices in amaximummatch-

ing of a graph G. The induced subgraph H = G[{v1, v2, . . . vk}], is a forest that has a perfect matching.

This perfect matching is unique, because if we choose any leaf of H, it is incident to only one edge, so it

must be matched with its only neighbor. Excluding these two vertices, we are left with a forest which
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Fig. 3. The Petersen graph P.

still has a perfect matching and still has a leaf. We continue this procedure until each vertex in H is

matched. Thus mr−(F , T) � 2match(T). �

It is straightforward to find a maximum matching of a tree. Start with an empty edge set M, an

empty vertex set W , and the tree (note that as vertices are deleted, the tree may become a forest).

At the kth step, choose a vertex vk of degree 1, denote its unique neighbor by wk , remove wk (and its

incident edges) from the forest, add edge {vk ,wk} to the matchingM and addwk toW . Continue with

this procedure until all edges are gone. Since every edge has been removed by being incident to a wk ,

W is a vertex cover, i.e. a subset of vertices that contains at least one endpoint of every edge. Since

deg vk = 1, whenwk is removed, vk has nomore edges, soM is a matching. For any graph G and vertex

cover U, match(G) � |U| [13, p. 112]. Since |M| = |W|,M is a maximummatching.

Observation 2.8. For a tree T , match(T) can be determined by starting with a vertex of degree 1,

matching it, removing both matched vertices from the graph, and continuing in this manner.

In the proof of Theorem 2.7 it was shown that a tree T has an induced subgraph H such that

mr−(F , T) = |H| = mr−(F ,H) (andH has a unique perfectmatching). This need not be true in general,

as the next example shows.

Example 2.9. Let P be the Petersen graph (shown in Fig. 3).

Any matrix A ∈ S−(F , P) can be put in the form

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a 0 0 b 1 0 0 0 0

−a 0 c 0 0 0 1 0 0 0

0 −c 0 d 0 0 0 1 0 0

0 0 −d 0 e 0 0 0 1 0

−b 0 0 −e 0 0 0 0 0 1

−1 0 0 0 0 0 0 g h 0

0 −1 0 0 0 0 0 0 s q

0 0 −1 0 0 −g 0 0 0 r

0 0 0 −1 0 −h −s 0 0 0

0 0 0 0 −1 0 −q −r 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
by use of a diagonal congruence. It is straightforward to verify that every induced subgraph of order

8 has two perfect matchings. However, mr−(F , P) = 8, because any choice of values of the variables

makes at least one order 8 principal submatrix nonsingular. Specifically,
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det(A[{1, 2, 3, 4, 5, 6, 7, 8}]) = (e − bdg)2, (1)

det(A[{1, 2, 3, 4, 5, 6, 9, 10}]) = (c − adh)2, (2)

det(A[{1, 2, 3, 4, 5, 6, 8, 9}]) = (bcg + aeh)2. (3)

Substituting e = bdg and c = adh into Eq. (3) results in

det(A[{1, 2, 3, 4, 5, 6, 8, 9}]) = 4a2b2d2g2h2 /= 0.

3. Results derived using minimum rank techniques

In this section, we examine connections between the classical minimum rank (using symmetric

matrices) and minimum skew rank. Minimum rank and minimum skew rank are noncomparable, but

minimum Hermitian rank is a lower bound on minimum skew rank (over the real numbers).

Example 3.1. Theminimum skew rank of a graph can be greater than theminimum rank of the graph:

mr(F , K2) = 1 < 2 = mr−(F , K2). The minimum skew rank can also be less than the minimum rank:

mr−(F , K3,3,3) = 2 < 3 = mr(F , K3,3,3) [5] (as always, char F /= 2).

Proposition 3.2. hmr(G) �mr−(R, G).

Proof. If A ∈ S−(R, G) then iA ∈ H(G) and rank(iA) = rank A, so hmr(G) �mr−(R, G). �

Proposition 3.3. Let G = ∪h
i=1Gi. If F is an infinite field or if Gi and Gj have no edges in common for all

i /= j, thenmr−(F , G) �
∑h

i=1 mr−(F , Gi).

Proof. A skew-symmetric matrix A ∈ Fn×n of rank at most
∑h

i=1 mr−(F , Gi) having G(A) = G can be

constructed by choosing (for each i = 1, . . . , h) a matrix Ai that realizes mr−(F , Gi), embedding Ai in

a matrix Ãi of size |G|, choosing ai ∈ F such that no cancellation of nonzero entries occurs, and letting

A = ∑h
i=1 aiÃi. �

3.1. Zero forcing number

Anupper bound forM(F , G), which yields an associated lower bound formr(F , G), is the zero forcing
number Z(G) introduced in [1]. The zero forcing number is a useful tool for determining theminimum

rank of structured families of graphs and small graphs, and is motivated by simple observations about

null vectors of matrices. In this subsection we extend these ideas to minimum skew rank by revising

the color change rule to better exploit properties of skew-symmetric matrices, thereby creating a new

zero forcing parameter.

Definition 3.4. Let G = (V , E) be a graph.

• A subset Z ⊂ V defines an initial coloring by coloring all vertices in Z black and all the vertices

not in Z white.

• The skew color change rule says: If a vertex v ∈ V has exactly one white neighbor,w, change the

color of w to black. In this case we say that v forces w.

• The skew derived set of an initial coloring Z is the result of applying the skew color change rule

until no more changes are possible.

• A skew zero forcing set is a subset Z ⊆ V such that the skew derived set of Z is V .
• The skew zero forcing number, Z−(G), is the minimum size of a skew zero forcing set.
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We note that the skew color change rule differs from the conventional color change rule in that it

does not require the vertex v ∈ V with exactly one white neighbor to be black.

If x = [xk] is a nonzero null vector of the skew-symmetric matrix A whose graph is G, and i is a

vertex ofG, then either xj = 0 for each neighbor j of i or xj is nonzero for at least two neighbors j of i. If A

is a skew-symmetricmatrix of nullity k, then for every set Z of cardinality k − 1, there is a nonzero null

vector x of A with xj = 0 for all j ∈ Z . Thus if Z is a skew zero forcing set of G, then for each matrix in

S−(F , G) the only null vector with 0’s in positions indexed by Z is the zero vector. These ideas provide

the proof of the next proposition, just as analogous statements about symmetric matrices provide the

proof of Proposition 2.4 in [1].

Proposition 3.5. For any graph G and any field F , M−(F , G) � Z−(G) andmr−(F , G) � |G| − Z−(G).

The next example illustrates a skew zero forcing set and computation of the skew zero forcing

number.

Example 3.6. Let H be the paw (see Fig. 1) with the vertices numbered as follows: the degree one

vertex is number 1, the degree three vertex is number 2, and the two degree two vertices are numbers

3 and 4.With this numbering, 1 can force 2, then 3 can force 4 and 4 can force 3, and finally 2 can force

1. Thus the empty set is a zero forcing set, so Z−(H) = 0.

Proposition 3.7. Let G be a graph and let F be a field. Then Z−(G) � Z(G). Ifmr(F , G) = |G| − Z(G), then
mr−(F , G) �mr(F , G).

Proof. Let Z be an optimal zero forcing set for the graph G, i.e, |Z| = Z(G). The set Z is also a skew zero

forcing set for G, although Z may not be an optimal skew zero forcing set. Thus Z−(G) � |Z| = Z(G).
Therefore, if mr(F , G) = |G| − Z(G), it follows by Proposition 3.5 that mr−(F , G) �

|G| − Z−(G) � |G| − Z(G) = mr(F , G). �

See [1] for a list of graphs G for which it is known that mr(R, G) = |G| − Z(G). The zero forcing

number Z(G) of a graph G is never zero, because the color change rule requires a vertex to be black to

force another vertex, whereas (as we saw in Example 3.6), it is possible to have Z−(G) = 0.

The Cartesian product of two graphs G and H, denoted G � H, is the graph with vertex set VG × VH

such that (u, v) is adjacent to (u′, v′) if and only if (1) u = u′ and {v, v′} ∈ EH , or (2) v = v′ and

{u, u′} ∈ EG .

Corollary 3.8. For any field F and any graph G, mr−(F , G � Pt) �(t − 1)|G|. If t is even and |G| is odd,
thenmr−(F , G � Pt) �(t − 1)|G| + 1.

Proof. The set of vertices in a pendant copy of G is a zero forcing set, and minimum skew rank must

be even. �

3.2. Cut-vertex reduction

The rank-spread of a graphGwas defined in [4] and used to establish cut-vertex reduction,whereby

the computation of the minimum rank of a graph with a cut-vertex could be reduced to computing

the minimum rank of certain proper subgraphs. In this subsection we extend these ideas to minimum

skew rank.

The skew-rank-spread of G at vertex v over a field F is defined to be

r−v (F , G) = mr−(F , G) − mr−(F , G − v).

Clearly for any vertex v of G, r−v (F , G) is either 0 or 2.
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Lemma 3.9. Let G = (V = {v1, . . . , vn, v}, E) be a graph and F a field. Then r−v (F , G) = 0 if and only if

there exist an optimal matrix A′ ∈ Fn×n for G − v and a vector b = [bi] ∈ range A′ such that bi /= 0 if

and only if v is adjacent to vi, and r−v (F , G) = 2 otherwise.

Proof. Suppose there exists an optimal matrix A′ ∈ Fn×n for G − v and a vector b = [bi] ∈ range A′
such that bi /= 0 if and only if v is adjacent to vi. Then

A =
[

A′ b

−bT 0

]
∈ S−(F , G). (4)

Sinceb ∈ range A′, there existsx ∈ Fn such thatb = A′x. SincexTA′x = (xTA′x)T = −xTA′x,xTA′x =
0 and rank A = rank A′. Thus r−v (F , G) = 0. Conversely, if r−v (G) = 0, any optimal matrix A will have

the form (4) with rank A′ = mr−(F , G − v) and b ∈ range A′. Since 0� r−v (F , G) � 2 and the rank of a

skew matrix is even, r−v (F , G) = 2 if and only if r−v (F , G) /= 0. �

Theorem 3.10 [8]. Let v be a cut-vertex of G. For i = 1, . . . , h, let Wi ⊆ V(G) be the vertices of the ith

component of G − v and let Gi be the subgraph induced by {v} ∪ Wi. Then over a field F ,

r−v (F , G) = max
i=1,...,h

r−v (F , Gi), and

mr−(F , G) =
{∑h

1mr−(F , Gi − v) if r−v (F , Gi) = 0 for all i = 1, . . . , h∑h
1mr−(F , Gi − v) + 2 if r−v (F , Gi) = 2 for some i, 1� i � h

Proof. In both cases,
∑h

1mr−(F , Gi − v) = mr−(F , G − v) �mr−(F , G). First assume that r−v (F , Gi) =
0 for all i = 1, . . . , h. Then

∑h
1 mr−(F , Gi − v) = ∑h

1 mr−(F , Gi). Since v is a cut-vertex, there are no

overlapping edges, and by Proposition 3.3, mr−(F , G) �
∑h

1 mr−(F , Gi). Thus mr−(F , G) =∑h
1 mr−(F , Gi − v).

Now assume r−v (F , Gk) = 2for some k. Then by Lemma 3.9, for every matrix A(k) that is optimal

for Gk − v and vector b(k) having a nonzero pattern reflecting the adjacencies of v within Gk , b
(k) /∈

range A(k). Thus for every matrix A′ that is optimal for G − v and vector b having a nonzero pattern

reflecting the adjacencies of vwithin G, b /∈ range A′ because A′ is block-diagonal. Thus by Lemma 3.9,

r−v (F , G) = 2. �

Proposition 3.11. If F is an infinite field, G′ is connected, |G| � 2, and G = G′ ∨ K1, then mr−(F , G) =
mr−(F , G′).

Proof. Let A′ be an optimal matrix for G′, and let V(K1) = {v}. Since every row of A′ has a nonzero

entry, there exists b ∈ range A′ such that every entry of b is nonzero. Then by Lemma 3.9, r−v (G) = 0.

�

4. Computation of minimum skew rank of selected graphs

In this sectionwe apply the results in the preceding sections to determine theminimum skew rank

of some additional families of graphs. The minimum (symmetric) rank of these graphs is known and

listed in the AIM minimum rank graph catalog [2]. We begin by defining several families of graphs.

The wheel on n vertices, denoted by Wn, is constructed by adding a new vertex adjacent to all

vertices of the cycle Cn−1. The sth hypercube,Qs, is defined inductively byQ1 = K2 andQs+1 = Qs � K2.

Clearly |Qs| = 2s. Them, k-pineapple (withm� 3, k � 1) is Pm,k = Km ∪ K1,k such that Km ∩ K1,k is the

vertex of K1,k of degree k; P5,3 is shown in Fig. 4.

The sth half-graph, denoted Hs, is constructed from (disjoint) graphs Ks and Ks, having vertices

u1, . . . , us, vs+1, . . . , v2s, respectively, by adding all edges {ui, vj} such that i + j � 2s + 1. Fig. 5 shows
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Fig. 4. The pineapple P5,3.

Fig. 5. The 3rd half-graph H3.

H3, with the vertices of the K3 being colored black and the vertices of the K3 colored grey. Note that

half graph Hs is the graph on 2s vertices with the largest number of edges among graphs G such that G

has a unique perfect matching (in Fig. 5, the three heavy lines are the unique perfect matching of H3)

[12, Corollary 5.3.14].

The necklace with s diamonds, denoted Ns, is a 3-regular graph on 4s vertices that can be con-

structed from a 3s-cycle by appending s extra vertices, with each “extra" vertex adjacent to three

sequential cycle vertices; N3 is shown in Fig. 6 (the coloring of the vertices is explained in the proof of

Proposition 4.4).

The corona of G with H, denoted G ◦ H, is the graph of order |G||H| + |G| obtained by taking one

copy of G and |G| copies of H, and joining all the vertices in the ith copy of H to the ith vertex of G.

For many of the graphs we discuss, the minimum skew rank is the same over all fields (of charac-

teristic not 2), but as we saw in Example 2.3, the minimum skew rank can differ for finite fields, and it

seems plausible that like minimum (symmetric) rank, minimum skew rank can differ even over fields

of characteristic zero, although we do not have an example of such a graph.

Proposition 4.1. Let F be a field.

1. mr−(F , Pn) =
{
n if n is even,

n − 1 if n is odd.

2. mr−(F , Pm,k) � 4 (m� 3, k � 1).
3. mr−(F ,Hs) = 2s = |Hs|.
4. mr−(F , G ◦ K1) = 2|G| = |G ◦ K1|.

Proof

1. This is an immediate consequence of Theorem 2.7.

2. Pm,k = Km ∪ K1,k , so by Proposition 3.3, mr−(F , Pm,k) �mr−(F , Km) + mr−(F , K1,k) = 4. Since
Pm,k contains the paw as an induced subgraph, mr−(Pm,k) � 4.

3. Hs has a unique perfect matching, so Observation 1.6 applies.

4. G ◦ K1 has a unique perfect matching, so again Observation 1.6 applies. �

Proposition 4.2. Over any field F , mr−(F , Cn) =
{
n − 1 if n is odd,

n − 2 if n is even.

Proof. Note that Cn has an induced Pn−1, so mr−(F , Cn) is at least the stated rank. Define An = [aij] ∈
S−(F , Cn) by ai,i+1 = 1, ai+1,i = −1, i = 1, . . . , n − 1, an,1 = 1, a1,n = −1 and all other entries are
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Fig. 6. The necklace N3.

zero. Since [1, 1, . . . , 1, 1]T ∈ ker A, and if n is even, [1,−1, . . . , 1,−1]T ∈ ker A, rank A realizes the

stated minimum rank. �

SinceWn = Cn−1 ∨ K1, by Proposition 3.11 we have the following corollary.

Corollary 4.3. Over an infinite field F , mr−(F ,Wn) =
{
n − 2 if n is even,

n − 3 if n is odd.

Proposition 4.4. Over any field F with at least five elements, mr−(F ,Ns) = 4s − 2.

Proof. Since Ns has 4s vertices and more than one perfect matching (because it contains a 4s-cycle),

by Theorem 2.6, mr−(Ns) � 4s − 2. The deletion of two vertices from the 3s-cycle that are the ends of

consecutive diamonds leaves an induced subgraphwith a unique perfectmatching (in Fig. 6, if the two

grey vertices are deleted, then the heavy edges are the unique perfectmatching), somr−(Ns) � 4s − 2.

�

Proposition 4.5. Over any field F , for s� 2, mr−(F , Ct ◦ Ks) =
{
3t − 1 if t is odd,

3t − 2 if t it even.

Proof. Since Ct ◦ Ks can be covered by t copies ofKs+1 and one Ct , intersecting only at cycle vertices, by

Proposition 3.3, mr−(F , Ct ◦ Ks) � 2t + (t − 1 if t is odd, or t − 2 if t is even) = 3t − 1if t is odd, or

3t − 2 if t is even.
Let Z be the set of vertices consisting of all but 2 of the vertices in each Ks and two consecutive

vertices on the cycle. Note that |Z| = t(s − 2) + 2. Then Z is a zero forcing set for Ct ◦ Ks, so ts + t −
(t(s − 2) + 2) = 3t − 2�mr−(Ct ◦ Ks). So if t is even, mr−(Ct ◦ Ks) = 3t − 2. If t is odd, 3t − 2 is

odd, so mr−(Ct ◦ Ks) = 3t − 1. �

Proposition 4.6. Over a field F such that the characteristic of F is 0, or |F| � 6,mr−(F ,Qs) = 2s−1 for

s� 2.

Proof. Over any field, mr−(F ,Qs) � 2s−1 by Corollary 3.8.

Let F be as prescribed. As noted in [7, Theorem 3.14], there are nonzero scalars α,β in F such that

α2 + β2 = 1. We define the matrices Ls as follows:

L1 =
[

0 1

−1 0

]
and Ls =

[
αLs−1 βI

−βI −αLs−1

]
.

Each Ls ∈ F2
s×2s is a skew-symmetric matrix. We show by induction that L2s = −I2s . This is clearly

true for s = 1. Next, we assume L2s−1 = −I2s−1 , so

L2s =
[
αLs−1 βI

−βI −αLs−1

]2
=
[
α2L2s−1 − β2I 0

0 −β2I + α2L2s−1

]
=
[−I 0

0 −I

]
.
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Define

Hs =
[
Ls−1 I

−I Ls−1

]
.

Each Hs ∈ F2
s×2s is a skew-symmetric matrix such that Hs ∈ S−(Qs). Since[

I 0

−Ls−1 I

] [
Ls−1 I

−I Ls−1

]
=
[
Ls−1 I

0 0

]
,

rank Hs = 2s−1. Therefore, mr−(F ,Qs) � 2s−1 for s� 2. �

4.1. Minimum skew rank over the real numbers

In this subsection we apply techniques that are specific to the real numbers.

A standard technique for establishing theminimum(symmetric) rankof a CartesianproductG � H is

to use a Kronecker product construction to produce amatrix inS(G � H) (cf. [1]) (and use the zero forc-

ing number to bound the minimum rank from below). We adapt this method to minimum skew rank.

If A is an s × s real matrix and B is a t × t real matrix, then A ⊗ B is the s × s block matrix whose

ijth block is the t × t matrix aijB. Note that (A ⊗ B)T = AT ⊗ BT , so if one of A, B is symmetric and the

other is skew-symmetric, A ⊗ B is skew-symmetric. Let G be a graph on s vertices, let H be a graph

on t vertices, let A ∈ S−(G) and B ∈ S−(H). Then A ⊗ It + Is ⊗ B ∈ S−(G � H) (cf. [10, 9.7]). If x is

an eigenvector of A for eigenvalue λ and y is an eigenvector of B for eigenvalue μ, then x ⊗ y is an

eigenvector of A ⊗ It + Is ⊗ B for eigenvalue λ + μ.

Lemma 4.7. Let A ∈ Rn×n be skew-symmetric and let the distinct eigenvalues of A be λ1, . . . , λk with

multiplicities m1, . . . ,mk. Then rank(A ⊗ In − In ⊗ A) � n2 −∑k
i=1 m

2
i .

Proof. Since A is skew-symmetric, over C there exist independent eigenvectors x
(i)
j , j = 1, . . . ,mi

for λi, and thus independent null vectors x
(i)
j ⊗ x

(i)
� , 1� j, � �mi, 1� i � k. Thus viewing A ∈ Cn×n,

rank A� n2 −∑k
i=1 m

2
i , and viewing A as a real matrix does not increase its rank. �

Proposition 4.8. mr−(R, Ps � Ps) = s2 − s = mr(R, Ps � Ps).

Proof. Since Z(Ps � Ps) = M(R, Ps � Ps) = s [1], by Proposition 3.7, s2 − s = mr(R, Ps � Ps) �mr−(R,

Ps � Ps). But by Lemma 4.7, for any A ∈ S−(R, Ps), rank(A ⊗ In − In ⊗ A) � s2 − s and A ⊗ In − In ⊗
A ∈ S−(R, Ps � Ps), so mr−(R, Ps � Ps) � s2 − s. �

Lemma 4.9. There exists A ∈ S−(Kn) such thatmultA(i) = multA(−i) = � n
2
� (and zero is an eigenvalue

of multiplicity one if n is odd).

Proof. LetB =
[

0 1

−1 0

]
⊕ · · · ⊕

[
0 1

−1 0

]
ifn is evenandB =

[
0 1

−1 0

]
⊕ · · · ⊕

[
0 1

−1 0

]
⊕ [0]

if n is odd. Choose a real orthogonal matrix U such that UBU∗ has all off-diagonal entries nonzero.2

�

Proposition 4.10

mr−(Ks � Pt) =
{
st − s + 1 if s is odd and t is even;
st − s otherwise.

2 The existence of such aU can be argued by noting that for any i, j and k /∈ {i, j}, and any skew-symmetricmatrix C = [cr,s]with

cik /= 0, there is a suitable Given’s rotation Q such that the (i, k) and (j, k) entries of QTCQ are both nonzero and the (r, s)-entry
of QCQT is nonzero whenever the (r, s)-entry of C is nonzero. Thus, if C /= 0, then C is orthogonally similar to a matrix with no

off-diagonal zeros.
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Proof. s = Z(Ks � Pt) � Z−(Ks � Pt) (the equality was established in [1]), so st − s�mr−(Ks � Pt). In
the case s is odd and t is even, st − s is odd, so st − s + 1�mr−(Ks � Pt).

Construct As ∈ S−(Ks) such that multA(i) = multA(−i) = � s
2
� (and 0 as an eigenvalue of multi-

plicity one if s is odd). By scalar multiplication we can construct Bt ∈ S−(Pt) having eigenvalues ±i,

and also 0 if t is odd. ThenmultAs⊗It+Is⊗Bt (0) = s, except if s is odd and t is even, multAs⊗It+Is⊗Bt (0) =
s − 1. Thus st − s�mr−(Ks � Pt), except if s is odd and t is even, st − s + 1�mr−(Ks � Pt). �

5. Open questions

In this sectionwe list some open questions aboutminimum skew rank.We assume throughout this

section that the field F is infinite, because the answers differ for finite fields.

Note that for n even, [12] completely characterizes those G for which there is a unique perfect

matching, hence by Theorem 2.6, the graphs for which mr−(F , G) is as large as possible. It is natural

to ask the same question for n odd, namely:

Question 5.1. Characterize G such that mr−(F , G) = |G| − 1.

Examples of graphs with this property include any graph G with a vertex v such that G − v has a

unique perfect matching. To date these are the only known examples (over an infinite field). Example

2.3 shows mr−(Z3, K5) = |K5| − 1, despite the fact that K5 − v = K4 does not have a unique perfect

matching for any vertex v.

Question 5.2. Characterize the graphs G such that mr−(F , G) = 4.

Since 4 is the second smallest possibleminimumskew rankof a graph that has an edge, Question 5.2

is related to the interesting and important results characterizing mr(G) = 2 (for symmetric matrices)

in [5]. Again, Example 2.3 shows that the answer can be different over a finite field.

Question 5.3. Characterize G such that mr−(F , G) = MR−(F , G).

Again, Example 2.3 shows that the answer can be different over a finite field. A graph G satisfying

mr−(F , G) = MR−(F , G) is said to have fixed rank (over F), since rankA is constant for A ∈ S−(F , G).

Appendix. Polynomials over finite fields

In this appendix we establish some results about polynomials over finite fields that are needed for

the proofs given in Section 2. These results may be known, but we do not have a reference.

Proposition 5.4. Let F be a field with q� 3 elements, and let p(x1, x2, . . . , xm) be a nonzero homogeneous

polynomial in F[x1, . . . , xm] of degree d such that each monomial x
e1
1 x

e2
2 · · · xemm satisfies ek � 1 for k =

1, 2, . . . ,m. Then there exist a1, a2, . . . , am ∈ F \ {0} such that p(a1, a2, . . . , am) /= 0.

Proof. The proof is by induction on m. If m = 1, p has the form cx1 or c for some nonzero c, and we

may simply take x1 = 1.

Assumem� 2 and proceed by induction. Write

p(x1, x2, . . . , xm) = xmr(x1, . . . , xm−1) + s(x1, . . . , xm−1)

for some homogeneous polynomials r and s in F[x1, . . . , xm−1]. If s is not the zero polynomial, then s

is homogeneous of degree d and by the inductive assumption, there exist nonzero a1, . . . , am−1 such

that s(a1, . . . , am−1) /= 0. If r(a1, a2, . . . , am−1) = 0, then p(a1, . . . , am−1, 1) /= 0. Otherwise,

p(a1, . . . , am−1, am) /= 0

for each am other than− s(a1,...,am−1)
r(a1,...,am−1)

. Since F has at least two nonzero elements, there is such a nonzero

am.
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Next consider the case that s is the zero polynomial. Since p is not the zero polynomial, r is not the

zero polynomial, and hence is a nonzero homogeneous polynomial in m − 1 variables. By induction

there exist a1, . . . , am−1 ∈ F \ {0}with r(a1, a2, . . . , am−1) /= 0, andhencep(a1, a2, . . . , am−1, 1) /= 0.

�

Lemma 5.5. Let F be a field with q� 4 elements, and let t(x1, x2, . . . , xm) be a nonzero homogeneous

polynomial in F[x1, . . . , xm] of degree d such that each monomial x
e1
1 x

e2
2 · · · xemm satisfies ek � 2 for k =

1, 2, . . . ,m. Then there exist a1, . . . , am ∈ F \ {0} such that t(a1, . . . , am) /= 0.

Proof. By induction on m. If m = 1, then t(xm) is cx2m, cxm or c for some nonzero c, and we may take

xm = 1.

Assume m� 2 and proceed by induction. Write

t(x1, . . . , xm) = x2mj(x1, x2, . . . , xm−1) + xmk(x1, . . . , xm−1) + �(x1, . . . , xm−1).

For a1, . . . , am−1 ∈ F \ {0},
t(a1, . . . , am−1, xm) = x2mj(a1, a2, . . . , am−1) + xmk(a1, . . . , am−1) + �(a1, a2, . . . , am−1)

is a polynomial in F[xm]. If there is an am ∈ F \ {0} such that t(a1, a2, . . . , am−1, xm) evaluated at

xm = am is nonzero, then we are done.

Otherwise, for each choice of a1, . . . , am−1 ∈ F \ {0}, each nonzero element of F is a root of

t(a1, a2, . . . , am−1, xm). We claim that this cannot occur. As F has at least four elements,

t(a1, a2, . . . , am−1, xm) has at least three roots and degree at most two. Thus, t(a1, a2, . . . , am−1, xm) is
the zero polynomial for each choice of a1, . . . , am−1 ∈ F \ {0}. In particular, each of the homogeneous

polynomials, j, k, � vanishes at each choice of (a1, a2, . . . , am−1) with a1, . . . , am−1 ∈ F \ {0}. Hence
by induction, each of j, k and � is the zero polynomial, which cannot happen since t is nonzero. �

Note that if F is the field with three elements, and p(x, y) = x2 − y2, then p(a, b) = 0 for each

choice of a, b ∈ F \ {0}. So Lemma 5.5 needs q� 4.

Proposition 5.6. Let F be a field with more than three elements, and let p(x1, x2, . . . , xm) be a nonzero

homogeneous polynomial in F[x1, . . . , xm] of degree d such that each monomial x
e1
1 x

e2
2 · · · xemm satisfies

ek � 1 for k = 1, 2, . . . ,m. Then either p(x1, x2, . . . , xm) has exactly one nonzero term or there exist ai ∈
F \ {0} such that p(a1, a2, . . . , am) = 0.

Proof. Assume that p(x1, x2, . . . , xm) has at least two nonzero terms. Since p is homogeneous and

has at least two nonzero terms, there is an i such that p has one term involving xi and another

term that does not involve xi. Without loss of generality, we may take i = m. Write p(x1, . . . , xm) =
xmr(x1, . . . , xm−1) + s(x1, . . . , xm−1). Since xm is in some term of p(x1, . . . , xm), r is not the zero

polynomial. Since xm is not in some term of p(x1, . . . , xm), s is not the zero polynomial.

Consider the polynomial t(x1, x2, . . . , xm−1) = r(x1, . . . , xm−1)s(x1, . . . xm−1). Note that t is homo-

geneous, nonzero, and the exponent of each xj in each monomial is at most 2. Thus, by Lemma 5.5,

there exist nonzero a1, . . . , am−1 such that t(a1, . . . , am−1) /= 0. Now observe that

p

(
a1, a2, . . . , am−1,

−s(a1, . . . , am−1)

r(a1, . . . , am−1)

)
= 0

and each of a1, a2, . . . , am−1, and
−s(a1,...,am−1)
r(a1,...,am−1)

is nonzero. �

References

[1] AIM Minimum Rank – Special Graphs Work Group (F. Barioli, W. Barrett, S. Butler, S.M. Cioabă, D. Cvetković, S.M. Fallat, C.
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