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1. Introduction

A magic square M is an n-by-n array of numbers in which the sum of entries along each row,

each column, the main diagonal and the cross diagonal are the same constant μ called the magic
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sum. If the entries of M are integers from 1 through n2 then M is said to be a classical magic square

or natural magic square with magic sum
n(n2+1)

2
. A magic square M = [mij] is said to be regular if

mij + mn+1−i,n+1−j = 2μ
n
. In other words, in a regular magic square the sum of any two entries that

are symmetrically placed across the center of the square is equal to
2μ
n
. In the case of classical magic

square symmetrically placed entries would sum to n2 + 1 and the entries are said to be complements

of each other. Regular magic squares are also called associated or symmetrical magic squares.

The famous Dürer’s magic square⎡
⎢⎢⎢⎢⎢⎢⎣

16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1

⎤
⎥⎥⎥⎥⎥⎥⎦

is an example of a regular magic square [7]. It was observed earlier (for example, see [6]) that regular

magic squares of even order are singular i.e., the determinant of an even order regular magic square is

zero. Mattingly [5] proved this result in 2000. For odd orders, the only classical magic square of order

three is regular and nonsingular. In [4] the authors using a backtracking program found all the regular

magic squares of order five and found a small number of them (656 out of 48,544) to be singular. One

such 5-by-5 magic square exhibited below has zero as an eigenvalue with multiplicity two:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

15 12 21 10 7

2 6 17 18 22

25 23 13 3 1

4 8 9 20 24

19 16 5 14 11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Therefore, in this paper we address the question of when an odd order regular magic square is

nonsingular. We provide a necessary and sufficient condition for an odd order regular magic square to

be nonsingular. Further we describe a method to construct nonsingular regular magic squares using

circulant matrices and orthogonal latin squares when the order of the magic square is an odd prime

power.

2. Eigenvalues of a magic square

In this sectionwe collect some results on eigenvalues ofmagic squares that are needed in this paper.

Since the field of complex numbers is algebraically closed, the characteristic polynomial PM(z) of an

n-by-nmagic squareM can be written as a product of linear factors,

PM(z) = det(zI − M) =
n∏

i=1

(z − mi),

where I is the identity matrix and the complex numbers m1, . . . ,mn are the eigenvalues of M. Since

Me = μe, where e is a column vector of all 1’s, we observe that the magic sum μ is an eigenvalue of

M.

Let E denote the matrix of all 1’s for its entries. The following theorem is found in [1]. We provide

a simpler proof using Schur’s unitary triangularization theorem [3].

Theorem 2.1. If M is an n-by-n magic square and p ∈ C, then M + pE has the same eigenvalues of M

except that μ is replaced with μ + pn.
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Proof. Since ME = μE = EM there is a unitary matrix U such that U∗MU = T and U∗EU =
S where T and S are upper triangular matrices with the diagonal entries being the eigenvalues of

M and E, respectively. We order the eigenvalues of M as μ,m2, . . . ,mn. Since E has eigenvalues n

with multiplicity one and 0 with multiplicity n − 1 we may order them s1, s2, . . . , sn. Note that

M + pE is a magic square with magic sum μ + pn. Hence its eigenvalues are μ + pn, k2, . . . , kn. Now
U∗(M + pE)U = T + pS has diagonal entries that are eigenvalues ofM + pE. Thus,μ+ pn = μ+ ps1,

and ki = mi + psi for i = 2, . . . , n. Hence s1 = n. Since s2, . . . , sn are all zero it follows that ki = mi

for 2 � i � n. �

Corollary 2.2. If M is a magic square, then M − μ
n
E has the same eigenvalues m2, . . . ,mn as M except

that μ is replaced by 0.

The above corollary is also proved in [5].

3. Regular magic squares

Let J denote the permutationmatrix obtained by writing 1 in each of the cross diagonal entries and

0 elsewhere. Since multiplying a matrix on the left by J reverses the order of the rows andmultiplying

on the right by J reverses the order of the columns, we will call J the reversalmatrix. Also, observe that

JT = J and J2 = I (that is, J is self-adjoint and is its own inverse).

Observation 3.1. An n-by-nmatrixM is a regular magic square if and only if

M + JMJ =
(
2μ

n

)
E, (1)

where μ is the magic sum.

Definition 3.2. IfM is a regular magic square we define

Z = M − μ

n
E

to be the corresponding zero regular magic square.

Definition 3.3. An n-by-nmatrix Bwith real entries is said to be centrosymmetric if JBJ = B and is said

to be centroskew if JBJ = −B.

The following lemma allows us to use properties of centroskew matrices to study regular magic

squares.

Lemma 3.4. If M is a regular magic square, the corresponding zero magic square Z is a centroskewmatrix.

Proof. Using (1) we see that Z + JZJ = (M − μ
n
E) + (JMJ − μ

n
E) = 0. �

In the following theorem, we give a necessary and sufficient condition for an odd order regular

magic square to be nonsingular.

Theorem 3.5. Let M be a regular magic square of order n = 2k + 1 with positive entries. We write the

corresponding centroskew matrix Z in partitioned form as follows:

Z =

⎡
⎢⎢⎢⎣

Z11 a Z13

bT 0 −bT J

−JZ13 J −Ja −JZ11J

⎤
⎥⎥⎥⎦ ,
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where Z11, Z13 are k×k matrices and a, b are k×1 vectors. ThenM is nonsingular if and only if Z11 +Z13 J

and Z11 − Z13 J are both nonsingular.

Proof. Using partitioned matrices

K =

⎡
⎢⎢⎢⎣

I 0 I

0 1 0

J 0 −J

⎤
⎥⎥⎥⎦ and K−1 = 1

2

⎡
⎢⎢⎢⎣

I 0 J

0 2 0

I 0 −J

⎤
⎥⎥⎥⎦ ,

where I, J are k × k matrices we find Z′ similar to Z , namely

Z′ = K−1ZK =

⎡
⎢⎢⎢⎣

0 0 Z11 − Z13 J

0 0 2bT

Z11 + Z13 J a 0

⎤
⎥⎥⎥⎦ .

Using elementary row operations we reduce Z′ − λI to

Z′ − λI ∼
⎡
⎣ −λI C12

0 1
λ
C21C12 − λI

⎤
⎦ ,

where C12 =
⎡
⎣ Z11 − Z13 J

2bT

⎤
⎦ and C21 =

[
Z11 + Z13 J a

]
. Therefore we can write the characteristic

polynomial of Z′ as

det
(
Z′ − λI

) = (−1)k+1λk+1 det
( 1
λ
C21C12 − λI

)
= (−1)k+1λ det

(
C21C12 − λ2I

)
.

Since Z is a zero regular magic square we observe that

a = −(Z11 + Z13)e and bT = eT (JZ13 J − Z11).

Thus, using JE = EJ = E we can write

C21C12 =
[
Z11 + Z13 J a

] ⎡
⎣ Z11 − Z13 J

2bT

⎤
⎦

= (Z11 + Z13 J)(Z11 − Z13 J) + (Z11 + Z13)2ee
T (Z11 − JZ13 J)

= (Z11 + Z13 J)(I + 2E)(Z11 − Z13 J).

Notice that det
(
I + 2E) = 2k+ 1 where I and E are k× kmatrices. To see this, observe that adding

columns 2 through k to the first column gives a constant first column consisting of 2k + 1. Then a row

reduction produces an upper triangularmatrixwith (2k+1) in (1, 1) position and 1 for the remaining

k − 1 diagonal entries.

Observe that λ2 is a factor of the characteristic polynomial det
(
C21C12 − λ2I

)
if and only if det

(
C21

C12
) = 0. Using Corollary 2.2 the eigenvalues of Z are the same asM except 0 replaces the eigenvalueμ

ofM. Thereforezero is aneigenvalueof anoddorder regularmagic squareM if andonly if det
(
C21C12

) =
0. Hence M is nonsingular if and only if Z11 + Z13 J and Z11 − Z13 J are nonsingular. �
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Remark. A result similar to Theorem 3.5 can be established for even order regular magic squares. As

a consequence it is possible to give a different proof of Mattingly’s result [5] mentioned earlier.

4. Latin squares and circulant matrices

In this section we describe properties of circulant matrices and latin squares that are needed in

this paper. These properties are utilized in the next section to develop a method of construction that

produces nonsingular regular magic squares.

Definition 4.1. A latin square is an n-by-n matrix containing n distinct numbers arranged in such a

way that each number appears exactly once in every row and in every column.

Definition 4.2. Two n-by-n latin squares A and B are said to be orthogonal if the n2 ordered pairs

obtained using the corresponding entries of A and B are distinct. In this case, each matrix is said to be

an orthogonal mate of the other.

For further information on latin squares the reader may consult [2].

Definition 4.3. An n-by-nmatrix is said to be a circulant if each rowother than the first row is obtained

from the preceding row by shifting entries cyclically one column to the right.

Example 4.4. The following is a 5-by-5 circulant matrix⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 a2 a3 a4 a5

a5 a1 a2 a3 a4

a4 a5 a1 a2 a3

a3 a4 a5 a1 a2

a2 a3 a4 a5 a1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Observation 4.5. Suppose A is a circulant matrix with n distinct entries in the first row. Then it is easy

to verify each of the following conditions:

• A is a latin square.
• A is a Toeplitz matrix.
• When n is odd, the cross diagonal and all broken diagonals parallel to the cross diagonal of A

have all the n distinct elements of the first row.

We will denote by P the right shifting permutation matrix with all entries equal to 1 on the super-

diagonal and 1 in the lower left corner with remaining entries equal to zero. Note that if a matrix A

is multiplied by P on the right then each column of A is shifted to its right and the last column of A

is shifted to the first column of A. Moreover, Pn = I and that the eigenvalues of P are the nth roots of

unity [3].

For the rest of the paper let n denote an odd integer and S denote the set

S =
{
−n − 1

2
, . . . , −1, 0, 1, . . . ,

n − 1

2

}
. (2)

Definition 4.6. Let
→
a = (a1, a2, . . . , an) be a list consisting of n distinct members from S in (2) and

a1 = 0. A circulant matrix Awith its first row equal to
→
a is called a S-circulant matrix.
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For example

A5a =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −1 −2 1 2

2 0 −1 −2 1

1 2 0 −1 −2

−2 1 2 0 −1

−1 −2 1 2 0

⎤
⎥⎥⎥⎥⎥⎥⎦

is a S-circulant matrix of order 5.

Lemma 4.7. Suppose A is a S-circulant matrix. Then A is a zero magic square.

Proof. Since the sum of the members of S in (2) is zero, the lemma follows from Observation 4.5. �

Lemma 4.8. Suppose A is a S-circulant matrix. Then A is centroskew if and only if

aj+1 + an+1−j = 0 for j = 1, . . . , n − 1.

Proof. Let A be a S-circulant matrix. Then A can be written as A = ∑n−1
j=0 aj+1P

j where P is the

right shifting permutation matrix. Since JPkJ = Pn−k and a1 = 0 we get A + JAJ = ∑n−1
j=0 aj+1P

j +∑n−1
k=0 ak+1P

n−k = ∑n−1
j=1 aj+1P

j + ∑n−1
j=1 an+1−jP

j = ∑n−1
j=1 (aj+1 + an+1−j)P

j . Hence it follows that A

is centroskew if and only if aj+1 + an+1−j = 0 for j = 1, . . . , n − 1. �

Example 4.9. The following is a S-circulant matrix that is centroskew.

A5b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2 −1 1 −2

−2 0 2 −1 1

1 −2 0 2 −1

−1 1 −2 0 2

2 −1 1 −2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Lemma 4.10. Let A be a S-circulant matrix. Then JA and AJ are orthogonal mates. Moreover, if A is a

centroskew matrix then JA and AJ are centroskew.

Proof. Multiplication of A by J on the right reverses the order of columns of A. Therefore the broken

diagonals parallel to the main diagonal interchange with broken diagonal parallel to the cross diag-

onal. If we pair up entries of A and AJ each constant diagonal entry in a diagonal of A parallel to the

main diagonal pairs up with distinct entries from S in (2) in the corresponding position in AJ using

Observation 4.5. Therefore A and AJ are orthogonal latin squares. Moreover, if A is centroskew then

J(AJ)J = (JAJ)J = −AJ. Hence AJ is centroskew. Similar proof can be given to show A and JA are

orthogonal latin squares and JA is centroskew when A is a centroskew matrix. �

5. Nonsingular regular magic squares

In this section we provide a method to construct nonsingular regular magic squares whose orders

are odd primes and powers of odd primes.Weutilize the results fromSection 4 to develop thismethod.

Proposition 5.1. Let A be a centroskew S-circulant matrix of order n. Define Z = nA + AJ. Then Z is a

centroskew zero magic square with n2 distinct entries from the set
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Q =
{
−(

n2 − 1

2
), . . . , −1, 0, 1, . . . , (

n2 − 1

2
)

}
. (3)

Proof. Since JZJ = nJAJ + J(AJ)J = −nA − AJ = −Z , using Lemma 4.10, we see that Z is centroskew.

Since A has n distinct entries from the set S in (2) we see that nA has n distinct entries from the set nS.

From Lemma 4.10 we know that A and AJ are orthogonal latin squares. Hence nA and AJ are orthogonal

latin squares. Since entries of Z are sums of n2 distinct ordered pairs of entries from nS and S, we see

that Z has n2 distinct entries from the set Q in (3). Since nA and AJ are zero magic squares Z is also a

zero magic square. �

Theorem 5.2. Let A be a centroskew S-circulant matrix of order n and Z = nA + AJ. If n is an odd prime

then rank(Z) = n − 1.

Proof. Let Z = nA+AJ = A(nI + J). Suppose B = nI + J. It is known that rank(B) = n and rank(Z) =
rank(AB) = rank(A). Since A is a S-circulant matrix its eigenvalues are determined by its first row and

are given by

⎧⎨
⎩

n−1∑
j=0

aj+1ω
kj : k = 0, 1, . . . , n − 1, ω = e

2π i
n

⎫⎬
⎭ . (4)

When k = 0 we find that the eigenvalue is zero since A is a zero magic square. For each value of

k = 1, . . . , n − 1, note that kj will have distinct values mod n where n is prime.

Hence for k �= 0, we have an eigenvalue
∑n−1

l=0 al+1ω
l where the al are distinct elements of the set

S in (2). Since ω is a primitive nth root of unity where n is a prime number and the coefficients are

distinct, the sum
∑n−1

l=0 al+1ω
l cannot be zero. Therefore zero is an eigenvalue of A of multiplicity one.

Hence rank(A) = n − 1. This proves the theorem. �

Example 5.3. Using thematrixA5b given in Example 4.9we get the followingmatrix Z5b = 5A5b+A5bJ

namely,

Z5b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 11 −6 7 −10

−9 −1 12 −5 3

4 −8 0 8 −4

−3 5 −12 1 9

10 −7 6 −11 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where rank(Z5b) = 4.

Theorem 5.4. Let A be a centroskew S-circulant matrix of order n and Z = nA + AJ. Let the first row of

A be �a = (a1, a2, . . . , an) and set aj = j − 1 for j = 1, . . . ,
(
n+1
2

)
. If n = pt where p is an odd prime,

then rank(Z) = n − 1.

Proof. Let n = pt where p is an odd prime and let Z = nA + AJ = A(nI + J) where A is an S-circulant

centroskewmatrix. Since we have set aj = j−1 for j = 1, . . . ,
(
n+1
2

)
and havemade A an S-circulant

centroskew matrix, we have defined all entries of the first row using Lemma 4.8. For if j > n+1
2

, then

aj = −an−j+1. As in the proof of Theorem 5.2, rank(Z) = rank(A) and the eigenvalues of A are given

by (4).
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We look at three different cases for k. They are k = 0, k relatively prime to p, and k a multiple of pa

where a < t − 1.

Case 1. As in the proof of Theorem 5.2, the eigenvalue is zero when k = 0.

Case 2. Assume now that k is relatively prime to p. This means that the kj are distinct values mod pt .

So the eigenvalues are
∑n−1

j=0 alω
l where the al are distinct numbers in the set S in (2).

It iswell known that forpprime, thepth cyclotomicpolynomial is�p(x) = xp−1+xp−2+· · ·+x+1

and more generally, for any b ∈ Z, the cyclotomic polynomial for pb is �pb(x) = x(p−1)pb−1 +
x(p−2)pb−1 +· · ·+ x1p

b−1 +1. Notice that�pb(x) = �p(x
pb−1

). The zeros of�pb are the primitive roots

of unity of order pb. With the above notation, this means �pb(ω
pt−b−1

) = 0.

The eigenvalue is a number which exists in the ring Q[ω]. For this reason, if the eigenvalue is zero,

then it is a linear combination of �pb(ω
pt−b−1

). However, each �pb(ω
pt−b−1

) has the property that the

coefficients onωg andωg+pt−1

are the same. Linear combinations of �pb(ω
pt−b−1

)must also have this

property. The eigenvalue clearly does not have this property so the eigenvalue cannot be zero.

Case 3. Let k = mps where 0 < s < t and m is relatively prime to p. The eigenvalue for this case

becomes
∑n−1

j=0 aj+1(ω
mps)j . There are pt−s distinct values for the (ωmps)j , so the eigenvalue will be∑pt−s

l=0 Cl(ω
ps)l where each Cl is a sum of ps aj ’s.

Examine C0. Notice that j = upt−s for some u ∈ Z if and only if (ωmps)j = 1. This means that

C0 = ∑ps−1
u=0 aupt−s+1. We have defined the aj ’s in such away as to have a1 = 0 and aj+1 = −an−j+1.

Since a1 = 0 is in the sum of C0 and also each an−upt−s+1 is in the sumof C0, wemust have that C0 = 0.

Examine Cmpt−s−1 . In this case, j = pt−s−1 + upt−s for some u ∈ Z if and only if (ωmps)j =
(ωps)mpt−s−1

. This forces Cmpt−s−1 = ∑ps−1
u=0 apt−s−1+upt−s+1. By thewaywehave defined our aj , we have

that aj + i = aj+i as long as j �= n+1
2

and j + i � n. This means that Cmpt−s−1 = pt−s−1(ps) = pt−1 so

long as pt−s−1 + upt−s �= n+1
2

. One can see that pt−s−1 + upt−s �= n+1
2

because if it were, p would

be a multiple of both n and n + 1 which cannot happen.

Recall that our eigenvalue is
∑pt−s

l=0 Cl(ω
ps)l which exists inside the group ring Q[ω]. To be zero in

this ring, the eigenvaluewould have to be a linear combination of�pb(ω
pt−b−1

) for different values of b.

Thiswould require our eigenvalue to have the property thatωg andωg+pt−1

have the same coefficients,

and by similar arguments, ωg and ωg+jpt−1

have the same coefficients for any j. Our eigenvalue does

not have this property since C0 �= Cmpt−s−1 .

From cases 2 and 3 for k �= 0we have seen that the corresponding eigenvalue is not zero. Therefore

zero is an eigenvalue of A of multiplicity one. Hence rank(A) =rank(Z) = n − 1. �

Theorem 5.5. Let A be a centroskew S-circulant matrix of order n. If n is an odd prime and Z = nA + AJ,

then M = Z + n2+1
2

E is a classical regular magic square that is nonsingular. Similarly if n is the power of

an odd prime and the first row of A is defined as aj = j − 1 for j = 1, . . . ,
(
n+1
2

)
, then M = Z + n2+1

2
E

is a classical regular magic square that is nonsingular.

Proof. Since Z = nA+AJ is a zero regularmagic squarewith n2 distinct entries from the setQ in (3)we

see thatM is a classical regularmagic square. Since Z is a centroskew zeromagic square corresponding

to M that has zero as an eigenvalue with multiplicity one (using Theorems 5.2 and 5.4), we conclude

from Corollary 2.2 thatM is nonsingular. �

6. Concluding remarks

The method of construction in the previous section gives at least one nonsingular classical regular

magic square for every order n which is a prime power. We give one example below.
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Example 6.1. Using Theorem 5.5 and Z5b from Example 5.3 we obtain the classical regular magic

squareM5b = Z5b + 13E namely,

M5b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

11 24 7 20 3

4 12 25 8 16

17 5 13 21 9

10 18 1 14 22

23 6 19 2 15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

which is nonsingular.

6.1. Case when n = 9

For oddprimes, Theorem5.2 requires that aj ∈ S, a1 = 0, and an−j+1 = −aj+1 for j = 1, . . . , n−1.

In Theorem5.4 an assumptionwasmade regarding the values of aj , namely aj = j−1 for 1 � j � n+1
2

.

There are other choices for aj that would also produce a Z so that rank(Z) = n − 1. For instance, if

one were to negate the aj ’s in Theorem 5.4, the proof would still work. Some other assignments do

not work. For example, let n = 9 and let the first row of a centroskew S-circulant matrix A9 be

[0, 1, −2, 4, −3, 3, −4, 2, −1]. This assignment has the properties aj ∈ S, a1 = 0, and an−j+1 =
−aj+1 for j = 1, . . . , n − 1. The eigenvalues of the matrix are still given by (4), but when k = 3 the

eigenvalue (0+4−4)+ (1−3+2)ω3 + (−1+3−2)ω6 = 0. Similarly the eigenvalue is zerowhen

k = 6. Using this first row for A9 yields a Z9 such that rank(Z9) = 6. This yields a classical regular

magic squareM9 namely,

M9 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

41 53 20 81 12 73 4 61 33

35 38 54 21 82 13 70 6 59

56 36 39 55 22 79 15 68 8

9 57 37 40 52 24 77 17 65

66 10 58 34 42 50 26 74 18

19 67 7 60 32 44 47 27 75

76 16 69 5 62 29 45 48 28

25 78 14 71 2 63 30 46 49

51 23 80 11 72 3 64 31 43

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

such that rank(M9) = 7.

6.2. Case when n = 15

Themethods in the previous sectionwork only for odd primes and odd prime powers. Onemay ask

if themethodwouldwork for products of distinct primes.When the variable n is the product of distinct

primes the cyclotomicpolynomials aremore complex. Therefore,wedonot knowwhether the theorem

would hold when n is the product of distinct primes. However in the case that n = 15, we have found

that theconstruction inTheorem5.4doeswork. Ifwe let thefirst rowofa centroskewS-circulantmatrix

A15 be [0, 1, 2, 3, 4, 5, 6, 7, −7, −6, −5, −4, −3, −2, −1], we obtain the corresponding classical

regular magic squareM15 namely,
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M15 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

112 126 140 154 168 182 196 225 14 28 42 56 70 84 98

96 110 124 138 152 166 195 209 223 12 26 40 54 68 82

80 94 108 122 136 165 179 193 207 221 10 24 38 52 66

64 78 92 106 135 149 163 177 191 205 219 8 22 36 50

48 62 76 105 119 133 147 161 175 189 203 217 6 20 34

32 46 75 89 103 117 131 145 159 173 187 201 215 4 18

16 45 59 73 87 101 115 129 143 157 171 185 199 213 2

15 29 43 57 71 85 99 113 127 141 155 169 183 197 211

224 13 27 41 55 69 83 97 111 125 139 153 167 181 210

208 222 11 25 39 53 67 81 95 109 123 137 151 180 194

192 206 220 9 23 37 51 65 79 93 107 121 150 164 178

176 190 204 218 7 21 35 49 63 77 91 120 134 148 162

160 174 188 202 216 5 19 31 47 61 90 104 118 132 146

144 158 172 186 200 214 3 17 31 60 74 88 102 116 130

128 142 156 170 184 198 212 1 30 44 58 72 86 100 114

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The magic square M15 has rank of 15. There are other assignments of the first row for a 15-by-

15 centroskew S-circulant matrix A that do not force rank(M) = 15. For example, if the first row

of a centroskew S-circulant matrix A is [0, 1, 2, 5, 7, 4, 6, 3, −3, −6, −4, −7, −5, −2, −1] then the

eigenvaluecorresponding tok = 3 in (4) is zero. Ifwe let thefirst rowofacentroskewS-circulantmatrix

A be [0, 3, 1, 2, 7, 4, 6, −5, 5, −6, −4, −7, −2, −1, −3] the eigenvalue corresponding to k = 5

in (4) is zero. Therefore, we leave as an open question whether the assignment of aj = j − 1 for

1 � j �
(
n+1
2

)
always leads to getting nonsingular classical regular magic squares when n is a

product involving two or more distinct primes.
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