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The estrogen-related receptors (ERRs) comprise a small group of orphan nuclear receptor transcription factors.
The ERRα and ERRγ isoforms play a central role in the regulation of metabolic genes and cellular energy metab-
olism. Although less is known about ERRβ, recent studies have revealed the importance of this isoform in the
maintenance of embryonic stem cell pluripotency. Thus, ERRs are essential tomany biological processes. The de-
velopment of several ERR knockout and overexpressionmodels and the application of advanced functional geno-
mics have allowed rapid advancement of our understanding of the physiology regulated by ERR pathways.
Moreover, it has enabled us to begin to delineate the distinct programs regulated by ERRα and ERRγ that have
overlapping effects on metabolism and growth. The current review primarily focuses on the physiologic roles
of ERR isoforms related to theirmetabolic regulation; therefore, the ERRα and ERRγ are discussed in the greatest
detail. We emphasize findings from gain- and loss-of-function models developed to characterize ERR control of
skeletal muscle, heart and musculoskeletal physiology. These models have revealed that coordinating metabolic
capacity with energy demand is essential for seemingly disparate processes such as muscle differentiation and
hypertrophy, innate immune function, thermogenesis, and bone remodeling. Furthermore, the models have re-
vealed that ERRα- and ERRγ-deficiency in mice accelerates progression of pathologic processes and implicates
ERRs as etiologic factors in disease. We highlight the human diseases in which ERRs and their downstreammet-
abolic pathways are perturbed, including heart failure and diabetes. While no natural ligand has been identified
for any of the ERR isoforms, the potential for using synthetic small molecules to modulate their activity has been
demonstrated. Based on our current understanding of their transcriptional mechanisms and physiologic rele-
vance, the ERRs have emerged as potential therapeutic targets for treatment of osteoporosis, muscle atrophy, in-
sulin resistance and heart failure in humans.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

This review highlights the current understanding of the molecular
mechanisms and physiology of the estrogen-related receptor (ERR)
family of orphan nuclear receptor transcription factors. Since the dis-
covery of ERRs involvement in metabolic regulation the interest in the
field has expanded into areas in which metabolic reprogramming is a
fundamental aspect of biology, such as the relationship to growth and
differentiation. ERRs are of great interest for their potential involvement
in metabolic dysregulation in diseases that will also be discussed. The
review will reveal the novel functions of the ERR isoforms emphasizing
physiologic studies using novel genetic models and small molecule li-
gands. The literature related to ERR involvement in cancer, including
betes and Metabolic Diseases
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regulation of tumor and microenvironment metabolism, cell cycle and
proliferation, epithelial–mesenchymal transition, and metastatic mech-
anisms is extensive and deserves an independent review. Indeed, excel-
lent reviews have discussed these topics in depth as well as the
chemotherapeutic potential for drugs that target the ERR pathway
[1–4]. Therefore, the topic of ERRs and cancer will not be directly cov-
ered in this manuscript.

2. The ERR subfamily of constitutively active nuclear receptors:
The basics

The superfamily of nuclear receptors (NRs) includes the endocrine
receptors that mediate the actions of steroid hormones, thyroid hor-
mones, and the fat-soluble vitamins A and D, as well as a large number
of so-called orphan nuclear receptors [5]. The name of “orphan nuclear
receptor” indicates that their ligands and/or target genes and physiolog-
ical functions were initially unknown. With the progress of research,
many of the orphan receptors become “adopted” [6] by the discovery
and characterization of their ligands and target genes. The estrogen-
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related receptors (ERRs) are among orphan receptors whose physiolog-
ical ligands remain elusive.

The ERRs were initially discovered using a cDNA library screen to
identify novel steroid receptors on the basis of similarity within the
DNA binding domain sequence of the human estrogen receptor α
(ERα) [7]. Two unique clones found in the kidney and heart cDNA li-
braries encoded previously unknown proteins with the conserved fea-
tures of steroid hormone receptors and were designated estrogen-
related receptor α (ERRα) and ERR β (ERRβ). Subsequently, the third
isoform ERR γ (ERRγ) was identified, first through its linkage with
Usher's syndrome locus [8], then functionally by yeast two-hybrid
screening using the NR coactivator GRIP1 as the bait [9]. The ERRs com-
prise the NR3B group, ERRα (NR3B1, ESRRA gene), ERRβ (NR3B2, ESRRB
gene) and ERRγ (NR3B3, ESRRG gene), which clusters by structural re-
latedness with the NR3 subfamily of steroid receptors, including the
ERs, progesterone, androgen, mineralocorticoid, and glucocorticoid re-
ceptors [10]. Apart from the main isoforms, ERRβ and ERRγ also have
several splice variants that show distinct developmental and tissue spe-
cific expression patterns, but it is unclearwhat distinct roles these splice
variants play in organs where they are being expressed [11–13]. It be-
came evident early on in their characterization that ERRs, which share
only 30–40% homology with ERα in the ligand binding domain, do not
bind or respond to endogenous estrogens or their derivatives and
were therefore designated as orphan receptors [7,14].

ERRs have structural features typical to NRs as summarized in Fig. 1.
These include an activation function (AF)-1 domain, a DNA-binding do-
main (DBD), a ligand-binding domain (LBD), and an AF-2 domain. The
N-terminus contains the AF-1 domain, which confers weak ligand-
independent transcriptional activation in most NRs. The ERRβ and
ERRγ isoforms share a high degree of structural relatedness overall
and notably in the N-terminal region, which is typically poorly con-
served even among receptors in the same subfamily/group. In addition,
the N-terminal/AF-1 domain of all 3 ERR isoforms contains conserved
motifs subject to posttranslational phosphorylation and sumoylation,
which regulates transcriptional activity [15,16].

The ERR DBDs contain two highly conserved zinc finger motifs that
target the receptor to a specific DNA sequence (TCAAGGTCA) termed
Fig. 1. Structural features and domain homology of Estrogen Related Receptors (ERRs). A: The st
Each ERR contains an NH2-terminal region that holds a ligand-independent transcriptional ac
DNA-binding domain (DBD) containing two highly conserved zinc finger motifs; a hinge regio
DNA binding, and a ligand-binding domain (LBD) containing a conserved AF-2 helix motif. The
cilitates the recruitment of NR coactivators like PGC1α or corepressors such as RIP140 and NCoR
binding domains. Although the lowest homology between ERRs isoforms can be found in theN-t
pared to other members of the NR family within their subfamily/group.
ERR response element (ERRE). All three members of the ERR subfamily
share an almost identical DBD. It is not surprising then that many genes
can be targeted by more than one of the ERR isoforms. Furthermore, it
has been shown that ERRs can bind to the ERRE as amonomer, homodi-
mer or as a heterodimer composed of two distinct ERR isoforms [17,18].
The proportion of ERREswithin target genes bound by the different ERR
complexes is not known, but likely varies by cell type, cellular prolifer-
ation and differentiation states and in response to cell stimuli. Distinct
ERR complexes will have different gene recognition or transcriptional
activity, but the details of thesemolecularmechanisms remain to be de-
fined. Despite a high degree of amino acid similarity in the DBDs of ERRs
and ERα (e.g. hERRα, 68% identity), ERRs do not bind strongly to perfect
palindromic ER response elements. However, ERRs have been found to
share some target genes with ERα [19–22]. Most commonly ERRs occu-
py half-sites that are part of a multi-site module that mediates the re-
sponse to estrogens. Depending on the gene context, ERR and ER may
cooperate to support full activation (e.g. lactoferrin) or may antagonize
one another's activity (e.g. MAO-B) [21,22]. Finally, the affinity of ERRα
for binding to ERREs is affected by the acetylation status of 4 Lys resi-
dues in the Zn2+ finger and C-terminal extension of the DBD mediated
by the acetyltransferase PCAF and deacetylases, HDAC8 and SIRT1. By
thismechanism, these cofactorsmay linkmetabolic statuswith the con-
trol of ERRα target gene selection [23].

The C-terminal LBD of the ERRs contains awell-conserved AF-2 helix
motif that is essential for cofactor interactions. While typical NRs re-
quire ligand binding to enable gene activation, ERRs were found to acti-
vate transcription without the addition of exogenous ligands. This
constitutive activity is due to a conformation adopted by the LBD in
the absence of ligand that supports recruitment of NR coactivators,
which is key for transcriptional activation by ERR [24,25]. The structure
of ERRα and ERRγ LBDs shows that amino acids with bulky side chains
occupy the ligand-binding pocket and, in effect, mimic a ligand bound
conformation to favor cofactor binding. For instance, the ERRα LBD crys-
tal structure reveals partial occupation of the putative ligand-binding
pocket by Phe328 causing the LBD to adopt an agonist conformation
that binds a PPARγ coactivator-1α (PGC-1α) peptide [26]. Although
the transcriptional activity of the ERRs is not agonist-dependent,
ructural organization of ERRs. The ERR structure is similar to other nuclear receptors (NRs).
tivation function (AF-1), which is a subject of various post-translational modifications; a
n that confers the protein flexibility needed for simultaneous receptor dimerization and
LBD of ERR is responsible for constitutive activity due to its unique conformation that fa-
1. B: Domain homology of ERRs isoforms. The three ERRs are almost identical in their DNA
erminal domain (NTD), the overall degree of structural relatedness is still high, when com-
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structural analyses revealed the presence of an open ligand-binding
pocket ~220 Å3 in ERRγ and ~100 Å3 in ERRα that accommodates syn-
thetic molecules to modulate transcriptional activity of ERRs [27–31].
Compound A and XCT790 are specific ERRα inhibitors that have
been useful in demonstrating physiologic processes regulated by
ERRα in cells and in vivo [32–34]. The synthetic ER modulator, 4-
hydroxytamoxifen, and its analogs (e.g. GSK5182), have been identified
as inverse agonists of ERRγ; while some phenolic acyl hydrazones are
weak selective agonists for ERRγ [35–38]. Bisphenol A (BPA), an impor-
tant environmental contaminant and endocrine disruptor, was long
thought to exert its endocrine effects through binding to ERs. However,
BPA binds to ERRγwith much higher affinity than it binds to ER, which
may account for its biologic effects at very low concentrations [39,40].
The effects of BPA on zebrafish otolith development are observed at
low concentrations comparable to levels of exposure in the environ-
ment and requires ERRγ expression, suggesting that ERRγ is the recep-
tor target for this toxicant [41]. Structural analysis of the ERRγ LBD
bound to BPA show that the compound stabilizes the transcriptionally
active conformation of ERRγ that favors coactivator binding, consistent
with BPA antagonism of inverse agonists, like 4-hydroxytamoxifen [39,
42,43]. The ability of small molecules to bindwith ERRs in an active con-
formation along with the emerging role for these receptors in metabo-
lism suggests that natural ligands for ERRs likely exist. Regardless, a
recent study demonstrating that ERRγ inverse agonists can reduce he-
patic glucose production in a mouse model of obesity-related T2D [44]
highlights the potential efficacy of ERR modulators in treating human
disease and the priority for developing additional drugs that target
ERRs.

3. Genomic studies reveal metabolic transcriptome of ERRs

Transcription factors modulate physiological events by regulating
genes that control vital processes. Studying gene networks controlled
by nuclear receptor activity is traditionally facilitated by the availability
of pharmacological agents that activate or inhibit NR activities. Although
this research tool is scarce in studying orphan receptors like ERRs, func-
tional and physiological genomics are effective alternatives, which help
to uncover the biology of orphan nuclear receptors. A group led by
Vincent Giguère atMcGill University hasmade substantial contributions
to ERRs biology through their genomics work. Developments and im-
provements in chromatin immunoprecipitation techniques (ChIP)
have led to the high resolution mapping of in vivo functional transcrip-
tion factors binding sites. Chromosome and genome-wide analyses
have shown that the ERR binding sites aremore enriched in the promot-
er regions, whereas ligand bound nuclear receptors, such as ERα, are
usually recruited to more distant regions from the gene promoters
[45,46]. Although ERRα is able to bind ERα binding sites in ERα-
positive and ERα-negative breast cancer cell lines, ERRα and ERα dis-
play strict binding site specificity and independentmechanisms of tran-
scriptional activation [47]. Interestingly, although ERRs can compete
efficiently for ERα binding sites (EREs) in vitro, ERRα binds specifically
to ERREs and the competition for EREs only occurs when it also contains
an embedded ERRE in vivo [48].

A ChIP-chip analysis on mouse heart revealed that ERRα and ERRγ
occupy the promoter regions of genes involved in fuel sensing, substrate
uptake, mitochondrial oxidative pathways, and contractile work. Fur-
thermore, both ERRs can target other metabolic transcription factors
and signaling proteins involved in nutrient and energetic signaling in
muscle [49]. These were the first genome-wide studies to bring to
light the involvement of ERRs in regulating many aspects of mitochon-
drial metabolism and in transducingmetabolic signals to regulate ener-
getic gene programs. Identification of ERRα and ERRγ binding sites and
subsequent analysis of their close vicinity also revealed enrichment for
binding sites for other transcription factors. Using motif-finding algo-
rithms it was shown that the ERRα binding site neighborhood contains
response elements for NRF-1, CREB, and STAT3 in the adult heart [49],
suggesting possible functional association and/or direct molecular in-
teraction between ERRs and various transcription factors. For example,
ERRα can activate the peroxisome proliferator-activated receptor
alpha (PPARα) gene expression via a direct binding of ERRα to the
PPARα gene promoter. This contributes in part to the mechanism by
which ERRα regulates energy metabolism in cardiac and skeletal mus-
cle [50,51]. ERRs binding to specific DNA regions can also indirectly
modify the expression of various genes. In a breast cancer study, it
was found that ERRα is being recruited to DNA segments associated
with the ERBB2 oncogene amplicon. Such close vicinity recruitment as-
sists the co-binding of the coactivator PGC-1β and recruitment of RNA
polymerase II to the ERBB2 gene promoter [45].

ChIP studies are not only useful for the confirmation of ERR target
genes discovered previously using different approaches like gene ex-
pression analysis or bioinformatic techniques, but also to identify genet-
ic controllers of ERRs. For example homeobox protein prospero-related
homeobox 1 (Prox1) inhibits the activity of the ERRα/PGC-1α
interacting with ERRα solely through its DNA-binding domain (DBD)
[52]. This study also found that ERRα not only binds to genes encoding
proteins of the ETC/Oxphos pathway but also to promoter regionswith-
in a cluster of genes encoding enzymes at every step in the glycolytic
pathway, pyruvate metabolism, and TCA cycle [52].

ChIP-on-chip studies are particularly valuable because they directly
demonstrate that many of the physiological changes observed in ERR
knockoutmodels are a consequence of direct binding of ERRs to key tar-
get genes. For example, disruption of the ERRγ gene blocks the transi-
tion from carbohydrate utilization to oxidative metabolism in the
postnatal heart. And this effect is directly mediated by ERRγ regulation
of a nuclear-encoded mitochondrial genetic network [53]. Using the
same physiological genomic methodology, Tremblay and colleagues
were able to demonstrate that genetic ablation of ERRα prevents the di-
rect regulation by this orphan receptor of expression of channels in-
volved in renal Na (+) and K (+) handling [54].

4. ERR constitutively interactions with metabolic coregulators

4.1. PGC-1 coactivators

The PGC-1 family of transcriptional coactivators integrates diverse
pathways involving numerous NR and non-NR partners to activate mi-
tochondrial biogenesis, fatty acid oxidation, glucose uptake and gluco-
neogenesis in various tissues [55,56]. A number of laboratories have
characterized PGC-1α and PGC-1β as potent coactivators of ERRα and
ERRγ [57–59]. Prior to the discovery of ERR/PGC-1 functional com-
plexes, ERRαwas implicated to play a role inmetabolic regulation in tis-
sues with high energy demands, such as heart and brown adipose
(BAT), through regulation of the Acadm gene, encoding the mitochon-
drial β-oxidation enzyme medium chain acyl-CoA dehydrogenase
(MCAD) [60,61]. Only with the coexpression of PGC-1α were ERRα
and ERRγ able to maximally activate the transcription of Acadm and
other ERRE-containing target genes [58]. In addition to ERRα, PGC-1α
interacts with many other transcription factors, including PPARs,
myocyte enhancer factor, nuclear respiratory factors, and FOXO1, tome-
diate its effects on mitochondrial biogenesis, mitochondrial oxidative
pathways, glucose and fatty acid transport, glycolysis and gluconeogen-
esis [55,62].

Unlike other transcription factors that can complex with PGC-1, the
capacity for ERRα to activatemetabolic gene transcription appears to be
mostly reliant on its interaction with PGC-1 coactivators. ERRα activa-
tion of metabolism is observed to occur most robustly where it is
coexpressed with PGC-1α or PGC-1β, despite the ability of ERRα to in-
teract with more ubiquitously expressed coactivators, such as the
nuclear receptor coactivator (Ncoa) 1, Ncoa2, and Ncoa3 (also known
at SRC-1, -2 and -3) as well as the less well understood proline-rich nu-
clear coactivators 1 and 2 [9,25,63]. Conversely, in some cell types ERRα
has been shown to account for much of PGC-1α mediated effects on
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mitochondria biogenesis through ERRα binding to theGapba gene,which
encodes the α subunit of the nuclear respiratory factor 2 (NRF-2) tran-
scription factor [64,65]. Furthermore, ERRα directs PGC-1α-dependent
activation of enzymes participating in most of the mitochondrial oxida-
tive pathways via direct ERRα targeting of nuclear-encoded mitochon-
drial enzyme genes [49]. PGC-1α exerts regulatory control over ERRα
expression through autoregulatory mechanism involving the polymor-
phic ERR responsive region in the ESRRA gene promoter [66]. Likewise,
ERRα can regulate PGC-1α expression in skeletal myocytes by direct
transactivation of Ppargc-1a gene through ERRE sites in the promoter
[67,68].

4.2. RIP140 and NCoR1

The nuclear receptor cofactor RIP140 has been shown to have both
corepressor and coactivator activities depending on the context of tis-
sue, transcription factor, or gene target [69]. However, in previous stud-
ies RIP140was shown to function exclusively as a corepressorwith ERRs
with functional implications in skeletal muscle, adipose tissues and
heart. Mechanistically, RIP140 repression of ERRγ is target gene specific
[70]. RIP140's interactionwith ERRγ confers conformational constraints
on the ERRγ complex, thereby directly influencing its binding profile
and target gene recognition. In adipocytes, RIP140 functions through
ERRα to repress genes involved in glucose uptake and mitochondrial
TCA and respiratory chain, including SDHB and CoxVb [71]. RIP140
knockout mice are lean and resistant to high fat diet induced obesity;
thus, they share some phenotypic features with the ERRα−/− mice,
which was attributed, in part, to increased oxidative metabolism in
white adipose [72]. RIP140 expression in skeletalmuscle is low in oxida-
tivemyofibers and high in glycolytic fast-twitchfibers, opposite the pat-
tern of ERRα and ERRγ expression. Nevertheless, loss of RIP140 function
in knockoutmice or by short-hairpin knockdown inmyocytes enhances
the expression of genes involved in mitochondrial biogenesis, oxidative
phosphorylation and fatty acid oxidation (FAO) [73]. Conversely, RIP140
overexpression downregulates the same gene programs,which is partly
attributable to the active repression of ERRs. A similar pattern of repres-
sion was seen in transgenic mice overexpressing RIP140 in the heart
with downregulation of FAO and mitochondrial metabolism via the re-
pression of ERRα or ERRγ [74]. Inhibition of a postnatal switch to oxida-
tive substrate utilization and the resultingmetabolic inflexibility results
in postnatal hypertrophy, ventricular fibrosis, and reduced fractional
shortening. This metabolic phenotype is similar to the post-natal heart
metabolic profile of the ERRγ−/− mice [53] that will be discussed
below.

Nuclear receptor corepressor 1 (NCoR1) is a ubiquitously expressed
corepressor that can interact with a number of transcription factors
through its multiple leucine-rich motifs in the carboxy-terminus of
the protein [75]. Because NCoR1 lacks histone deacetylase activity, the
complex mediates transcriptional repression through recruitment of
additional complex proteins, including the histone deacetylase HDAC3
[76]. NCoR1 is down-regulated in MEFs in response to stimuli that pro-
mote fatty acid oxidation, including low glucose and insulin and treat-
ment with exogenous fatty acids. In skeletal muscle NCoR1 expression
is reduced by high fat diet, fasting and acute exercise in fast glycolytic
and oxidative fiber types in vivo [77]. Muscle-specific deletion of
NCoR1 (NCoR1skm−/−) increases the percentage of fast-oxidative fibers
in muscles comprised of both fast-glycolytic and fast-oxidative
myofibers coordinatedwith increasedmitochondrial density and oxida-
tive metabolism. This metabolic and contractile reprogramming results
in increased exercise endurance, myofiber force and fatigue resistance.
NCoR1 deletion activates a subset of genes perturbed in muscle-
specific PGC-1α knockout or overexpression models and directly oc-
cupies and deacetylates both PPARδ and ERRα/ERRγ target genes [77,
78]. Interestingly, de-repression of mitochondrial TCA and electron
transport/Oxphos genes in the NCoR1−/− muscles can be achieved
through the use of ERRα inverse agonists, suggesting that NCoR1
mediates repression in complex with ERRs. The current model favors
the involvement of PGC-1α and NCoR1 as common cofactors for ERRα
that confer opposing effects on the transcriptional activity of metabolic
genes [78].

5. Expression patterns of ERRα and ERRγ and regulation of their
expression under physiologic and pathologic conditions

5.1. Tissue distribution

Transcript profiling inmice has shown that ERRα is present in all tis-
sues while ERRγ and ERRβ arewidely expressed except that ERRβ is ab-
sent in the immune system and ERRβ and ERRγ are not detected in
adult bone and skin [79]. ERRα and ERRγ expression is enriched in
adult tissues that rely primarily onmitochondrial oxidative metabolism
for ATP production, including heart, skeletal muscle, kidney and brown
adipose tissue [12,50,58,60,61]. In situ hybridization in mouse embryos
shows ERRα expression in the primitive heart at e8.5, in all regions of
the heart at e10.5, and in the premuscular mass at e13.5 [80]. ERRγ is
also expressed in fetal heart and skeletal muscle of mice and humans
[12]. In the post-natal heart, ERRα expression dramatically increases
in parallel with FAO enzyme genes coincident with the onset of oxida-
tivemetabolism [58,60]. ERRα and ERRγ are expressed in adult skeletal
muscle but at much higher levels in postural muscles enriched with
slow oxidative (“slow-twitch”) myofibers compared to sprint muscles
that are comprised predominantly of fast glycolytic (“fast-twitch”)
myofibers [50,81].

5.2. Regulation of ERR activity and expression by nutrient, energetic and
growth signals

Consistentwith their role inmetabolism, ERRα and ERRγ expression
and activity are highly regulated duringdevelopment and in response to
changes in nutrient and energy demands. In adult tissues, ERR isoforms
are up-regulated by stimuli that increase overall tissue oxidative capac-
ity or fatty acid utilization. In rodent models, we and others have
observed that short-term and endurance exercise causes robust induc-
tion of ERRα and ERRγ transcripts in skeletal muscles comprised of
fast-twitch glycolytic and fast-oxidative myofibers [82]. ERRα expres-
sion is also induced in human skeletal muscle by exercise [83]. Cold ex-
posure upregulates ERRα expression in skeletal muscle as well as in
brown adipose tissue of mice [59]. We have observed that cardiac
ERRα expression is increased in models of cardiac lipid dysregulation,
including streptozotocin-induced diabetes and in mice treated with
etomoxir, which increases intracellular fatty acid concentrations by
inhibiting muscle-carnitine palmitoyltransferase I (M-CPT I), a rate-
limiting enzyme for transport of FA into mitochondria (Huss, unpub-
lished observations).

The ERR-PGC-1α complex response to nutrient, hormonal, and ener-
getic changes are mediated by numerous signal transduction pathways.
Thus, ERRs contribute to a complex transcriptional network that trans-
duces these signals to regulate broad metabolic gene programs in
order to maintain energetic and substrate homeostasis. The activity
and expression of PGC-1α are subject to regulation by multiple signal-
ing pathways including AMPK, SIRT1, MAP kinases, β-AR/cAMP/PKA
[84,85]. The involvement of ERRα and/or ERRγ as primary mediators
of transcriptional effects downstream of PGC-1α regulation by many
of these pathways has yet to be determined.

ERRα and ERRγ are also subjected to post-translational modifica-
tions, including phosphorylation, sumoylation, and acetylation, that af-
fect the receptor's DNA binding and recruitment of coactivators [15,
16,23,86]. However, the physiologic, nutrient and hormonal contexts
in which these post-translational modifications occur and their rele-
vance to effects on cellular metabolism have not been fully explored.
Using the ERRα−/− mice, the activation of angiogenic factors by β-
adrenergic receptor signaling and exercise-induced angiogenesis was
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shown to be dependent on ERRα in skeletal muscle [87]. ERRα alsome-
diates the cAMP/PKA dependent developmental and hormonal regula-
tion of genes with specialized functions, such as surfactant protein-A
in fetal type II lung cells [88]. Repression of ERRγ in liver by insulin is
mediated via direct Akt phosphorylation, which triggers ERRγ translo-
cation to the cytoplasm [89]. Counterregulation by glucagon/cAMP/
PKA occurs by direct transcriptional activation of Esrrg gene by the
cAMP response element-binding protein (CREB) and its coactivator
CRTC2 [90]. In addition to coactivation by PGC-1α, ERRα expression is
regulated by PGC-1α through an autoregulatory mechanism involving
a multi-ERRE region within the human ESRRA promoter [66,91]. As
might be predicted, the same region also binds ERRγ and mediates
cross-regulation between the two factors [91]. This isoform cross-talk
has not been thoroughly investigated but is likely to have physiologic
relevance in skeletal muscle, heart and liver where they have known
overlapping targets.

The mammalian target of rapamycin (mTOR) complex 1 is recog-
nized as the central cellular pathwaybywhichnutrients, growth factors,
and energy sensing pathways are integrated to coordinate the down-
stream effectors protein and lipid biosynthesis, autophagy, cell cycle
and transcription pathways [92,93]. A recent study by the Giguère labo-
ratory provides evidence that the ERR transcriptional pathway links cel-
lular energetics with the mTOR pathway [94]. Genome-wide ChIP-seq
analysis revealed that mTOR bound to polymerase II-transcribed genes
from several molecular/biological function classes, including the
ubiquitination pathway, insulin signaling, and mitochondrial oxidation
pathways. ERRα and mTOR have significant overlap in their target
genes, including genes involved in the TCA cycle and lipogenesis, al-
though they do not share the same DNA binding sites. Simultaneous
ERRα and mTOR inhibition, using rapamycin treatment of ERRα−/−
mice, reduces the expression of TCA enzymes in liver. As a result, citrate
accumulates and is shuttled into the lipogenic pathway, which is up-
regulated in ERRα−/− liver, resulting in a fatty liver phenotype. Fur-
thermore, mTOR was shown to regulate ERRα protein degradation
through the ubiquitin–proteasomal pathway. Thus, the mTOR–ERRα
axis involves both genomic and post-translational crosstalk.

Although these studieswere performed in liver, it is possible that the
same mechanism may also be functioning in other tissues. In skeletal
muscle, activation of mTOR increases, whereas inhibition diminishes
muscle oxidative capacity and expression of mitochondrial genes
through modulation of PGC-1α, ERRα and NRFs [95]. mTOR regulates
PGC-1α activation of candidate mitochondrial genes through its inter-
action with the transcription factor YY1, but not with ERRα or NRF-1.
Although ERRα transcript expression is up-regulated by mTOR activa-
tion in myocytes, it is not clear whether mTOR has any direct effect on
ERRα protein levels and target gene activation in muscle. The mecha-
nism of ERRα-mTOR crosstalk, proposed by Chaveroux, et al., provides
a testable model by which ERRα and ERRγmay coordinate metabolism
and growth (proliferation and hypertrophy) in various tissues and in
cancer. These findings are also consistentwith the role ofmTOR to inter-
face with metabolic transcription factors in order to coordinate acute
and long-term responses based on cellular growth status.

6. ERR regulation of differentiation and growth

Recent studies by a number of laboratories have demonstrated that
ERRs contribute energetic support and play fundamental regulatory
roles in growth programs. The involvement of insulin signaling has
been extensively studied and the mechanisms are well-established.
However, given the energetic requirements for addition of biomass in
both proliferating cells and in quiescent cells undergoing hypertrophy,
many laboratories have begun to focus on the involvement of metabolic
pathways in the control of growth and differentiation. Indeed, mito-
chondrial biogenesis has been implicated in the regulation of neuronal,
erythroblast and myoblast differentiation [96–98]. The major growth
signaling program mTOR is subject to regulatory control by AMPK and
SIRT to limit growth based on the availability of adequate energy to sup-
port cell proliferation or hypertrophic growth. As these signals are also
upstream of ERR-PGC-1 pathway, the energy sensing networks coordi-
nate gene programs regulating cellular energetics with cellular growth.

6.1. Regulation of ES cell pluripotency and self-renewal by ERRβ

Several years ago ERRβwas shown to substitute for Klf transcription
factors in the transcription factor cocktail, comprising Oct4, Sox2, Klf4,
and c-Myc, that can reprogram fibroblasts into pluripotent stem cells
[99]. These findings stimulated intense interest in the fundamental
role of ERRβ in embryonic stem cell (ESC) function. ERRβ is recognized
to be important for growth of extra-embryonic tissues, including the
placenta and is expressed in trophoblast stem (TS)-like cells, where it
serves as a marker of undifferentiated TS cells [100,101]. In mouse
ESCs the core set of pluripotency factors that maintain their undifferen-
tiated state and self-renewal capacity include Oct4, Sox2, and Nanog
[102,103]. ERRβ is coexpressedwith these core factors inmESCs and oc-
cupies the same regulatory regions of target genes [103]. ERRβ expres-
sion declineswith differentiation and its knockdown inmESCs results in
loss of pluripotency [104,105]. Mechanistic studies have demonstrated
that ERRβ is regulated by Nanog and can rescue pluripotency and self-
renewal phenotype in Nanog−/− mESCs [106]. Consistently, ERRβ de-
pletion abolishes leukemia inhibitory factor (LIF)-independent mESC
self-renewal, a signature feature of Nanog regulation. ERRβ also directly
interacts with Nanog, Oct4, and the nuclear receptor Dax1, another core
transcription factor, bound to pluripotency genes as well as their own
promoter regions to maintain the stem cell potential [107–111].

ERRβ recruits members of theNcoa family of p160 coactivators (also
knownas SRC) to thepluripotency factor complexes and this interaction
has been shown to facilitate RNA polymerase II binding to target gene
promoters [112,113]. Ncoa3/SRC-3 coactivates ERRβ to regulate key
self-renewal genes and is absolutely required for ERRβ to maintain
mESC pluripotency and to induce somatic cell reprogramming [112].
Analysis of the mechanism by which ERRβ contributes to maintenance
of mESC pluripotency revealed that ERRβ regulates the Dub3
deubiquitylase, which stabilizes Cdc25a to maintain relaxed G1/S
checkpoints in pluripotent mESCs [114]. ERRβ upregulates Dub3 ex-
pression prior to G1/S transition. Interestingly, in the case of Dub3 regu-
lation ERRβ selectively recruits Ncoa1, which oscillates with mES cell
cycle phase, to mediate a synchronized expression of Dub3 and other
genes [113]. ERRβmay selectively bind different Ncoa isoforms or splice
variants in a context dependent manner to regulate pluripotency and
self-renewal. Collectively, ERRβ has been established as a bona fide
pluripotency factor and may have potential use in regenerative medi-
cine as a target for controlling embryonic stem cell fate.

6.2. Regulation of skeletal myocyte differentiation by ERRs

Mitochondrial biogenesis is an integral component of the
myogenesis program [97]. In myogenic models, inhibition of
differentiation-associated mitochondrial gene expression or protein
synthesis blocks myogenesis [115]. Recent studies have provided evi-
dence that in addition to their importance inmitochondrialmetabolism,
ERRα and ERRγmay regulate additional programs that are fundamental
in myocyte differentiation. The expression profile for ERR isoforms dur-
ing myogenic differentiation supports distinct but potentially overlap-
ping roles for ERRα and ERRγ in myotube formation and maturation.
During differentiation in primary and C2C12 myocyte models, the
PGC-1α and ERRα transcripts are coordinately up-regulated shortly
after myoblasts exit the cell cycle, which is coincident with the onset
of mitochondrial biogenesis [116]. In contrast, ERRγ is expressed in a
later phase of myogenesis with peak expression coinciding with
myotube maturation [117,118].

Our laboratory has investigated the role of ERRα in coordinating the
metabolic and contractile gene programs duringmyogenesis in culture.
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The early transition from proliferating myoblasts to fused, multi-
nucleated myotubes is inhibited in primary myocytes isolated from
hindlimbs of ERRα−/− mice. Transient activation of dual specificity
phosphatase-1 (Dusp1) is essential for early deactivation of the ERK–
MAP kinase pathway to allow transition from proliferating myoblasts
and to initiate myotube formation; while in later stages ERK activation
promotes myotube hypertrophy. The Dusp1 gene is an ERRα target
gene, so the early myogenic induction of Dusp1 expression and ERK in-
activation is perturbed in ERRα−/− myocytes. Mature ERRα−/−
myotubes have reduced sarcomeric structure, fewer mitochondria,
and reduced fatty acid and glucose oxidative capacity. Growth inhibi-
tion is likely due to activation of the energy sensing AMP-dependent
protein kinase (AMPK) in the late stage ERRα−/−myotubes, which in-
creases phosphorylation of raptor and reduced mTOR activity (Murray
and Huss, unpublished observations). Conversely, adenoviral overex-
pression of ERRα in C2C12myoblasts increases mitochondrial biogene-
sis and causes precocious expression of skeletal muscle sarcomeric
proteins, including myosin heavy chain and α2-actinin. Similarly in
neonatal rat cardiacmyocytes, ERRα overexpression elicits a physiolog-
ic growth program characterized by a switch in myosin heavy chain
(MHC) isoform expression from the fetal βMHC to the adult αMHC, as
well as induction of oxidative metabolic genes [49]. Thus, ERRα plays
a complex role in regulating myocyte differentiation involving regula-
tion ofmitochondrial energetics andMAPkinase signaling. The associat-
ed effect on skeletalmuscle regeneration in ERRα-deficientmuscleswill
be discussed in the section addressing in vivo mouse models.

The effects of ERRγ on myocyte differentiation appear to be more
closely linked with its role in mitochondrial metabolism. Primary
ERRγ−/− myocytes form immature myotubes with reduced mito-
chondrial content secondary to inhibition of differentiation caused by
excess reactive oxygen species production (ROS) [117]. The primary de-
fect is caused by impaired mitochondrial complex I activity associated
with a shift from long-chain fatty acid β-oxidation toward preferential
oxidation of medium- and short-chain fatty acids in the mitochondria.
The resulting ROS production activated FoxO1, FoxO3a and NF-κB and
downstream atrophy pathways that targeted contractile proteins for
proteasomal degradation.
6.3. Regulation of bone differentiation by ERRs

There is considerable evidence that ERRs havemultiple complemen-
tary functions in skeletal physiology through the regulation of bone and
cartilage formation [119]. Osteoblasts and osteoclastswork in concert to
remodel bone during development and to replace bone after injury and
in the context of normal bone turnover and maintenance in adults.
Osteoblasts are bone forming cells that synthesize and secrete bone
matrix proteins and signaling molecules. ERRα directly regulates
genes encoding bone matrix proteins, including osteopontin and bone
sialoprotein, and ERRα overexpression in primary rat calvarial cells pro-
motes differentiation and expression of these bone-specific proteins
[120–123]. Likewise, mesenchymal stem cells (MSC) isolated from the
bonemarrow of ERRα−/− showed impaired osteoblast differentiation
and mineralization [121]. Paradoxically, osteoblasts from ERRα−/−
mice have increased expression of osteoblasticmarkers and calcium de-
position [124]. The differences may be due to the distinct models and
differentiation stages evaluated or due to the potential contribution of
ERRγ, which has been shown to negatively regulate BMP-2-induced os-
teoblast differentiation in vivo [125]. A recent study by the Vanacker
group sheds light on the differential roles for ERRα in osteoblast lineage
determination versusmaturation [126]. In thewhole body ERRα knock-
out, female mice are resistant to bone loss with aging and ovariectomy
[127]. However, conditional Cola-Cre:ERRαlox/lox mice, in which ERRα
expression is disrupted after early osteoblast lineage determination,
show aging related loss of bone density similar to control mice. In con-
trast Cola-Cre:ERRαlox/lox are resistant to bone loss with ovariectomy.
Thus, ERRα repressive effects on late osteoblastmaturation are involved
in bone loss induced by estrogen deficiency.

The counterpart to osteoblasts in bone remodeling, osteoclasts are
specialized in bone resorption and have high energetic demand sup-
plied by abundantmitochondria.Mitochondrial biogenesis is an integral
component of the osteoclast differentiation program. Based on evidence
from knockout models, ERRα and PGC-1β are essential for normal oste-
oclastogenesis through regulation of mitochondrial biogenesis and oxi-
dation [128,129]. Impaired osteoclastogenesis in bone marrow derived
MSCs from ERRα−/− mice is associated with a complete disruption
of differentiation dependent induction of metabolic genes involved in
fatty acid oxidation, TCA cycle and electron transport [129]. These re-
sults demonstrate a cell autonomous reliance of osteoclast differentia-
tion on ERRα signaling. In vivo, ERRα−/− mice have a reduced
number of osteoclasts in bone resulting in increased bone density due
to the defect in bone resorption [129]. Similarly, PGC-1β−/− mice
have abnormal osteoclasts (no decrease in number) with impaired
bone resorbing activity [128]. Based on these observations, it was pro-
posed that ERRs may also contribute to pathologic bone remodeling in
aging and in the context of disease [130].

7. Linking gene regulation to function: analysis of ERR gain and
loss-of-function models

The role of ERRs in regulatingmetabolic gene programs has been ex-
amined in several global and tissue-specific knockouts and overexpress-
ing mice. These mice display phenotypes that support distinct but
overlapping roles for ERRs in processes requiring oxidative processes,
high energetic demand and changes in substrate utilization.

7.1. Adipose tissue and regulation of obesity/energy balance

In the initial characterization, the ERRα−/−mice were reported to
have reduced adiposity and resistance to high-fat diet induced obesity
[72]. White adipose tissue (WAT) mass is decreased in ERRα−/−
mice coincident with increased FAO enzyme gene expression and de-
creased adipocyte size and lipid synthesis rates. Paradoxically, overall
energy balance is the same or reduced in themice since food consump-
tion is unchanged and 24 h locomotor activity (i.e. voluntarywheel run-
ning) is actually lower [72,131]. Increased oxidation in WAT may
contribute to the resistance to diet-induced obesity and insulin resis-
tance observed in ERRα−/−mice. An additional mechanism of protec-
tion against diet-induced obesity in ERRα−/− mice may also involve
downregulation of intestinal apolipoprotein A-IV and reduced dietary
lipid absorption [132].

The impact of ERRα deficiency has beenmost dramatic in highly ox-
idative tissues that feature elevated ERRα expression, such as brown ad-
ipose tissue (BAT), activatedmacrophages, heart and skeletal muscle. In
general, physiologic responses that rely on high mitochondrial reserve
capacity or short-term induction of nuclear-encoded mitochondrial en-
zymegenes are defective or blunted in ERRα−/−mice. BAT is a special-
ized tissue involved in thermogenesis, which is stimulated by cold
exposure and activation of β-adrenergic signaling. Activation stimulates
uncoupled respiration in the mitochondria of BAT in part through in-
duction of uncoupling protein 1 (UCP1), resulting in generation of
heat to maintain core body temperature. ERRα−/− mice have lower
mitochondrial density and reduced expression of mitochondrial FAO
and respiratory chain enzyme genes butmaintain UCP1 induction in re-
sponse to β-adrenergic stimulation. Rather UCP1 is regulated by an
ERRα-independent mechanism involving ERRγ (or ERRβ) activated by
p38 MAPK downstream of the novel thermogenic factor, growth arrest
and DNA-damage-inducible protein 45 gamma (GADD45g) [133].
Thus, impaired thermogenesis observed in the ERRα−/− is due to a
primary defect in BAT mitochondrial metabolic reserve [134].

The physiologic role of ERRβ has been elusive and difficult to study
since homozygous deletion of the Esrrb gene results in impaired
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placental formation and death at 9.5–10.5 d.p.c. [100]. Recently two vi-
able conditional ERRβ−/−mouse models were generated, one driving
deletion in embryo and the other in the CNS. While these knockouts
do not target the adipose tissue, they reveal a function for ERRβ in hypo-
thalamic regulation of feeding behavior, satiety, whole body energy
balance [135]. In the studies by Byerly and colleagues, the Sox2-
Cre:ERRβlox/lox mice in which ERRβwas knocked out in the developing
embryo are lean with increased activity and basal metabolic rate. De-
spite this change in body composition, the mice consumed more food
consistent with increased hypothalamic expression of neuropeptide Y
(NPY) and agouti-related peptide (Agrp), neuropeptides that regulate
feeding and energy expenditure. These results suggest that the pheno-
type originates in the CNS.

To test this notion the Nestin-Cre:ERRβlox/lox mice the Esrrb gene
was selectively disrupted in the developing nervous system. ERRβ ex-
pression is eliminated in neurons within the hindbrain, the CNS region
with the highest ERRβ expression. Loss of ERRβ results in an increased
lean:adipose mass ratio and increased energy expenditure despite in-
creased feeding frequency. The feeding behavior is dissociated from
NPY expression, which is reduced in Nestin-Cre:ERRβlox/lox mice. Both
of the ERRβ deficientmouse strains show a preference for carbohydrate
metabolismas demonstrated by a higher respiratory exchange ratio and
have enhanced insulin sensitivity. Interestingly, ERRγ expression was
increased in both ERRβ−/−models, suggesting that some of themeta-
bolic changes may be driven by ERRγ activation. Indeed, pharmacologic
activation of ERRγ in the presence or absence of ERRβ reduced NPY ex-
pression, decreased satiety and increased feeding frequency [135]. The
association between feeding behavior and NPY expression is complex,
so the changes in NPY expression in these models may be secondary
to altered glucose metabolism with enhanced insulin sensitivity or to
changes in stress hormone (i.e. corticosterone) levels [136]. The
counter-regulatory pattern of ERRβ and ERRγ has significant implica-
tions for the mechanism by which ERRs regulate CNS effects on whole
body energy balance. The ERRβ and ERRγ homodimersmay simply reg-
ulate expression of overlapping target genes, and ERRγ upregulation
drives the observed gene expression changes in ERRβ null mice. Alter-
nately, ERRβ:ERRγ heterodimersmay be involved in differential regula-
tion of target genes when their relative expression levels change. Thus,
the expression ratio between ERRβ and ERRγ may be an important
graded mechanism to modulate feeding behavior by altering the ex-
pression of genes that control satiety and whole-body energy balance.

7.2. Immune response

Activation of macrophages in the innate immune response triggers
induction of mitochondrial electron transport enzymes and release of
ROS to destroy phagocytosed pathogens. ERRα-deficient macrophages
have impaired ROS production in response to INF-γ, associated with in-
creasedmortality in ERRα−/− in response to pathogen infection [137].
INF-γ mediated induction of mitochondrial gene expression is depen-
dent on the ERRα-PGC-1β complex that is directly activated by the
JAK–STAT1pathway. The intracellular anti-oxidant defense includes en-
zymes localized either to the cytoplasm or mitochondria enabling me-
tabolism of ROS at the site of production. ERRα−/− MEFs show
reduced expression of mitochondrial antioxidant enzymes, superoxide
dismutase 2, thioredoxin 2 and peroxiredoxins 3 and 5. Furthermore,
PGC-1α-dependent regulation of the mitochondrial biogenesis and
component metabolic enzymes is lost in ERRα−/− MEFs [138].

ERRγhas also been shown to controlmacrophage function indirectly
through regulation of intracellular iron. In response to microbial infec-
tion hepatic expression of the hormone hepcidin is upregulated by
ERRγ downstream on IL-6 signaling [139]. Hepcidin is the primary reg-
ulator of systemic iron homeostasis, controlling absorption in the gut
and iron mobilization from liver stores [140]. During inflammation,
hepcidin promotes cellular iron retention by interacting with the iron
export protein ferroportin, resulting in increased macrophage
intracellular iron and hypoferremia in the host. The increase in intracel-
lular iron in macrophages in response to infection enhances growth of
intracellular microbes, including Salmonella and Legionella. Treatment
of mice with the ERRγ inverse agonist GSK5182 is able to blunt hepatic
hepcidin expression in response to Salmonella typhimurium infection
[139]. ERRγ inhibition also rescues hypoferremia, reduces microbial
growth and improves survival of the infected mice. Based on the find-
ings to date, ERRα and ERRγ isoforms have divergent effects on macro-
phage function.

Lymphocytemetabolic reprogramming is a fundamental component
of T cell activation. ERRα has been shown to regulate genes involved in
lymphocyte metabolism and activation [141]. Effector T cells (Teff)
mainly utilize glucose; whereas Treg cells rely on mitochondrial oxida-
tion of lipids as a source for ATP generation. Teff cell activation is accom-
panied by a metabolic reprogramming that favors aerobic glycolysis to
support cell proliferation. ERRα protein is upregulated in response to
Teff cell activation and ERRα transcriptional activity is required formax-
imal induction of genes involved in glucose and mitochondrial metabo-
lism during activation. In ERRα−/−mice metabolic reprogramming in
Teff cells is impaired, thereby reducing proliferation and inflammatory
cytokine production in activated Teff cells. Inhibition of ERRα activity,
either by treatment with XCT790 or in the ERRα−/− mice reduces
mortality in an autoimmune encephalitis model due to modulation of
the Teff response. Collectively, these studies support the targeting of
ERRα tomodulate lymphocyte andmacrophagemetabolismas an alter-
nate strategy in regulating immune responses.

7.3. Cardiac phenotype

ERRα largely functions as a transcriptional activator in heart and ox-
idative skeletal muscles to drive oxidative metabolism, consistent with
its functional interaction with PGC-1α, which is coexpressed with
ERRα in these tissues. Despite overall reducedmass, the heart and skel-
etal muscles of ERRα−/− mice develop normally. The ERRα−/−
hearts have a decreased expression of mitochondrial energetic gene
programs [49] and in response to acute stimulation of contractile
work, ERRα−/− hearts showed rapid depletion of phosphocreatine
and delayed ATP recovery, suggesting a reduced energetic reserve and
impairedmitochondrial function [51]. In response to a chronic pressure
overload, ERRα−/−hearts exhibited acceleratedmetabolic decompen-
sation and progression to contractile failure. The ERRα-of-function does
not, however, directly regulate the hypertrophic growth response to
pressure overload. In fact, ERRα−/− hearts are slightly smaller com-
pared towild-type, consistent with the role of ERRα in myocyte growth
discussed above.

Thewhole body deletion of ERRγ has a dramatic effect on post-natal
survival that is associated with defects in the heart and central nervous
system [53]. Characterization of the cardiac phenotype reveals an essen-
tial role for ERRγ in post-natal metabolic reprogramming and ion trans-
port in the myocardium. Normally, a switch in metabolic gene
expression occurs right after birth to increasemyocardialmitochondrial
capacity and shift metabolism from reliance on glycolysis to fatty acid
oxidation. In ERRγ−/− mice this gene reprogramming is disrupted
resulting in reduced myocardial mitochondrial function and lactatemia.
The mice also display arrythmogenic defects that are associated with
downregulation of voltage-gated potassium transporters, such as
Kcne2, which are direct ERRγ target genes. The ERRγ−/− mice exhibit
dramatic slowing of ventricular depolarization conduction as well and
delayed repolarization [53]. Through regulation of the same classes of
genes, ERRγ deficiency reduces the expression of parietal cell surface
markers in the stomach and impaired renal potassium uptake in the
kidney [142]

In contrast, recent studies evaluating the effects of ERRγ gain-of-
function in the adult heart reveals that the constitutive overexpression
of ERRγ driven by theαMHC (Myh6) gene promoter is sufficient to trig-
ger pathologic hypertrophy. In wild-type mice, ERRγ expression is
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induced 2weeks after introduction of the pressure overload, suggesting
that ERRγ plays a functional role in the growth response. Indeed, hyper-
trophy is mediated in part by ERRγ induction of GATA4, an important
transcription factor involved in regulating hypertrophic growth and
fetal gene reprogramming [143]. Treatment with the ERRγ inverse ago-
nist GSK-5182 blocks the effects of the ERRγ transgene on GATA4 gene
expression and cardiac growth [144]. Likewise, GSK-5182 can also block
growth, hypertrophic gene reprogramming and fibrosis in the context
of pressure overload [144]. Additional studies consistently show that
ERRγ is either unchanged or up-regulated early in pathologic hypertro-
phy but that with progression to heart failure ERRγ levels also decline
[51,74,144,145].

A potential role for ERRβ in heart failure and re-activation of the fetal
genes during pathologic growth was recently demonstrated during the
characterization of a cardiac-enriched microRNA. ERRβ was identified
as a direct target of miR-1-1 and miR-1-2, muscle-specific miRNAs
that regulate cell proliferation and cardiac function [146]. The miR-1
double knockout (dKO)micedevelop dilated cardiomyopathywith pro-
found reduction in LV systolic function and die within 2 weeks of birth.
ERRβwas evaluated as themiR-1 target involved in re-expression of the
fetal metabolic and contractile program. Overexpression of ERRβ in
cardiomyocytes increases expression of glycolytic and glycogen synthe-
sis genes alongwith fetal isoforms of contractile genes including βMHC.
Furthermore, glucose utilization and glycogen accumulation is en-
hanced in ERRβ expression cardiomyocytes. Cardiac-specific ERRβ
transgenic mice develop LV dilatation and die of sudden cardiac death
by 1 month of age similar to the miR-1 dKO phenotype. Although
based exclusively on overexpression, this study raises the possibility
that ERRβmay contribute to fetal gene regulation,mediating repression
postnatally during transition to the adult program as well as re-
activation of the program with pathologic hypertrophy.

7.4. Liver metabolism

Insulin and glucagon are primary hormones regulating glucose utili-
zation/storage and synthesis in the fed and fasted states, respectively.
Generally, in the fasted state cAMP/PKA signaling reduces glucose
uptake and glycogen synthesis and stimulates gluconeogenesis and
fatty acid β-oxidation. Insulin signaling through the insulin receptor/PI
3-kinase/Akt pathway increases glucose transport and glycogen and
fatty acid synthesis. In the liver ERRα, ERRγ and PGC-1α are coordinate-
ly upregulated by fasting in normal mice [90,147,148]. ERRα and ERRγ
have been shown to bindmany of the same target genes involved inmi-
tochondrial oxidative processes and in liver they also occupy the regula-
tory regions of gluconeogenic genes, including the Pck1, encoding the
cytosolic Pepck isoform [90,149]. However the effects of ERRα and
ERRγ on gene activity and the in vivo physiologic effects observed
with selective disruption or overexpression are clearly divergent in
liver.

ERRα regulates genes involved in hepatic mitochondrial biogenesis,
ETC/Oxphos, glucose metabolism, fatty acid β-oxidation along with
othermitochondrial processes in liver [52,150]. ERRα's dynamic regula-
tion of these genes is affected by nutrient and acute and long-term
fasting cues (i.e. insulin, glucagon) as well as to molecular clock inputs
[131,149,151,152]. Activation of gluconeogenic genes downstream of
PGC-1α occurs independent of ERRα and is, in fact, antagonized by
ERRα in hepatocytes [149]. Indeed, in ERRα−/−mice Pepck and Glyc-
erol kinase are upregulated in liver, demonstrating ERRα's repressive
role in gluconeogenesis under fed conditions. By contrast, ERRα disrup-
tion downregulates mitochondrial oxidative genes and other metabolic
pathways in liver, and as discussed above predisposes mice to hepatic
steatosis [94,131,153]. Thus, despite ERRα mediating PGC-1α regula-
tion of mitochondrial processes in fasted liver, ERRα is dissociated
from PGC-1α effects on gluconeogenesis.

ERRγ has been demonstrated to regulate gluconeogenic genes and is
responsive to nutrient signaling pathways downstream of fasting and
re-feeding cycles analogous to other well-characterized transcription
factors involved in this program [44,90]. The Esrrg gene is transcription-
ally activated by the CREB-CRTC2 complex bound to CRE sites in its
promoter. Thus, hepatic ERRγ and PGC-1α expression is coordinately
upregulated by the same pathway [154]. ERRγ upregulation occurs
after the acute fasting response, so activation of Pck and G6pc by ERRγ
is additive with other gluconeogenic factors regulated post-
translationally by cAMP/PKA [90]. Consistent with this mechanism,
ERRγ is coactivated by PGC-1α through ERREs on Pck and other
gluconeogenic genes. Systemically, ERRγ overexpression in the liver in-
duces gluconeogenic genes and increases serum glucose in fasted mice.
Thus, ERRγ contributes to hepatic gluconeogenic gene regulation with
PGC-1α and its other transcription factor partners, including Foxo1
and HNF4α, to confer tight control downstream of nutrient signals
[147,155,156].

The mechanisms that dictate selective regulation of mitochondrial
functions over gluconeogenesis by ERRα have not been determined. In
ERRα−/− mice the circadian patterns of metabolic genes are
deregulated in liver, which may contribute to the derepression of
gluconeogenic genes [131]. Furthermore, Pck and Gcpc are coordinately
upregulated with ERRγ and PGC-1α at the same point of the diurnal
cycle in ERRα deficient liver. PGC-1α activity is regulated by post-
translational mechanisms that lead to selective activation/repression
of gluconeogenic or mitochondrial genes [157]. In the fed state Akt in-
hibits PGC-1α activation of all genes, but S6K1 and cdc2-like kinase 2
specifically repress PGC-1α activity on gluconeogenic genes thereby
shifting activation toward mitochondrial targets [158,159]. While the
mechanisms by which these pathways inhibit PGC-1α coactivation of
HNF4α or Foxo1 have been elucidated, whether their effects are medi-
ated through ERRα and/or ERRγ is not fully understood.

7.5. Skeletal muscle

ERRα and ERRγ have overlapping roles in regulating skeletal muscle
mitochondrial oxidative programs but analysis of genetic models sug-
gests that the exactmechanismsmay be distinct. Although the essential
role for ERRα in mitochondrial biogenesis in adult skeletal muscle and
during muscle regeneration has been demonstrated [160] (see dis-
cussion below), the role of ERRα in regulating muscle adaptations
in response to physiologic and pathologic stimuli remains to be charac-
terized using the muscle specific ERRα−/− mice. However, a recent
finding using the whole body ERRα−/− strain of mice demonstrated
that ERRα was essential for regulating transcriptional programs in-
volved in oxidative metabolism and oxidative stress response. Thus
ERRα-deficient mice had reduced basal metabolic oxidative capacity
and were hypoactive and exercise intolerant [161].

Consistent with an essential role of ERRγ in directing the baseline
metabolic program in skeletal muscle, ERRγ heterozygous mice
(ERRγ+/−) have reduced mitochondrial function and expression of
FAO enzyme genes in mixed fiber type muscles [81]. These metabolic
changes result in reduced exercise performance and peak VO2max in ex-
haustion trials. In our muscle-specific ERRγ−/−model, we observe in-
creased ROS generation in the mitochondria that is associated with
reduced ETC complex I activity [117]. We observed a defect in
myogenesis in the samemodel but no baseline changes inmitochondri-
al number or citrate synthase activity, a marker of tissue mitochondrial
capacity [117] (Huss, manuscript in preparation). Although ERRγ is in-
duced in response to exercise inmousemodels, whether ERRγ is neces-
sary for the adaptive metabolic response to endurance exercise training
in muscle is currently unknown. However, genetic activation of the
ERRγ pathway in skeletal muscle, by overexpressing either wild-type
ERRγ or an ERRγ-VP16 fusion, mimics some of the metabolic effects of
endurance training, such as enhancedmitochondrial content and respi-
ration, an increase in the proportion of fast-oxidative fibers, and angio-
genesis. ERRγ overexpression enhances mitochondrial oxidation and
drives a shift from type IIb to IIa myofibers in fast-twitch glycolytic
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muscles, while slow-oxidative muscles show little response to ERRγ ac-
tivation [81,162]. Activation of the oxidative myofiber program is ac-
companied by increased arterial density and blood flow at baseline
[162]. As a result the ERRγ overexpressing muscles reperfuse more
quickly after an ischemic event and are resistant to ischemic muscle
damage [163]. Angiogenesis is stimulated in thesemuscles by upregula-
tion of angiogenic gene programs, including Vegf, Fgf, and Ephrin A, in-
dependent of O2 tension. While the enhanced angiogenesis may be
secondary to ERRγ effects on oxidation, both ERRα and ERRγ are report-
ed to directly regulate the Vegfa gene promoter through a conserved
ERRE site, suggesting that ERRs may play a primary role in angiogenesis
[87,162].

ERRs also affect skeletalmuscle regeneration. Skeletalmuscle regen-
eration in vivo is accompanied by mitochondrial biogenesis in order to
match mitochondrial capacity with the energetic demands of growth
as well as contractile activity of newly formed myofibers [164,165]. In
injury-induced regeneration models, mitochondrial enzyme gene in-
duction parallels the onset of differentiation within a myoblast pool de-
rived frommuscle precursor cells located in the basal lamina of muscle.
Upregulation of ERRα and PGC-1 isoforms occurs at the onset of
myogenesis in regenerating muscle [164,166,167]. Mouse models in
whichmetabolic regulatory pathways are deficient or constitutively ac-
tivated, including PGC-1α, calcineurin, and AMPK; exhibit coordinated
changes to alter myopathy or regeneration phenotypes in concert
with effects on mitochondrial function in skeletal muscle [168–172].

We have used a muscle-specific ERRα knockout model (M-
ERRα−/−) to determine the role of ERRα in normal skeletal muscle re-
generation and in directing the metabolic and fiber type profile of
repaired myofibers. Although the metabolic phenotype of M-
ERRα−/−mice has yet to be fully characterized, we observed reduced
mitochondrial oxidative capacity in slow- and fast-twitch oxidative
muscles, and a shift in substrate selection in muscle in M-ERRα−/−
mice. Mitochondrial biogenesis andmitochondrial metabolic functional
enhancement in response to physiologic and metabolic stimuli, includ-
ing high fat diet and exercise, is blunted in these mice (McDonald and
Huss, manuscript in progress). As mitochondrial biogenesis is required
for myoblast differentiation and essential for efficient muscle regenera-
tion, the M-ERRα−/− mice exhibit a dramatic defect in muscle repair
in response to injury [160]. The levels of mitochondrial biogenesis fac-
tors, mtTFA, NRF-2a and PGC-1β are down-regulated in M-ERRα−/−
muscles at the onset of myogenesis. Reduced mitochondrial energetic
capacity in the context of growth stimulation results in ATP depletion
and activation of the energy-sensing kinase AMP-activated kinase
(AMPK). Even with an adequate energy supply, AMPK activation (i.e.
genetic or pharmacologic activation) is sufficient to inhibit growth in
cardiac and skeletal myocytes [173–176]. In the injury model we dem-
onstrated that pharmacologic AMPK activation post-injury delayed
muscle regeneration [160]. Importantly, ERRα expression is regulated
by the AMPK pathway through induction of the ESRRA promoter, sug-
gesting that ERRα controls gene regulation downstream of the AMPK
pathway activation in many adaptive contexts (i.e. exercise, hypoxia,
fasting). Collectively, the phenotypic difference among the ERR mouse
models highlights the physiologic relevance of distinct programs regu-
lated by ERRα and ERRγ that confer overlapping and complementary
effects on metabolism and growth.

8. Dysregulation of the ERR transcriptional axis and associationwith
disease etiology and pathology

8.1. Heart failure

In response to pressure overload the heart undergoes a com-
pensated hypertrophy associated with metabolic and contractile
reprogramming to maintain systolic function. With sustained stress
the response progresses to a decompensated stage, associated with sys-
tolic and diastolic dysfunction due, in part, tomitochondrial dysfunction
and energetic insufficiency [177]. ERRα expression is specifically down-
regulated in a mouse model of pressure overload-induced left ventricu-
lar hypertrophy and the ERRα−/−mice progressmore rapidly to heart
failure in this model [51]. Thus, while ERRα deactivation promotesmet-
abolic reprogramming during compensated hypertrophy, residual
ERRα activity slows the rate at which mitochondria energetic capacity
and contractile function declines. Subsequent studies have supported
this hypothesis. Expression of ERRα and/or its PGC-1 coactivators is re-
duced in various rodentmodels of heart failure, includingdecompensat-
ed right ventricular hypertrophy and myocardial infarction models as
well as in genetic models that display accelerated heart failure [74,
145,178–180]. Likewise, PGC-1α−/− and PGC-1β−/− mice show ac-
celerated heart failure in response to pressure overload, accompanied
by an altered expression of metabolic genes corresponding to known
ERR targets [181,182]. Importantly, ERRα and its target genes are down-
regulated in human hearts with chronic congestive heart failure and in
ischemic and idiopathic end stage failure [183].Microarray gene expres-
sion profiles have demonstrated that alterations in ERRα target gene ex-
pression strongly correlate with LV ejection fraction and thus, are
predictive for failing versus non-failing phenotypes in patient samples
[184]. Thus, there is strong evidence for the involvement of ERRs in
heart failure progression and therefore the potential that drugs
targeting these pathways may provide a strategy to slow or prevent
progression of heart failure.

The mechanisms that drive downregulation of the ERRα-PGC-1α
regulatory axis in heart failure are not fully understood. It has been
linked to upregulation of metabolic coactivators, including RIP140 and
SIRT1, as well as microRNAs in the context of pathologic hypertrophy
[74,178,185]. For example, a recent study demonstrated that cardiac-
specific overexpression of microRNA-22, which targets PGC-1α, results
in a hypertrophic cardiomyopathy and is accompanied by downregula-
tion of ERRα and its target genes [186]. Direct inhibition of ERRα ex-
pression and transactivation may be mediated by SIRT1 and PPARα,
which are up-regulated in some forms of hypertrophy. A SIRT1–
PPARα complex was able to displace ERRα binding to ERRE sites and
to repress genes involved in mitochondrial energy generation [187].

Insulin resistance in type 2 diabetes is a major risk factor for heart
failure due to the metabolic and functional alterations in the diabetic
heart, unrelated to the independent risk factors of hypertension
and coronary artery disease. The pathogenesis of diabetic cardio-
myopathy is related to myocardial triglyceride accumulation, increased
β-oxidation and impaired glucose utilization [188]. In the insulin resis-
tant heart PPARα activation by fatty acids, PGC-1α stimulation by
AMPK, and impaired insulin signaling contribute to the metabolic
profile.

A genome-wide association study identified genetic variants within
the human PPARA gene promoter associated with mortality after acute
coronary ischemia in diabetic patients [189]. Functional analysis
showed reduced ERRα binding and transactivation of the protective
PPARA promoter variant. The results of this study suggest that ERRα in-
hibition may confer some protection in the diabetic heart. The role of
ERRα on metabolic gene programs and disease progression is likely to
be distinct in diabetic cardiomyopathy compared to hypertrophy-
associated heart failure. However, additional expression studies in pa-
tients and direct functional analysis using cardiac-specific ERRα-
deficient models must be performed to understand how ERRα affects
diabetic cardiomyopathy. Nevertheless, there is great interest in the po-
tential for GWAS to reveal disease relevant variations in metabolic nu-
clear receptors and cofactors, including the ERRs, PPARs, and PGC-1, to
allow the development of personalized approaches in treating diabetic
cardiomyopathy as well as hypertrophy related heart failure [190].

8.2. Muscular dystrophies

Given the importance of ERRα and ERRγ pathways in myocyte dif-
ferentiation and of ERRα in muscle regeneration, future studies should
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address the involvement and the therapeutic potential of ERRs in mito-
chondrial and dystrophin-related myopathies. ERRα and ERRγ are
down-regulated in human muscular dystrophy and in the dystrophin-
deficient (mdx) mouse model of Duchenne's muscular dystrophy [191,
192]. Indeed, a recent study showed that skeletal muscle-specific
ERRγ overexpression in themdxmice blunted exercise-mediated mus-
cle damage [192]. ERRγ overexpression enhancedmitochondrial oxida-
tive capacity and activated angiogenesis factors, including Vegf and Hgf
to increase blood flow in the mdx muscles. Slow oxidative fibers are
more resistant to the contraction-induced damage in dystrophin-
deficient models. Consistently, ERRγ overexpression, which increases
proportion of type I fibers, protected against basal and post-exercise
damage in themdxmice [162,192]. In agreement, long-term pharmaco-
logic activation of the AMPK pathway reversed mitochondrial dysfunc-
tion in mdx mice and increased the oxidative fiber number leading to
improved sarcolemmal structural integrity and resistance to exercise-
mediated damage [193,194]. The adaptive metabolic changes down-
stream of AMPK are mediated by activation and up-regulation of PGC-
1α and ERRα [194]. We demonstrated that AICAR treatment increases
ERRα expression and transcriptional activity in skeletal muscle, consis-
tent with the notion that ERRs could be therapeutically targeted in the
treatment ofmyopathies [160]. Oxidativemyofibers are resistant tome-
chanical damage, have increased satellite cell populations, and are richly
vascularized by virtue of their high expression of angiogenic factors, all
of which contribute to resistance to muscle damage or accelerated re-
pair. Thus, interventions that target gene programs that regulate the ox-
idative phenotype in muscles could provide an alterative strategy to
prevent muscle loss in disease and aging.

8.3. Insulin resistance and type 2 diabetes

Type 2 diabetes is a complex disease that develops over a long period
of time during which tissues become insulin resistant asynchronously
and impose a progressive burden on the pancreas to produce and se-
crete higher amounts of insulin. The tissues of greatest importance in
this process are the liver and skeletal muscle because they have the
greatest impact on whole body glucose homeostasis. Modulation of
ERRα or ERRγ activity either by genetic or pharmacologic means is
shown to affect glucose tolerance and insulin resistance.

8.3.1. Hepatic insulin resistance
ERRαhas the greatest influence on hepaticmitochondrial biogenesis

and function and, therefore, susceptibility to mitochondrial dysfunction
and oxidative stress with diet induced obesity. ERRα−/− mice are re-
sistant to obesity on a high fat diet. Despite ERRα repression of
gluconeogenic genes in liver, serum glucose levels are not elevated in
ERRα−/− mice. Indeed, mice fed normal chow have reduced serum
glucose and insulin, dependent on diurnal phase, which suggests im-
proved insulin sensitivity [72,131]. Likewise, treatment of mice fed a
high fat diet with the ERRα inverse agonist C29 prevents hyperlipid-
emia and improves insulin sensitivity compared to untreated DIO
mice [195]. These protective effects are observed despite no difference
inweight gain or adipose accumulation on the high fat diet. Remarkably,
C29 exerts similar improvements in glucose tolerance and insulin sensi-
tivity as the anti-diabetic drug rosiglitazone in Zucker diabetic fatty rats.
The C29 effects correlate with altered hepatic expression of fatty acid
metabolism and β-oxidation genes and mimic the pattern of transcript
changes seen in ERRα−/− mice fed a high fat diet. On the other hand
C29 treatment also exacerbates rapamycin-induced fatty liver, similar
to the effects of ERRα deletion [94]. Lipid accumulation in the
ERRα−/− liver is associated with reduced mitochondrial capacity to
completely oxidize fats resulting in a shunting of citrate and acetyl-
CoA to the biosynthesis pathway which is upregulated in rapamycin-
treated ERRα−/− mice [94]. Thus, ERRα deficiency likely contributes
to the hyperlipidemia and glucose intolerance observed in patients on
chronic immunosuppressive therapy and potentially other metabolic
effects associated with mTOR dysregulation.

A combination of hepatic insulin resistance, along with elevated
serum glucagon that accompanies hyperinsulinemia due to pancreatic
islet expansion, contributes to excessive production of glucose by the
liver in diabetes. Hepatic ERRγ expression is upregulated in diabetic
mouse models by cAMP activation of CREB-CRTC2, while reduced Akt
activity allows nuclear localization of the receptor [89,90]. The interac-
tion of ERRγ with the gluconeogenic factors, CREB, HNF4α, and Foxo1,
which are key regulators of gluconeogenesis under normal conditions
and in diabetes, and its physiologic relevance in the insulin resistant
liver are not completely clear. Nevertheless, ERRγ overexpression pro-
longs glucose excursion time in glucose tolerance tests; while depletion
of ERRγ in the liver effectively blunts hyperglycemia in db/db and DIO
mice [44,90]. Thus, elevated ERRγ activity in diabetes may contribute
to hyperglycemia. Importantly, systemic treatment with the ERRγ in-
verse agonist GSK5182 also reduces the expression of Pck and G6pc
and significantly lowers fasting serum glucose levels in diabetic mice
as effectively as the anti-diabetic drug metformin. Metformin inhibits
PGC-1α activation of gluconeogenic genes [196], yet selective targeting
of ERRγ has more robust effects. In fact, GSK5182 is more effective at
lowering body weight, adipose mass, and hepatic lipid accumulation
than metformin [44]. Despite its beneficial effects on metabolism,
GSK5182 does not restore hepatic insulin signaling or alter gene expres-
sion in peripheral tissue (i.e. skeletal muscle).

ERRγ activation may also indirectly promote liver insulin resistance
as a result of its effects on lipidmetabolism. ERRγ activation of the Lpin1
gene in liver causes diacylglycerol (DAG) accumulation, which inhibits
insulin receptor signaling through activation of PKCε [197]. The well-
characterized mechanism of insulin receptor inhibition involves Ser/
Thr phosphorylation of IRS-1 by lipid activated PKC isozymes ϕ and ε
that inhibits IRS-1 Tyr phosphorylation and activation of downstream
kinases in response to insulin [198–200]. ERRα is also a target for
PKCs in cancer cell models. Phosphorylation of ERRα within the DBD
by PKCδ or PKCε enhances ERRα transcriptional activity and stimulates
mitochondrial function [201]. Mechanistically, phosphorylation by
PKCδ promotes binding of ERRα dimers to ERREs and recruitment of
PGC-1α [86]. Although this mechanism has not been evaluated in
liver, these DAG-dependent PKC isozymes are activated in livers of
high fat diet fed and diabetic mice. Thus, it is interesting to speculate
on whether PKCε activation by ERRγ shown to inhibit IR signaling
might simultaneously regulate gene recognition and activity of ERRα
in the liver. Overall, the current evidence suggests the ERRγ regulation
of hepatic gluconeogenesis plays a prominent role in glucose homeosta-
sis in normal and diabetic states and offers an attractive target pathway
for anti-diabetes drugs.

8.3.2. Skeletal muscle insulin resistance
Insulin resistance in skeletal muscle precedes the onset of type 2 di-

abetes by many years and is a major risk factor for development of the
disease. Increased intramyocellular lipids and lipid intermediates have
been shown to inhibit insulin signaling and impair glucose uptake. A
widely recognized model for how obesity and physical inactivity lead
to insulin resistance involves a mismatch between intracellular lipids,
which are in excess with a high fat diet and obesity, and the capacity
to completely oxidize these substrates in the mitochondria. Elevated
levels of incompletely oxidized lipid intermediates, diacylglycerols,
acyl-carnitines and ROS, produced by overloaded mitochondria, have
all been cited as the byproducts of the mismatch that lead to insulin re-
sistance [202–204]. An influential study implicatingmitochondrial dys-
function as a causative factor in insulin resistance used transcript
expression profiling to show that reduced VO2max in adult diabetics
correlated with down-regulation of genes involved in mitochondrial
ETC/Oxphos genes in skeletal muscle [205]. The expression of PGC-1α,
PGC-1β, and NRFswas shown to be down-regulated in parallel withmi-
tochondrial genes and enzyme activity in the context of obesity, insulin
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resistance and type 2 diabetes in humans [64,206,207]. ERRs were im-
plicated to mediate the effects of PGC-1 on metabolic gene expression
in the skeletal muscle of diabetics, based on enrichment of ERREs in
the promoters of genes discovered in the transcriptional profiling [64].
More importantly, recent ChIP-chip and ChIP-seq profiling definitively
show that ERRs directly bind genes involved in all aspects of mitochon-
drial metabolism and recruits PGC-1 to activate many of these genes. In
humans, reduced mitochondrial capacity is seen in the skeletal muscle
of patients with frank diabetes. However, this correlation is less consis-
tent in obese and insulin resistant patients or in healthy individualswith
a family history of diabetes andmay be confounded by effects of seden-
tary lifestyle and reduced aerobicfitness on skeletalmusclemetabolism.
Thus, whether mitochondrial dysfunction in skeletal muscle is the pre-
disposing cause or is a concurrent defect that contributes to insulin re-
sistance and the development of type 2 diabetes is still being debated
[208]. Nonetheless, it is clear that overlapping mechanisms, including
genetic (e.g., heritable genetic/epigenetic metabolic gene variants) and
environmental (obesity, sedentary lifestyle) factors work together in
various combinations to drive themetabolic defects observed in insulin
resistance and type 2 diabetes.

A consistent observation in diabetic rodentmodels and in humans is
that exercise improves insulin sensitivity through increasedwhole body
energy expenditure and metabolic flexibility. As a major site of glucose
utilization and a primary target of exercise-mediated metabolic
reprogramming, skeletal muscle is responsible for many of the benefi-
cial effects of exercise on systemic metabolism. Aerobic exercise in-
creases basal and maximal O2 consumption and stimulates glucose
uptake in skeletalmuscle. These effects result from increasedmitochon-
drial number and oxidative enzyme activity, a shift from glycolytic to
Fig. 2. ERRα and ERRγ functions in health and disease. ERRα and ERRγ regulate multiple aspec
ERRγ are expressed primarily in oxidative (“slow-twitch”) myofibers, where ERRα regulates
modulate oxidative phosphorylation and angiogenesis. In the cardiac tissue, ERRγ plays an es
postnatal heart and in regulating voltage-gated potassium transporters. ERRα is also expresse
regulation of mitochondrial metabolism. In the brown adipose tissue (BAT), ERRα signaling con
dominantly regulates gluconeogenesis in response to fed/fasting cycle under normal conditions
drial oxidation and lipid metabolism. Through crosstalk with mTOR, the ERRα pathway contri
epithelial cells of the small intestine and regulates apolipoprotein A-IV contributing to intestina
to INF-γ, ERRα regulates the availability of reactive oxygen species (ROS) needed to destroy p
anti-pathogen defense. ERRα and ERRγ directly regulate genes encoding bone matrix protein i
genesis (bone resorption) through its regulation of mitochondrial biogenesis and oxidation.
oxidative fiber types, greater arterial density and increased expression
of glucose transporters driven by coordinated transcriptional pathways.
[209]. There is renewed interest in the benefits of resistance exercise,
which increasesmusclemass and glycolytic capacity in fast-twitchmus-
cles resulting in improved systemic metabolism and glucose homeosta-
sis [210]. Enhanced skeletalmusclemitochondrial content or function in
response to aerobic exercise has been shown to promote the complete
oxidation of lipids and coupled respiration in the context of obesity,
thereby reducing intermediates that inhibit insulin signaling and glu-
cose metabolism [211,212]. PGC-1α and ERRα are up-regulated in re-
sponse to exercise [83,213], and many signaling pathways regulate
PGC-1α in this context, including AMPK, SIRT1, Ca2+/calmodulin
kinases, calcineurin, p38 MAP kinases [85,214]. ERRα may be up-
regulated via a feed-forward mechanism whereby the ERRα/PGC-1α
or ERRγ/PGC-1α complexes activate its expression through ERREswith-
in the ESRRA gene promoter [66]. Furthermore, AMPK has been shown
to upregulate ERRα via an independent mechanism involving Sp1
sites in the ESRRA promoter [183]. Thus, the mechanisms of ERRs regu-
lation by exercise are complex and involve multiple transcription factor
and signalingmechanisms. The adaptivemetabolic effects of aerobic ex-
ercise can be mimicked in transgenic mouse models overexpressing
PGC-1α, ERRγ, PPARδ, or Nur77 in skeletal muscle [162,215–218].
Thus, multiple overlapping regulatory programs converge to coordinate
metabolic, excitation and contractile functions that respond to varied
exercise stimuli. Not surprisingly, recent reports have shown that
some nuclear receptors are dispensable for PGC-1αmediatedmetabolic
adaptations [219]. Collectively, these studies support a therapeutic ap-
proach of selective targeting of metabolic regulators, such as the ERR
pathway, to confer or enhance the metabolic benefits of exercise.
ts of physiology through tissue- and cell-specific effects. In the skeletal muscle, ERRα and
mitochondrial biogenesis, muscle regeneration/differentiation and along with ERRγ they
sential role in the transition from carbohydrate utilization to oxidative metabolism in the
d in the heart, playing an important role in this tissue by driving lipid catabolism through
tributes to heat generation and in white adipose (WAT) to lipogenesis. In liver ERRγ pre-
and contributes to hyperglycemia indiabetic conditions. ERRα regulates hepaticmitochon-
butes to hepatic steatosis seen with rapamycin inhibition of mTOR. ERRα is expressed in
l fat transport, which is a critical step in energy balance. In the immune system, in response
hagocytosed pathogens in activated macrophages, thereby playing a role in INF-γ elicited
n osteoblasts (bone forming cells). Additionally, ERRα is essential for normal osteoclasto-
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9. Summary and perspectives

As typical members of the orphan receptors, ERRα and ERRγ are
transcriptional factors that share functional domains typical to nuclear
hormone receptors. In the meantime, ERRs exhibit some unique fea-
tures such as their constitutive activities. Combined use ERR knockout
mice and functional genomic analysis enable us to uncover the tran-
scriptome of ERRs. Phenotypical analyses of the ERR knockout and
transgenic mice in conjunction with cell-based studies have revealed
the essential roles of ERRα and ERRγ in numerous metabolic pathways
as summarized in Fig. 2. Themetabolic pathways controlled by ERRs are
implicated inphysiologic and pathologic conditions. However, a key pri-
ority in the field is to delineate the distinct biological roles of ERRα and
ERRγ and to characterize the mechanisms by which they mediate spe-
cific pathway regulation. Additionally, two critical remaining challenges
are to discover the endogenous ERR ligands and to develop synthetic
ERR modulators that can selectively target ERR isoforms. The ultimate
goal is to use pharmaceuticals to harness the transcriptional benefits
of ERRs to prevent and treat human diseases, such as the cardiovascular,
muscle, and bone diseases and to reverse the pathologies linked with
metabolic syndrome.
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found, in online version.
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