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Abstract

For a closed system to equilibrate from a given initial condition there must exist an equilibrium state with 
the energy equal to the initial one. Equilibrium states of a strongly coupled gauge theory with a gravitational 
holographic dual are represented by black holes. We study the spectrum of black holes in Pilch–Warner 
geometry. These black holes are holographically dual to equilibrium states of strongly coupled SU(N)

N = 2∗ gauge theory plasma on S3 in the planar limit. We find that there is no energy gap in the black hole 
spectrum. Thus, there is a priori no obstruction for equilibration of arbitrary low-energy states in the theory 
via a small black hole gravitational collapse. The latter is contrasted with phenomenological examples of 
holography with dual four-dimensional CFTs having non-equal central charges in the stress–energy tensor 
trace anomaly.
© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction and summary

Consider an interacting system in a finite volume. Suppose that the theory is gapless — there 
are arbitrary low-energy excitations. If a generic state in a theory equilibrates, there cannot be a 
gap in the spectrum of equilibrium states in the theory. This obvious statement has a profound im-
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plication for strongly coupled gauge theories with an asymptotically AdS gravitational dual [1]. 
In a holographic dual the equilibrium states are realized by black holes [2]. Thus, if it is possi-
ble to prepare an arbitrary low-energy initial configurations in a holographic dual with a gapped 
spectrum of black holes, such states of the boundary gauge theory will never equilibrate. Corre-
spondingly, the asymptotically AdS dual is guaranteed to be stable against gravitational collapse 
for sufficiently small amplitude of the perturbations. Examples of this type would violate ergod-
icity from the field theory perspective.

In this paper we show that while it is possible to realize above scenario in a phenomenological 
(bottom-up) holographic example — the Einstein–Gauss–Bonnet (EGB) gravity with a negative 
cosmological constant, it does not occur in a specific model of gauge theory/supergravity corre-
spondence we consider — the holographic duality between N = 2∗ SU(N) gauge theory and the 
gravitational Pilch–Warner (PW) flow [3–5].

From the gauge theory perspective, SU(N) N = 2∗ gauge theory is obtained from the parent 
N = 4 SYM by giving a mass to N = 2 hypermultiplet in the adjoint representation. In R3,1

space–time, the low-energy effective action of the theory can be computed exactly [6]. The the-
ory has quantum Coulomb branch vacua MC , parameterized by the expectation values of the 
complex scalar � in the N = 2 vector multiplet, taking values in the Cartan subalgebra of the 
gauge group,

� = diag(a1, a2, · · · , aN) ,
∑

i

ai = 0 , (1.1)

resulting in complex dimension of the moduli space

dimC MC = N − 1 . (1.2)

In the large-N limit, and for strong ’t Hooft coupling, the holographic duality reduces to the 
correspondence between the gauge theory and type IIb supergravity. Since supergravities have 
finite number of light modes, one should not expect to see the full moduli space of vacua in 
N = 2 examples of gauge/gravity correspondence. This is indeed what is happening: the PW 
flow localizes on a semi-circle distribution of (1.1) with a linear number density [4],

Im(ai) = 0 , ai ∈ [−a0, a0] , a2
0 = m2g2

YMN

4π2
,

ρ(a) = 8π

m2g2
YM

√
a2

0 − a2 ,

a0∫
−a0

da ρ(a) = N , (1.3)

where m is the hypermultiplet mass. This holographic localization can be deduced entirely from 
the field theory perspective [7], using the S4-supersymmetric localization techniques [8]. To 
summarize, N = 2∗ holography is a well-understood nontrivial example of gauge/gravity corre-
spondence that passes a number of highly nontrivial tests [4,7,9].

We would like to compactify the background space of the N = 2∗ strongly coupled gauge 
theory on S3 of radius � — in a dual gravitational picture we prescribe the boundary condition 
for the non-normalizable component of the metric in PW effective action to be that of R × S3. 
This is in addition to specifying non-normalizable components (corresponding to m in (1.3)) for 
the two PW scalars, dual to the mass deformation operators of dimensions � = 2 and � = 3
of the gauge theory hypermultiplet mass term. Thus, we produced a holographic example of 
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a strongly interacting system in a finite volume. The single dimensionless parameter,1 so far, 
is m�. We proceed to construct regular solutions of the PW effective gravitational action with the 
prescribes boundary condition, interpreting them as vacua of S3-compactified strongly coupled 
N = 2∗ gauge theory. Using the standard holographic renormalization technique2 we compute 
the vacuum energy of the theory as a function of m�, Evacuum = Evacuum(m�). We do not ver-
ify in this work whether described S3-compactifications preserve any supersymmetry; thus, it 
is important to check the stability of the vacuum solutions. Previously, careful analysis of the 
S4-compactified PW holographic flows of [11] pointed to the discrepancy in the free energy of 
the solutions, compared with the localization prediction in [7]. This discrepancy was resolved 
by identifying a larger truncation [9] (BEFP),3 where it was pointed out that preservation of the 
S4-supersymmetry necessitates turning on additional bulk scalar fields. Stability of the PW em-
bedding inside BEFP was discussed in [12]. We verify here that S3-compactified PW vacua are 
stable within BEFP truncation. Having constructed vacuum solutions, we move to the discussion 
of the black hole spectrum. We construct regular Schwarzschild black hole solutions in PW ef-
fective action, and compute δE ≡ δE(m�, �BH/L) ≡ E − Evacuum(m�). We argue that there is 
no obstruction of initializing arbitrary low-energy excitations over the vacuum. Thus, one would 
expect no gap in the energy spectrum of PW black hole solutions, realizing equilibrium configu-
rations of the strongly coupled N = 2∗ gauge theory in the planar limit. Indeed, we find strong 
numerical evidence that

lim
�BH/L→0

δE(m�, �BH/L)

Evacuum(m� = 0)
= 0 . (1.4)

The rest of the paper is organized as follows. In the next section we discuss the spectrum of 
black holes in five-dimensional EGB gravity with a negative cosmological constant. These grav-
itational backgrounds can be interpreted as holographic duals to equilibrium states of strongly 
coupled conformal gauge theories with non-equal central charges in the stress–energy tensor 
trace anomaly. We show that there is a gap in the spectrum of black holes. However, as one 
imposes constraints on EGB gravity coming from interpreting it as an effective description of 
gauge theory/string theory correspondence, the claim about the gap becomes unreliable — higher 
derivative corrections, which are not under control, make order-one corrections to the gap. We 
follow up with the discussion in the N = 2∗ holographic example. In Section 3 we review the 
PW effective action and its embedding within a larger BEFP truncation. In Section 4 we con-
struct gravitational dual to vacuum states of N = 2∗ gauge theory on S3. Stability of the latter 
states within BEFP truncation is discussed in Section 5. In Section 6 we study the spectrum of 
black holes in PW effective action.

2. Black hole spectrum in Einstein–Gauss–Bonnet gravity

Effective action of a five-dimensional Einstein–Gauss–Bonnet gravity with a negative cosmo-
logical constant takes form:

1 N = 2∗ theory in Minkowski space–time has a scale associated with the Coulomb branch moduli distribution (1.3). 
Once the theory is compactified on the S3 the moduli space is lifted.

2 For the model in hand this was developed in [10].
3 Of course, BEFP can itself be consistently truncated to PW.
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S = 1

2�3
p

∫
M5

d5z
√−g

(
12

L2
+ R + λGB

2
L2

(
R2 − 4RμνR

μν + Rμνρσ Rμνρσ
))

. (2.1)

When interpreted in a framework of gauge theory/gravity correspondence,4 EGB action (2.1)
represents a holographic dual to a putative strongly coupled conformal theory with non-equal
central charges, c �= a, of the boundary stress–energy tensor,

〈T μ
μ〉CFT = c

16π2
I4 − a

16π2
E4 ,

E4 = rμνρλr
μνρλ − 4rμνr

μν + r2 ,

I4 = rμνρλr
μνρλ − 2rμνr

μν + 1

3
r2 , (2.2)

where E4 and I4 are the four-dimensional Euler density and the square of the Weyl curvature of 
the CFT background space–time. The precise identification of the central charges is as follows:

c = π2L̃3

�3
p

(
1 − 2

λGB

β2

)
, a = π2L̃3

�3
p

(
1 − 6

λGB

β2

)
,

L̃ ≡ βL, β2 ≡ 1

2
+ 1

2

√
1 − 4λGB . (2.3)

The gravitational dual to the vacuum state of a CFT on a three-sphere S3 is a global AdS5,

ds2 = L2β2

cos2 x

(
−dt2 + dx2 + sin2 x d�2

3

)
, x ∈ [0,π/2] , (2.4)

where d�2
3 is the metric of S3. Notice that λGB is restricted to be

λGB ≤ 1

4
; (2.5)

otherwise, there is simply no asymptotic AdS solution. Following holographic renormalization 
of EGB gravity developed in [14,13], we find that the vacuum energy (the mass) of (2.4), or the 
Casimir energy from the boundary CFT perspective, is

Evacuum = 3a

4L̃
. (2.6)

Black holes (equilibrium configurations of EGB CFT) are found as a regular horizon solutions 
within the metric ansatz,

ds2 = L2β2

cos2 x

(
−A(x)dt2 + dx2

A(x)
+ sin2 x d�2

3

)
. (2.7)

The most general solution of equations of motion obtained from (2.1) determine A(x) is terms 
of a single parameter M > 0,

A = 1 − 1

2λGB

(
(2λGB − β2) sin2 x +

(
4λGB(β2 − 2λGB)M cos4 x

+ (2λGB − β2)2 cos4 x − β4(1 − 4λGB) cos(2x)

)1/2)
. (2.8)

4 See [13] for a recent review.
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Furthermore, using the machinery of the holographic renormalization, the energy of the boundary 
CFT is

E = 3c

4Lβ

(
β2 − 6λGB

β2 − 2λGB
+ 4M

)
= 3c

4L̃

(
a

c
+ 4M

)
. (2.9)

It is remarkable that the regular Schwarzschild horizon in the geometry (2.7), (2.8) exists only 
provided [15,16]

M ≥
{

1−β2

2β2−1
, if λGB > 0 ,

(β2 − 1)(2β2 − 1) , if λGB < 0 .
(2.10)

For positive λGB, the bound comes requiring that S3 remains finite at the location of the horizon 
(otherwise the curvature at the horizon diverges). For negative λGB, violating the bound would 
render geometry complex (expression inside the square root in (2.8) would turn negative for some 
x ∈ (0, π/2)).

Constraints (2.10) imply the gap in δE ≡ E − Evacuum in the spectrum of EGB black holes,

δE

|Evacuum| ≥ εgap = 4(1 − β2)

|6β2 − 5| ×
{

1 , λGB > 0 ,

−(2β2 − 1)2 , λGB < 0 ,
(2.11)

with the only restriction (2.5) on λGB, εgap is unbounded as λGB → −∞ and λGB → 5/36.
We argue now that attempts to interpret EGB holography as an effective description of some 

gauge theory/string theory correspondence make the gap claim (2.11) unreliable. First, causality 
of the holographic GB hydrodynamics requires that [17]

− 7

36
≤ λGB ≤ 9

100
⇒ εgap ≤

{
1 , λGB > 0 ,
16
27 , λGB < 0 .

(2.12)

Additionally, it was pointed out [18] that pure EGB gravity with a negative cosmological constant 
cannot arise as a low-energy limit of a gauge theory/string theory correspondence — the differ-
ence of central charges (c−a)/c is bounded by �−2

gap, where �gap is the dimension of the lightest 
single particle operators with spin J > 2 in the holographically dual conformal gauge theory. In-
tegrating out massive J > 2 spin states generically produces new higher-curvature contributions, 
in addition to the Gauss–Bonnet term. These higher curvature corrections are as important as the 
Einstein–Hilbert term and the GB term in (2.1) when the size of a black hole becomes of order 
λGBL. The latter is true even as λGB � 1, as the Ricci scalar evaluated on the horizon of ∼ λGBL

size black hole (2.8) diverges as 1
λ GB.

3. PW/BEFP effective actions

We begin with description of the PW effective action [3]. The action of the effective five-
dimensional supergravity including the scalars α and χ (dual to mass terms for the bosonic and 
fermionic components of the hypermultiplet respectively) is given by

S =
∫

M5

dξ5√−g LPW

= 1

4πG5

∫
dξ5√−g

[
1
4R − 3(∂α)2 − (∂χ)2 −P

]
, (3.1)
M5
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where the potential5

P = 1

16

[
1

3

(
∂W

∂α

)2

+
(

∂W

∂χ

)2
]

− 1

3
W 2 , (3.2)

is a function of α and χ , and is determined by the superpotential

W = −e−2α − 1

2
e4α cosh(2χ) . (3.3)

In our conventions, the five-dimensional Newton’s constant is

G5 ≡ G10

25 volS5
= 4π

N2
. (3.4)

Supersymmetric vacuum of N = 2∗ gauge theory in Minkowski space–time is given by

ds2
5 = e2A

(
−dt2 + d �x2

)
+ dr2 , ρ = ρ(r) ≡ eα(ρ) , χ = χ(r) , (3.5)

with

eA = kρ2

sinh(2χ)
, ρ6 = cosh(2χ) + sinh2(2χ) ln

sinh(χ)

cosh(χ)
,

dA

dr
= −1

3
W , (3.6)

where the single integration constant k is related to the hypermultiplet mass m according to [4]

k = mL = 2m. (3.7)

The BEFP effective action [9] is given by

SBEFP =
∫

M5

dξ5√−g LBEFP

= 1

4πG5

∫
M5

dξ5√−g

[
R − 12

(∂η)2

η2
− 4

(∂ �X)2

(1 − �X2)2
− V

]
, (3.8)

with the potential

V = −
[

1

η4
+ 2η2 1 + �X2

1 − �X2
− η8 (X1)

2 + (X2)
2

(1 − �X2)2

]
, (3.9)

where �X = (X1,X2,X3,X4,X5) are five of the scalars and η is the sixth. The symmetry of the 
action reflects the symmetries of the dual gauge theory: the two scalars (X1, X2) form a doublet 
under the U(1)R part of the gauge group, while (X3, X4, X5) form a triplet under SU(2)V and η
is neutral. The PW effective action is recovered as a consistent truncation of (3.8) with

X2 = X3 = X4 = X5 = 0 , (3.10)

5 We set the five-dimensional supergravity coupling to one. This corresponds to setting the radius L of the five-
dimensional sphere in the undeformed metric to 2.
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provided we identify the remaining BEFP scalars (η, X1) with the PW scalars (α, χ) as follows

eα ≡ η , cosh 2χ = 1 + (X1)
2

1 − (X1)2
. (3.11)

Note that once m �= 0 (correspondingly X1 �= 0), the U(1)R symmetry is explicitly broken; on 
the contrary, SU(2)V remains unbroken in truncation to PW.

4. Holographic duals to N = 2∗ vacuum states on S3

We derive bulk equations of motion and specify boundary conditions representing gravita-
tional dual to vacuum states of strongly coupled N = 2∗ gauge theory on S3. We assume that 
the vacua are SO(4)-invariant. We argue that there is no obstruction of exciting these vacua by 
arbitrarily small perturbations of the bulk scalar fields α and χ . We review holographic renor-
malization of the theory and compute the vacuum energy. Next, we solve static gravitational 
equations perturbatively in the mass deformation parameter m� � 1 — this would serve as an 
independent check for the general O(m�) numerical solutions. We conclude with the plot repre-
senting ε ≡ Evacuum(m�)/EN=4

vacuum,

EN=4
vacuum ≡ Evacuum(m� = 0) = 3N2

16�
, (4.1)

as a function of m�. Interestingly, while the vacuum energy of the N = 4 SYM is positive, it is 
negative6 for N = 2∗ gauge theory once m� � 0.87.

4.1. Equations of motion and the boundary conditions

We consider the general time-dependent SO(4)-invariant ansatz for the metric and the scalar 
fields:

ds2
5 = 4

cos2 x

(
−Ae−2δ(dt)2 + (dx)2

A
+ sin2 x(d�3)

2
)

, (4.2)

where (d�3)
2 is a metric on a unit7 round S3, and {A, δ, α, χ} being functions of a radial coor-

dinate x and time t . Introducing

�α ≡ ∂xα , �χ ≡ ∂xχ , �α ≡ eδ

A
∂tα , �χ ≡ eδ

A
∂tχ , (4.3)

we obtain from (3.1) the following equations of motion:
the evolution equations, ̇ = ∂t ,

α̇ = Ae−δ�α , χ̇ = Ae−δ�χ ,

�̇α = (
Ae−δ�α

)
,x

, �̇χ = (
Ae−δ�χ

)
,x

,

�̇α = 1

tan3 x

(
tan3 xAe−δ�α

)
,x

− 2

3 cos2 x
e−δ ∂P

∂α
,

�̇χ = 1

tan3 x

(
tan3 xAe−δ�χ

)
,x

− 2

cos2 x
e−δ ∂P

∂χ
, (4.4)

6 Prior to imposing causality constraints in EGB gravity, its vacuum energy becomes negative once λGB > 5/36. 
Vacuum energy of a different nonconformal gauge theory on S3 was also observed to be negative in [19].

7 We set � = 1; the � dependence can be easily recovered from dimensional analysis.
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the spatial constraint equations,

A,x = 2 + 2 sin2 x

sinx cosx
(1 − A) − 2 sin(2x)A

(
�2

α + �2
α + 1

3
�2

χ + 1

3
�2

χ

)

− 4 tanx

(
1 + 4

3
P

)
,

δ,x = −2 sin(2x)

(
�2

α + �2
α + 1

3
�2

χ + 1

3
�2

χ

)
, (4.5)

and the moment constraint equation,

A,t + 4 sin(2x)A2e−δ

(
�α�α + 1

3
�χ�χ

)
= 0 . (4.6)

It is straightforward to verify that the spatial derivative of (4.6) is implied by (4.4) and (4.5); 
thus is it sufficient to impose this equation at a single point. As x → 0+, the momentum con-
straint implies that A(0, t) is a constant,8 and as x → π

2 − the latter constraint is equivalent to the 
conservation of the boundary stress–energy tensor (see 4.2 for details).

The general non-singular solution of (4.4), (4.5) at the origin takes form

A(t, x) = 1 +O(x2) , δ(t, x) = dh
0 (t) +O(x2) ,

α(t, x) = αh
0 (t) +O(x2) , χ(t, x) = χh

0 (t) +O(x2) . (4.7)

It is completely characterized by three time-dependent functions:

{dh
0 , αh

0 , χh
0 } . (4.8)

At the outer boundary x = π
2 we introduce y ≡ cos2 x so that we have

A = 1 + y
2

3
c1,0 + y2

(
a2,0(t) +

(
2

3
c1,0(c1,0 + 1) + 8ρ2

1,1 + 16ρ1,1ρ1,0(t)

)
lny

+ 8ρ2
1,1 ln2 y

)
+O(y3 ln3 y) ,

δ = y
1

3
c1,0 + y2

(
1

2
c2,0(t) − 1

36
c2

1,0 + 4ρ2
1,0(t) − 1

8
c1,0 + 2ρ2

1,1 + 4ρ1,0(t)ρ1,1

+
(

1

4
c1,0 + 1

3
c2

1,0 + 4ρ2
1,1 + 8ρ1,0(t)ρ1,1

)
lny + 4ρ2

1,1 ln2 y

)
+O(y3 ln3 y) ,

eα = 1 + y
(
ρ1,0(t) + ρ1,1 lny

) + y2
(

1

12
c2

1,0 + ρ1,0(t) − 3ρ1,1c1,0 + 6ρ2
1,1

− 4ρ1,0(t)ρ1,1 + 4

3
c1,0ρ1,0(t) + 3

2
ρ2

1,0(t) + 1

4
∂2
t t ρ1,0(t) +

(
4

3
ρ1,1c1,0 + ρ1,1

− 4ρ2
1,1 + 3ρ1,0(t)ρ1,1

)
lny + 3

2
ρ2

1,1 ln2 y

)
+O(y3 ln3 y) ,

cosh 2χ = 1 + y c1,0 + y2
(

c2,0(t) +
(

1

2
c1,0 + 2

3
c2

1,0

)
lny

)
+O(y3 ln2 y) , (4.9)

8 In fact, the non-singularity of A(t, x) in this limit automatically solves (4.6).
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where we explicitly indicated time-dependence, i.e.,

d

dt
c1,0 = 0 ,

d

dt
ρ1,1 = 0 . (4.10)

Asymptotic expansion (4.9) is completely characterized by two constants9 {ρ1,1, c1,0} and three 
time-dependent functions

{a2,0 , ρ1,0 , c2,0} , (4.11)

constraint by (4.6) to satisfy

0 = d

dt

(
a2,0 − 8ρ2

1,0(t) − 16ρ1,0(t)ρ1,1 − 2

3
c2,0(t)

)
. (4.12)

The non-normalizable coefficients ρ1,1 and c1,0 are related to the mass deformation parameters 
of the dual gauge theory. Following [21], the precise relation can be established by matching the 
asymptotics (4.9) with the supersymmetric PW RG flow (3.6),

{ρ1,1, c1,0}
∣∣∣∣
PW

= k2
{

1

48
,

1

8

}
= m2

{
1

12
,

1

2

}
. (4.13)

A specific relation between the non-normalizable coefficients of the bulk scalars eα and cosh 2χ , 
i.e.,

c1,0 = 6ρ1,1 , (4.14)

realizes N = 2 supersymmetry of the boundary gauge theory in the UV. As in [21], it is possible 
to study the theory with explicitly broken supersymmetry, i.e.,

ρ1,1 ≡ 1

48
(mbL)2 �= 1

6
× c1,0 ≡ 1

6
× 1

8
(mf L)2 , (4.15)

where mb and mf are the masses of the bosonic and the fermionic components of the N = 2
hypermultiplet of the boundary gauge theory.

A non-equilibrium state of the gauge theory can be specified with the following initial/bound-
ary conditions:

α(0, x) = αinit(x) , χ(0, x) = χ init(x) , �α(0, x) = �init
α = dαinit

dx
,

�χ(0, x) = �init
χ = dχ init

dx
, �α(0, x) = �init

α (x) , �χ(0, x) = �init
χ (x) , (4.16)

and as y ≡ cos2 x → 0,

αinit(y) = ρ1,1 y lny +O(y) , cosh
(
2χ init(y)

) = 1 + y c1,0 +O(y2 lny) ,

�init
α (y) = O(y) , �init

χ (y) =O(y3/2) , (4.17)

A(0, x) = 1 + cos4 x

sin2 x
exp

(
−2

3

x∫
0

dξ sin(2ξ)

((
�init

c (ξ)
)2 + (

�init
c (ξ)

)2

+ 3
(
�init

α (ξ)
)2 + 3

(
�init

α (ξ)
)2

))
× g(x) ,

9 Prescribing time dependence to these coefficients amounts to study quantum quenches in N = 2∗ gauge theory [20].
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g(x) = −4

3

x∫
0

dξ tan3 ξ exp

(
2

3

ξ∫
0

dη sin(2η)

((
�init

c (η)
)2 + (

�init
c (η)

)2

+ 3
(
�init

α (η)
)2 + 3

(
�init

α (η)
)2

))
×

(
4P init(ξ) + 3

cos2 ξ
+ (

�init
c (ξ)

)2

+ (
�init

c (ξ)
)2 + 3

(
�init

α (ξ)
)2 + 3

(
�init

α (ξ)
)2

)
P init(ξ) =P

(
αinit(ξ),χ init(ξ)

)
, (4.18)

δ(0, x) = −2

3

x∫
0

dξ sin(2ξ)

((
�init

c (ξ)
)2 + (

�init
c (ξ)

)2 + 3
(
�init

α (ξ)
)2 + 3

(
�init

α (ξ)
)2

)
,

(4.19)

where we explicitly solved for A(0, x) and δ(0, x) using constraint equations (4.5). Notice 
that while A(0, x) and δ(0, x) are free from the singularities given arbitrary profiles (4.16), 
a large amplitude initial conditions might cause A(0, x) to vanish for some 0 < x0 < π

2 , i.e.,
A(0, x0) = 0, — this corresponds to ‘putting a black hole in the initial data’. Clearly, initial 
conditions arbitrarily small perturbed about static gravitational solutions without a horizon (see 
below) are well defined. In particular one can consider perturbations with

αinit = αv , χ init = χv , �init
α,χ = λ πα,χ (x) , λ → 0 , (4.20)

where the superscript v stands for a static (vacuum) solution and λ characterizes an overall am-
plitude of the perturbation with given initial profiles πα and πχ .

The SO(4)-invariant vacua of strongly coupled N = 2∗ gauge theory correspond to static so-
lutions of (4.4)–(4.6). To avoid unnecessary cluttering of the formulas, we omit the superscript v , 
use a radial coordinate y ≡ cos2 x, and introduce

A(t, y) = a(y) , δ(t, y) = d(y) , eα(t,y) = ρ(y) ,

cosh(2χ(t, y)) = c(y) . (4.21)

We find then

0 = c′′ − c(c′)2

c2 − 1
+ c′

(
a′

a
− d ′

)
− (y + 1)c′

y(1 − y)
− ρ2(c2 − 1)(ρ6c − 4)

4(1 − y)y2a
,

0 = ρ′′ − (ρ′)2

ρ
+ ρ′

(
a′

a
− d ′

)
− (y + 1)ρ′

y(1 − y)
− (c2 − 1)ρ9

12(1 − y)y2a
− 1 − ρ6c

6ρ3y2a(1 − y)
,

0 = d ′ − 2y(1 − y)(c′)2

3(c2 − 1)
− 8(1 − y)y(ρ′)2

ρ2
,

0 = a′ − (y − y2)a

(
8(ρ′)2

ρ2
+ 2(c′)2

3(c2 − 1)

)
+ (y − 2)a + y

y(1 − y)
− (c2 − 1)ρ8 − 8ρ2c

6y

+ 2

3yρ4
, (4.22)

where ′ = d
dy

. The boundary conditions as y → 0 are as in (4.9), once we neglect the time 
dependence. At the origin, using z ≡ 1 − y we have
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a = 1 +
(

−1 + 1

3(ρh
0 )4

− (ρh
0 )8

12

(
(ch

0 )2 − 1
)

+ 2ch
0(ρh

0 )2

3

)
z +O(z2) ,

d = dh
0 +O(z2) ,

ρ = ρh
0 +

(
(ρh

0 )9

24

(
(ch

0 )2 − 1
)

+ 1 − (ρh
0 )6ch

0

12(ρh
0 )3

)
z +O(z2) ,

c = ch
0 + 1

8
(ρh

0 )2
(
(ch

0 )2 − 1
)(

ch
0(ρh

0 )6 − 4
)

z +O(z2) . (4.23)

We consider geometries with N = 2 supersymmetry in the ultraviolet, so we impose the con-
straint (4.13). Having fixed m, the complete set of normalizable coefficients in the UV/IR is 
given by:

{a2,0 , ρ1,0 , c2,0 , ρh
0 , ch

0 , dh
0 } . (4.24)

Note that the six integration constants (4.24) is exactly what is needed to uniquely fix a solution 
of a coupled system of two second-order and two first-order ODEs.

4.2. Holographic renormalization and the vacuum energy

Holographic renormalization of RG flows in PW geometry was discussed in [10]. Here we 
apply the analysis for the gravitational solutions dual to vacua of N = 2∗ gauge theory on S3.

The gravitational action (3.1) evaluated on a static solution (4.22) diverges — this divergence 
is a gravitational reflection of a standard UV divergence of the free energy in the interacting 
boundary gauge theory. It is regulated by cutting off the radial coordinate integration at y =
yc � 1. It is straightforward to verify that the regularized Euclidean gravitational Lagrangian, 
LE

reg, is a total derivative,

LE
reg = 1

4πG5
vol(�3)

yc∫
1

dy
d

dy

(
4(1 − y)2e−d

y2

(
a + 2yad ′ − ya′))

= vol(�3)

4πG5

[
4(1 − y)2e−d

y2

(
a + 2yad ′ − ya′)] ∣∣∣∣

yc

, (4.25)

where in the second equality, using (4.23), we observe that the only contribution comes from the 
upper limit of integration. Regularized Lagrangian (4.25) has to be supplemented with contribu-
tions coming from the familiar Gibbons–Hawking term, LE

GH,

SE
GH = − 1

8πG5

∫
∂M5

dξ4
√

hE∇μnμ ≡
∫

dtELE
GH ,

LE
GH = vol(�3)

4πG5

[
4(1 − y)e−d

y2

(
a(y − 4) − 2d ′y(1 − y)a + a′y(1 − y)

)]∣∣∣∣
yc

, (4.26)

and the counterterm Lagrangian,10 LE
counter ,

10 We keep only the counterterms relevant for the R × S3 background geometry of the gauge theory.



598 A. Buchel / Nuclear Physics B 896 (2015) 587–610
SE
counter ≡

∫
dtELE

counter ,

LE
counter = vol�3

4πG5

√
hE

[
3

4
+ 1

4
R4 + 1

2
χ2 + 3α2 − 3

2

α2

ln εc

+ ln εc

(
−1

3
χ2R4 − 2

3
χ4

)
+ 1

6
χ4

]∣∣∣∣
yc

, (4.27)

where R4 ≡ R4(hE) is the Ricci scalar constructed from hE , and εc parameterizes conformal 
anomaly terms in terms of the gtEtE metric component,

R4 = 3y

2(1 − y)
, εc ≡ √

gtEtE = 2
√

ae−d

√
y

. (4.28)

The renormalized Lagrangian LE
renom, finite in the limit yc → 0, is identified with the free energy 

F of the boundary gauge theory,

F = LE
renom = lim

yc→0

(
LE

reg +LE
GH +LE

counter

)

= vol�3

4πG5

3

2

(
1 + c2

1,0

(
4

9
− 16

9
ln 2

)
+ c1,0

(
−4

3
− 8

3
ln 2

)
+ 64ρ2

1,1 ln 2

+
{

64ρ1,1ρ1,0 + 8

3
c2,0 + 32ρ2

1,0 − 4a2,0

})

= 3N2

16�

(
1 + (m�)4

9
− 2

3
(1 + 2 ln 2)(m�)2

+
{

32ρ2
1,0 + 16

3
(m�)2ρ1,0 + 8

3
c2,0 − 4a2,0

})
, (4.29)

where in the second line we used the asymptotic expansion (4.9) and expressed the last line in 
terms of gauge theory variables using (3.4) and (4.13) and restoring the size � of the S3. Several 
comments are in order:

For static gravitational solutions without Schwarzschild horizon (as discussed here), the free 
energy F must coincide with the energy E of the boundary stress–energy tensor. We explicitly 
verified that, indeed,

F = E ≡ Evacuum(m�) . (4.30)

The latter is identified with the vacuum energy of N = 2∗ gauge theory on S3.
In a limit when all the (non-)normalizable coefficients vanish we recover the vacuum energy 

of the N = 4 SYM (4.1).
It is easy to extend discussion for general SO(4)-invariant non-equilibrium states of N = 2∗

gauge theory — the final answer is as (4.29), except with {ρ1,0 , c2,0 , a2,0} now being functions 
of time. Note that

dE
dt

∝ d

dt

(
4

{
16ρ1,1ρ1,0(t) + 2

3
c2,0(t) + 8ρ2

1,0(t) − a2,0(t)

} )
= 0 , (4.31)

according to (4.12). That is, the boundary gauge theory energy conservation is enforced by the 
bulk momentum constraint (4.6).
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4.3. Vacuum states for m� � 1

In preparation to the full numerical solution of (4.22), we discuss here its perturbative solution 
for ρ1,1 � 1. We introduce

c = cosh(2λχ1(y) +O(λ3)) , ρ = eλ2α2(y)+O(λ4) ,

a = 1 + λ2a2(y) +O(λ4) , d = λ2d2(y) +O(λ2) , (4.32)

where λ is a small parameter. Substituting (4.32) into (4.22) we find

0 = χ ′′
1 − 1 + y

y(1 − y)
χ ′

1 + 3

4y2(1 − y)
χ1 ,

0 = α′′
2 − 1 + y

y(1 − y)
α′

2 + 1

y2(1 − y)
α2 ,

0 = a′
2 − 2 − y

y(1 − y)
a2 − 8

3
y(1 − y)(χ ′

1)
2 + 2

y
(χ1)

2 ,

0 = d ′
2 − 8

3
y(1 − y)(χ ′

1)
2 . (4.33)

Solutions to (4.33) must satisfy boundary conditions corresponding to (4.9) and (4.23). We can 
solve equation for α2 analytically,

α2 = ρ1,1,(2)

y lny

1 − y
, (4.34)

where ρ1,1,(2) is the non-normalizable integration coefficient. The remaining equations in (4.33)
are solved with “shooting method” developed in [22]. In particular, given the asymptotic expan-
sions in the UV, y → 0+,

χ1 = y1/2
(

1 + y

(
χ1,0,(1) + 1

4
lny

)
+O(y2 lny)

)
,

a2 = 4

3
y + y2

(
a2,0,(2) + 4

3
lny

)
+O(y3 ln2 y) ,

d2 = 2

3
y + y2

(
−1

4
+ 2χ1,0,(1) + 1

2
lny

)
+O(y3 ln2 y) , (4.35)

and in the IR, z → 0+,

χ1 = χh
0,(1)

(
1 − 3

8
z +O(z2)

)
,

a2 = (χh
0,(1))

2
(

z − 5

8
z2 +O(z3)

)
,

d2 = dh
0,(2) − 3

16
(χh

0,(1))
2z2 +O(z3) , (4.36)

we find numerically,

χ1,0,(1) a2,0,(2) χh
0,(1) dh

0,(2)

0.0568528 −0.363452 0.785398 0.199266
. (4.37)

To compare with the full numerical solution, we identify, to order O(λ2),
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ρ1,1 = ρ1,1,(2)λ
2 , c1,0 = 2λ2 , ρ1,0 = 0 , c2,0 = 4χ1,0,(1)λ

2 ,

a2,0 = a2,0,(2)λ
2 , ρh

0 = 1 − ρ1,1,(2)λ
2 , ch

0 = 1 + 2(χh
0,(1))

2λ2 ,

dh
0 = dh

0,(2)λ
2 . (4.38)

Note that N = 2 supersymmetry in the UV at O(λ2) leads to (see (4.14))

ρ1,1,(2) = 1

3
. (4.39)

From (4.29),

ε ≡ Evacuum

EN=4
vacuum

= 1 +
(

32

3
χ1,0,(1) − 4a2,0,(2) − 8

3
(1 + 2 ln 2)

)
λ2 +O(λ4)

= 1 +
(

8

3
χ1,0,(1) − a2,0,(2) − 2

3
(1 + 2 ln 2)

)
(m�)2 +O((m�)4) . (4.40)

4.4. Gravitational solution and Evacuum for general m�

Using the shooting method of [22], we solve (4.22) and determine the normalizable coeffi-
cients (4.24) as a function of m� ≡ (12ρ1,1)

1/2. The results of the computations for small values 
of ρ1,1 are collected for numerical test in Fig. 1. The solid curves are obtained from numerical 
solution of full nonlinear equations (4.22), and the dashed lines represent perturbative prediction 
(4.38) with (4.37).

In full nonlinear numerical analysis we constructed vacua for 0 < m� � 8.5. The vacuum 
energy of the N = 2∗ gauge theory on S3 relative to N = 4 SYM Casimir energy is given by

ε ≡ Evacuum(m�)

EN=4
vacuum

= 1 + (m�)4

9
− 2

3
(1 + 2 ln 2)(m�)2]

+
{

32ρ2
1,0 + 16

3
(m�)2ρ1,0 + 8

3
c2,0 − 4a2,0

}
. (4.41)

It is presented in Fig. 2. The vertical red line indicates the mass scale m0�,

ε(m0�) = 0 ⇒ m0� ≈ 0.87031 , (4.42)

at which the vacuum energy of the N = 2∗ gauge theory vanishes and becomes negative for even 
larger value of m�.

5. Stability of N = 2∗ vacuum states within BEFP

In the previous section we constructed gravitational solutions within PW effective action, 
identified as vacua of the N = 2∗ gauge theory on S3. While the complete stability analysis of 
these solutions is beyond the scope of this paper, here we would like to analyze their stability 
within BEFP effective action.

Effective action describing the fluctuations of an arbitrary PW static solution within BEFP has 
been constructed in [12],

δL ≡ LBEFP −LPW +O(X4
i ) ≡ δL2 + δLV ,

δL2 = −(1 + c)2(∂X2)
2 − 1 + c

(
(c2 + c)ρ

4/3
6 − 4(1 + c)ρ

1/3
6 + 4(∂c)2

2

)
(X2)

2 ,

4 c − 1
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Fig. 1. Normalizable coefficients (4.24) as functions of ρ1,1. The dashed lines represent perturbative predictions (4.38)
with (4.37).

Fig. 2. Vacuum energy of the N = 2∗ gauge theory on S3 relative to N = 4 SYM Casimir energy, see (4.41). The vertical 
red line marks vanishing of ε, see (4.42). (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)
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δLV = −(1 + c)2(∂ �XV )2 − 1 + c

4

(
(c2 − 1)ρ

4/3
6 − 4(1 + c)ρ

1/3
6 + 4(∂c)2

c2 − 1

)
( �XV )2 ,

(5.1)

where ρ6 = ρ6 and �XV = (X3, X4, X5) (see Section 3 for more details). Note that δL is SU(2)V
invariant; as a result it is enough to consider a spectrum of only one of �XV components. In what 
follows we choose the latter to be X3.

Introducing

X2 = e−iωtF2(y)�s(S
3) , X3(t, y) = e−iωtF3(y)�s(S

3) , (5.2)

where �s(S
3) are S3 Laplace–Beltrami operator eigenfunctions with eigenvalues s = l(l + 2)

for integer l,

�S3 �s(S
3) = −s �s(S

3) = −l(l + 2) �s(S
3) , (5.3)

we find from (5.1) the following equations of motion

0 = F ′′
2 + F ′

2

(
2cc′

c + 1
+ (c2 − 1)ρ8

6ay
− 4cρ2

3ay
+ 2y − 1

y(y − 1)
+ 1

a(y − 1)
− 2

3aρ4y

)

+ F2

4y(1 − y)a

(
e2dω2

a
− s

1 − y

)
+ F2

(
(c′)2

(1 − c2)(c + 1)
+ ρ2(ρ6c − 4)

4ay2(y − 1)

)
, (5.4)

0 = F ′′
3 + F ′

3

(
2cc′

c + 1
+ (c2 − 1)ρ8

6ay
− 4cρ2

3ay
+ 2y − 1

y(y − 1)
+ 1

a(y − 1)
− 2

3aρ4y

)

+ F3

4y(1 − y)a

(
e2dω2

a
− s

1 − y

)
+ F3

(
(c′)2

(1 − c2)(c + 1)
+ ρ2(ρ6(c − 1) − 4)

4ay2(y − 1)

)
.

(5.5)

The radial wavefunctions F2,3 must be regular at the origin, i.e., z → 0+,

F2 = zl/2 f h
2 (1 +O(z)) , F3 = zl/2 f h

3 (1 +O(z)) , (5.6)

and normalizable as y → 0+,

F2 = y3/2
(

1 + y

(
s

8
− 1

2
c1,0 + 9 − ω2

8

)
+O(y2 lny)

)
,

F3 = y

(
1 + y

(
s

4
+ 4 − ω2

4
+ 4ρ1,1 − 2ρ1,0 − 1

6
c1,0 − 2ρ1,1 lny

)
+O(y2 lny)

)
. (5.7)

Note that we set the normalizable coefficient of F2,3 in the UV to one.
When both scalars of the PW flow are set to zero, (5.4)–(5.7) corresponds to fluctuations 

of gravitational modes dual to dimension-3 (for F2) and dimension-2 (for F3) operators of the 
N = 4 SYM on S3. In this case the equations can be solved analytically. We find,

F SYM
2,{n,l} = y3/2(1 − y)l/2

2F1

(
−n ,3 + n + l ; l + 2 ;1 − y

)
,

ωSYM
2,{n,l} = 3 + 2n + l , (5.8)

F SYM
3,{n,l} = y(1 − y)l/2

2F1

(
−n ,2 + n + l ; l + 2 ;1 − y

)
,

ωSYM = 2 + 2n + l , (5.9)
3,{n,l}
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Fig. 3. Low energy states in the spectrum of BEFP fluctuations about PW vacua: {n, l} = {(0, 0) ; (0, 1) ; (1, 0)} (blue, 
red, green). See Section 5. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

where {n, l} are non-negative integers. For supersymmetric PW flows (4.14) we have to resort to 
numerics. The results of the numerical analysis are presented in Fig. 3. We look at the states with 
{n, l} = {(0, 0) ; (0, 1) ; (1, 0)} for both F2 and F3 radial functions. Over the range of parameters 
discussed, the embedding of PW flows within BEFP effective action is stable.

6. Black hole spectrum in PW effective action

We begin with the metric ansatz and the boundary conditions representing regular Schwarz-
schild black hole solutions in PW effective action with the S3 horizon. We explain how the 
normalizable coefficients of the gravitational solution encode the thermodynamic properties of 
the black holes: the temperature TBH , the energy EBH , the entropy SBH and the free energy FBH . 
We define the size �BH of a black hole as(

�BH

L

)3

≡ Ahorizon

L3
. (6.1)

We compute excitation energy �(�BH/L , (m�)),

�(�BH/L , (m�)) = EBH(�BH/L ,m�) − Evacuum(m�)

EN=4
vacuum

, (6.2)

as a function of �BH/L, but for select values of m�:
perturbatively in m�, to order O((m�)2);
for ρ1,1 = 1

12 (m�)2 = {1, 1.5, 2, · · ·5, 5.5, 5.8} (the last value corresponds to the largest value 
of m� for which we computed Evacuum);
and present a strong numerical evidence that

lim
�BH/L→0

�(�BH/L , (m�)) = 0 . (6.3)

Thus, we conclude that there is no gap in the spectrum of black holes in PW geometry; corre-
spondingly, there is no gap in SO(4)-invariant equilibrium states of the N = 2∗ gauge theory 
on S3 in the planar limit and for large ’t Hooft coupling, as there is no energy gap for generic 
SO(4)-invariant excitations in this theory.

6.1. Metric ansatz and the boundary conditions for black holes in PW

Recall that the vacuum solutions of Section 4 were obtained within metric ansatz (4.2),
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ds2
5

∣∣∣∣
vacuum

= 4

cos2 x

(
−ae−2d(dt)2 + (dx)2

a
+ sin2 x(d�3)

2
)

= 4

y

(
−ae−2d(dt)2 + (dy)2

4y(1 − y)a
+ (1 − y)(d�3)

2
)

, (6.4)

where in the second line we recalled the radial coordinate y = cos2 x, y ∈ [0, 1]. Regularity at 
the origin (y → 1−) required that the metric functions a and d remain finite and non-zero. Notice 
that the three-sphere shrinks to zero size in this limit.

In close analogy to (6.4), to describe regular horizon black holes, we reparameterize the radial 
coordinate y → yhy, with a constant 0 < yh < 1, while keeping y ∈ [0, 1]. We further require 
that a has a simple zero and d remains finite as y → 1−:

ds2
5

∣∣∣∣
BH

= 4

yhy

(
−ae−2d(dt)2 + yh(dy)2

4y(1 − yyh)a
+ (1 − yyh)(d�3)

2
)

,

0 < yh < 1 , y ∈ [0,1] , lim
y→1−

a = 0 ,

lim
y→1−

a′ = finite �= 0 , lim
y→1−

d = finite . (6.5)

Given (6.5),

Ahorizon = 16π2 (1 − yh)
3/2

y
3/2
h

⇒ �BH

L
≡ A

1/3
horizon

L
= (2π2)1/3 (1 − yh)

1/2

y
1/2
h

. (6.6)

The equations of motion describing black holes (6.5) can be obtained from (4.22) with the simple 
change of variables11 y → yyh,

0 = c′′ − c(c′)2

c2 − 1
+ c′

(
(c2 − 1)ρ8

6ay
− 4cρ2

3ay
+ a(2yyh − 1) + yyh

ya(yyh − 1)
− 2

3yaρ4

)

− ρ2(c2 − 1)(ρ6c − 4)

4(1 − yyh)y2a
,

0 = ρ′′ − (ρ′)2

ρ
+ ρ′

(
(c2 − 1)ρ8

6ay
− 4cρ2

3ay
+ a(2yyh − 1) + yyh

ya(yyh − 1)
− 2

3yaρ4

)

− (c2 − 1)ρ9

12(1 − yyh)y2a
− 1 − ρ6c

6ρ3y2a(1 − yyh)
,

0 = d ′ − 2y(1 − yyh)(c
′)2

3(c2 − 1)
− 8(1 − yyh)y(ρ′)2

ρ2
,

0 = a′ − (y − y2yh)a

(
8(ρ′)2

ρ2
+ 2(c′)2

3(c2 − 1)

)
+ (yyh − 2)a + yyh

y(1 − yyh)
− (c2 − 1)ρ8 − 8ρ2c

6y

+ 2

3yρ4
. (6.7)

The boundary conditions in the UV, i.e., y → 0+, specify the asymptotic expansion

11 We used the last two equations to algebraically eliminate a′ and d ′ from the first two.
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a = 1 + y
2

3
ĉ1,0 + y2

(
â2,0 +

(
2

3
ĉ1,0(ĉ1,0 + yh) + 8ρ̂2

1,1 + 16ρ̂1,1ρ̂1,0

)
lny

+ 8ρ̂2
1,1 ln2 y

)
+O(y3 ln3 y) ,

d = y
1

3
ĉ1,0 + y2

(
1

2
ĉ2,0 − 1

36
ĉ2

1,0 + 4ρ̂2
1,0 − 1

8
ĉ1,0yh + 2ρ̂2

1,1 + 4ρ̂1,0ρ̂1,1

+
(

1

4
ĉ1,0yh + 1

3
ĉ2

1,0 + 4ρ̂2
1,1 + 8ρ̂1,0ρ̂1,1

)
lny + 4ρ̂2

1,1 ln2 y

)
+O(y3 ln3 y) ,

ρ = 1 + y
(
ρ̂1,0 + ρ̂1,1 lny

) + y2
(

1

12
ĉ2

1,0 + ρ̂1,0yh − 3ρ̂1,1ĉ1,0 + 6ρ̂2
1,1

− 4ρ̂1,0ρ̂1,1 + 4

3
ĉ1,0ρ̂1,0 + 3

2
ρ̂2

1,0 +
(

4

3
ρ̂1,1ĉ1,0 + ρ̂1,1yh − 4ρ̂2

1,1

+ 3ρ̂1,0ρ̂1,1

)
lny + 3

2
ρ̂2

1,1 ln2 y

)
+O(y3 ln3 y) ,

c = 1 + y ĉ1,0 + y2
(

ĉ2,0 +
(

1

2
ĉ1,0yh + 2

3
ĉ2

1,0

)
lny

)
+O(y3 ln2 y) . (6.8)

In (6.8) the non-normalizable coefficients ρ̂1,1 and ĉ1,0 are related to corresponding coefficients 
of the vacuum solution as

ρ̂1,1 = yhρ1,1 , ĉ1,0 = yhc1,0 , (6.9)

to be further matched with the mass parameters {mb, mf } of the dual gauge theory as in (4.15). 
The rest of the coefficients in (6.8) are normalizable. The asymptotic expansion in the IR, i.e., as 
z = (1 − y) → 0+ is different from the one in (4.23) — here it reflects the presence of a regular 
horizon (see (6.5)),

a = z

6

((
1 − (ĉh

0 )2
)

(ρ̂h
0 )8 + 8ĉh

0(ρ̂h
0 )2 + 4

(ρ̂h
0 )4

+ 6yh

1 − yh

)
+O(z2) ,

d = d̂h
0 +O(z) ,

ρ = ρ̂h
0 +O(z) ,

c = ĉh
0 +O(z) . (6.10)

The full set of the non-normalizable coefficients is

{â2,0 , ρ̂1,0 , ĉ2,0 , ρ̂h
0 , ĉh

0 , d̂h
0 } . (6.11)

Note that we have the correct number of non-normalizable coefficients to uniquely specify a 
solution of two second-order and two first-order ODEs given a choice of (6.9).

6.1.1. Perturbative black holes solutions
As in Section 4.3, we can construct solutions to (6.7)–(6.10) perturbatively in m� to order 

O((m�)2).
We introduce

c = cosh(2λχ̂1(y) +O(λ3)) , ρ = eλ2α̂2(y)+O(λ4) ,

a = (1 − y)(1 + y(1 − yh)) + λ2â2(y) +O(λ4) , d = λ2d̂2(y) +O(λ2) , (6.12)

1 − yyh
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where λ is a small parameter. Substituting (4.32) into (4.22) we find

0 = χ̂ ′′
1 − χ̂ ′

1

y(1 − y)

(
1 + y + y(1 − yh)((2 − y)yyh − 2)

(1 − yyh)(1 + y(1 − yh))

)

+ 3χ̂1

4y2(1 − y)(1 + y(1 − yh))
,

0 = α̂′′
2 − α̂′

2

y(1 − y)

(
1 + y + y(1 − yh)((2 − y)yyh − 2)

(1 − yyh)(1 + y(1 − yh))

)
+ α̂2

y2(1 − y)(1 + y(1 − yh))
,

0 = â′
2 − 2 − yyh

y(1 − yyh)
â2 − 8

3
y(1 − y)(1 + y(1 − yh))(χ̂

′
1)

2 + 2

y
(χ̂1)

2 ,

0 = d̂ ′
2 − 8

3
y(1 − yyh)(χ̂

′
1)

2 . (6.13)

For the asymptotic expansions we have:
as y → 0+,

χ̂1 = y1/2
(

1 + y
(
χ̂1,0,(1) + yh

4
lny

)
+O(y2 lny)

)
,

α̂2 = ρ̂1,1,(2)

((
α̂1,0,(2) + lny

)
y +O(y2 lny)

)
,

â2 = 4

3
y + y2

(
â2,0,(2) + 4yh

3
lny

)
+O(y3 ln2 y) ,

d̂2 = 2

3
y + y2

(
−yh

4
+ 2χ̂1,0,(1) + yh

2
lny

)
+O(y3 ln2 y) , (6.14)

as z → 0+

χ̂1 = χ̂h
0,(1)

(
1 − 3

4(2 − yh)
z +O(z2)

)
,

α̂2 = ρ̂1,1,(2)

(
α̂h

0,(2)

(
1 − 1

(2 − yh)
z +O(z2)

))
,

â2 = 2(χ̂h
0,(1))

2z +O(z2) ,

d̂2 = d̂h
0,(2) − 3(1 − yh)

2(2 − yh)2
(χ̂h

0,(1))
2z +O(z2) . (6.15)

Eqs. (6.13)–(6.14) have to be solved numerically for different values of yh.
To compare with the full numerical solution, we identify, to order O(λ2),

ρ̂1,1 = ρ̂1,1,(2)λ
2 , ĉ1,0 = 2λ2 , ρ̂1,0 = ρ̂1,1,(2)α̂1,0,(2)λ

2 , ĉ2,0 = 4χ̂1,0,(1)λ
2 ,

â2,0 = yh − 1 + â2,0,(2)λ
2 , ρ̂h

0 = 1 + ρ̂1,1,(2)α̂
h
0,(2)λ

2 ,

ĉh
0 = 1 + 2(χ̂h

0,(1))
2λ2 , d̂h

0 = d̂h
0,(2)λ

2 . (6.16)

Note that N = 2 supersymmetry in the UV at O(λ2) leads to (see (4.14))

ρ̂1,1,(2) = 1

3
. (6.17)
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6.2. Thermodynamic properties of black holes in PW

Requiring that there is no conical singularity in the analytical continuation t → itE of the 
metric (6.5) as y → 1− we compute the Hawking temperature TBH of the black hole using (6.10),

TBH = e−d̂h
0

12πy
1/2
h (1 − yh)1/2

(
(1 − yh)(1 − (ĉh

0 )2)(ρ̂h
0 )8 + 8ĉh

0(1 − yh)(ρ̂
h
0 )2 + 6yh

+ 4(1 − yh)

(ρ̂h
0 )4

)
. (6.18)

The Bekenstein–Hawking entropy of the black hole is given by

SBH = Ahorizon

4G5
= 4π2

G5

(1 − yh)
3/2

y
3/2
h

. (6.19)

The free energy FBH can be computed following holographic renormalization procedure dis-
cussed in Section 4.2. We find

FBH = 3π

4G5

(
1 + ĉ2

1,0

y2
h

(
4

9
− 16

9
ln 2 + 8

9
lnyh

)
+ ĉ1,0

yh

(
−4

3
− 8

3
ln 2 + 4

3
lnyh

)

+ 32
ρ̂2

1,1

y2
h

(2 ln 2 − lnyh) + 1

y2
h

{
64ρ̂1,1ρ̂1,0 + 8

3
ĉ2,0 + 32ρ̂2

1,0 − 4â2,0

})

− (1 − yh)πe−d̂h
0

3y2
hG5

(
(1 − yh)(1 − (ĉh

0 )2)(ρ̂h
0 )8 + 8ĉh

0(1 − yh)(ρ̂
h
0 )2 + 6yh + 4(1 − yh)

(ρ̂h
0 )4

)
.

(6.20)

The contribution in the last line in (6.20) comes from the lower limit of integration of the bulk 
contribution to the regularized free energy, (4.25); it equals precisely to (−SBHTBH). Computing 
the holographic stress–energy tensor, as described in [10] we find

EBH = 3π

4G5

(
1 + ĉ2

1,0

y2
h

(
4

9
− 16

9
ln 2 + 8

9
lnyh

)
+ ĉ1,0

yh

(
−4

3
− 8

3
ln 2 + 4

3
lnyh

)

+ 32
ρ̂2

1,1

y2
h

(2 ln 2 − lnyh) + 1

y2
h

{
64ρ̂1,1ρ̂1,0 + 8

3
ĉ2,0 + 32ρ̂2

1,0 − 4â2,0

})

= 3N2

16�

(
1 + (m�)4

9
− 2

3
(1 + 2 ln 2 − lnyh)(m�)2

+ 1

y2
h

{
32ρ̂2

1,0 + 16

3
(m�)2yhρ̂1,0 + 8

3
ĉ2,0 − 4â2,0

})
, (6.21)

where in the last line we expressed the energy in terms of the dual gauge theory variables using 
(6.9) and (4.13). Notice that the basic thermodynamic relation,

FBH = EBH − SBHTBH , (6.22)

is satisfied automatically.
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Fig. 4. Solid line represents �2 as defined in (6.24). The dotted red line represents the best quadratic fit to the first 10% 
of data points, see (6.25). (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

Using (6.16), from (6.21) we have

EBH

EN=4
vacuum

= 1 + 4(1 − yh)

y2
h

+
(

8

3yh

χ̂1,0,(1) − 1

yh

â2,0,(2) − 2

3
(1 + 2 ln 2 − lnyh)

)
(m�)2

+O((m�)4) . (6.23)

6.3. �(�BH/L , (m�))

We are now ready to present results for �(�BH/L , (m�)) as defined by (6.2).
To order O((m�)2), using (4.40) and (6.23), we find

� = 4(1 − yh)

y2
h

+ �2 (m�)2 +O((m�)4) ,

�2 = �2(yh) = 8

3

(
χ̂1,0,(1)

yh

− χ1,0,(1)

)
−

(
â2,0,(2)

yh

− a2,0,(2)

)
+ 2

3
lnyh . (6.24)

Results of numerical computations of �2 are presented in Fig. 4. A solid line represents the data 
points, and the red dotted line is the best quadratic fit using the first 10% of data points:

�2

∣∣∣∣
fit

= −0.0269118

(
�BH

L

)2

. (6.25)

Our numerical results present a strong evidence that

lim
�BH/L→0

�2 = 0 , (6.26)

as a result, we see that � vanishes in this limit to order O((m�)2).
Using (4.29) and (6.21) we compute � for ρ1,1 = 1

12 (m�)2 = {1, 1.5, 2, · · ·5, 5.5, 5.8}. The 
results are presented in the left panel of Fig. 5 (the top-to-bottom blue curves correspond to ρ1,1
variation 1 → 5.8). The green curve represents �(m� = 0):

�(m� = 0) = 24/3

π4/3

(
�BH

L

)2

+ 22/3

π8/3

(
�BH

L

)4

. (6.27)

The right panel represents � for the largest value of m� computed: m� = 8.34266, with the red 
dotted line indicating the best quadratic fit to the first 10% of data points:
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Fig. 5. Left panel: Black hole mass gap relative to EN=4
vacuum , see (6.2), as a function of �BH/L for select values of m�. 

The green curve represents �(m� = 0). Right panel: � for the largest value of m� computed, m� = 8.34266; the dotted 
red line represents the best quadratic fit to the first 10% of data points, see (6.28). (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

�(m� = 8.34266)

∣∣∣∣
fit

= 0.339765

(
�BH

L

)2

. (6.28)

Note that for m� = 8.34266, ε = −243.785, implying that for the smallest size black hole stud-
ied, �BH/L = 0.0855056,

EBH − Evacuum

Evacuum
= 1.04285 × 10−5 . (6.29)

We conclude that numerical results strongly suggest (6.3).
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