Nonnegative doubly periodic solutions for nonlinear telegraph system

Fanglei Wang *, Yukun An

Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China

Received 27 January 2007
Available online 13 May 2007
Submitted by G. Bluman

Abstract

This paper deals with the nonnegative doubly periodic solutions for nonlinear telegraph system

\[
\begin{align*}
\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} + c_1 \frac{\partial u}{\partial t} + a_{11}(t,x)u + a_{12}(t,x)v &= b_1(t,x)f(t,x,u,v), \\
\frac{\partial^2 v}{\partial t^2} - \frac{\partial^2 v}{\partial x^2} + c_2 \frac{\partial v}{\partial t} + a_{21}(t,x)u + a_{22}(t,x)v &= b_2(t,x)g(t,x,u,v),
\end{align*}
\]

where \(c_i > 0\) is a constant, \(a_{11}, a_{22}, b_1, b_2 \in C(\mathbb{R}^2, \mathbb{R}^+)\), \(a_{12}, a_{21} \in C(\mathbb{R}^2, \mathbb{R}^-)\), \(f, g \in C(\mathbb{R}^2 \times \mathbb{R}^+ \times \mathbb{R}^+, \mathbb{R}^+)\), and \(a_{ij}, b_i, f, g\) are \(2\pi\)-periodic in \(t\) and \(x\). We show the existence and multiplicity results when \(0 \leq a_{ii}(t,x) \leq c_i^2\) and \(f, g\) are superlinear or sublinear on \((u, v)\) by using the fixed point theorem in cones.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Telegraph system; Doubly periodic solution; Cone; Fixed point theorem

1. Introduction

In this paper we are concerned with the existence and multiplicity of solutions for the nonlinear telegraph system

\[
\begin{align*}
\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} + c_1 \frac{\partial u}{\partial t} + a_{11}(t,x)u + a_{12}(t,x)v &= b_1(t,x)f(t,x,u,v), \\
\frac{\partial^2 v}{\partial t^2} - \frac{\partial^2 v}{\partial x^2} + c_2 \frac{\partial v}{\partial t} + a_{21}(t,x)u + a_{22}(t,x)v &= b_2(t,x)g(t,x,u,v),
\end{align*}
\]

with doubly periodic boundary conditions

\[
\begin{align*}
u(t + 2\pi, x) &= u(t, x + 2\pi) = u(t, x), \quad (t, x) \in \mathbb{R}^2, \\
v(t + 2\pi, x) &= v(t, x + 2\pi) = v(t, x), \quad (t, x) \in \mathbb{R}^2.
\end{align*}
\]

The existence of a doubly periodic solution for a single telegraph equation is studied by many authors when the nonlinearity is bounded or has linear growth, see [1–5]. The first maximum principle for linear telegraph equations...
Doubly 2π-periodic solutions of the linear telegraph equation

$$u_{tt} - u_{xx} + cu_t + \lambda u = h(t, x), \quad (t, x) \in \mathbb{R}^2,$$

holds if and only if $\lambda \in (0, \nu(c))$ and $\nu(c) \in (\frac{c^2}{4}, \frac{c^2}{2} \pm \frac{1}{2})$ is a constant which cannot be concretely determined. This maximum principle on the torus \mathbb{T}^2 (here $\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$ denotes the unit circle) was used in [5] to develop a method of upper and lower solutions for the doubly periodic solutions of the nonlinear telegraph equation

$$u_{tt} - u_{xx} + cu_t + \nu(c)u = F(t, x, u), \quad (t, x) \in \mathbb{R}^2,$$

when the function $u \mapsto F(t, x, u) + \nu(c)u$ is monotonically nondecreasing. Afterwards in [6], Mawhin, Ortega and Robles-Perez built a maximum principle for the solution $u(t, x)$ of the telegraph equation which is bounded and 2π-periodic with respect to x. And a similar method of upper and lower solutions was developed when the function $u \mapsto F(t, x, u) + \nu(c)u$ is monotonically nondecreasing. Lately, these authors in [7] have extended their results in [6] to the telegraph equations in space dimensions two or three. Another maximum principle for the telegraph equation can be found in [9]. In [8], by using fixed point theorem in cones, Li obtained the existence results of positive doubly periodic solutions for the nonlinear equation

$$u_{tt} - u_{xx} + a(t, x)u = b(t, x)f(t, x, u), \quad (t, x) \in \mathbb{R}^2,$$

where $c > 0$ is a constant, $a, b \in C(\mathbb{R}^2, \mathbb{R}^+)$, $f \in C(\mathbb{R}^2 \times \mathbb{R}^+ \times \mathbb{R}^+, \mathbb{R}^+)$, and a, b, f are 2π-periodic in t and x, $0 \leq a(t, x) \leq c^2/4$ and f is either superlinear or sublinear on u on the base of maximum principle in [5].

On the other hand, there are many papers connected with the existence and multiplicity of t-periodic solutions for the nonlinear wave systems and telegraph-wave coupled systems, such as [11–13] and the references therein. And also many authors deal with second-order ordinary differential systems and second-order elliptic systems, see [14–16]. Inspire by those papers, our interest here is in the existence and multiplicity of nonnegative doubly periodic solutions for the nonlinear telegraph systems (1).

The paper is organized as follows: In Section 2, we make some preliminaries; in Sections 3, 4, we prove the existence and multiplicity results of (1).

2. Preliminaries

Let \mathbb{T}^2 be the torus defined as

$$\mathbb{T}^2 = (\mathbb{R}/2\pi\mathbb{Z}) \times (\mathbb{R}/2\pi\mathbb{Z}).$$

Doubly 2π-periodic functions will be identified to be functions defined on \mathbb{T}^2. We use the notations

$$L^p(\mathbb{T}^2), C(\mathbb{T}^2), C^a(\mathbb{T}^2), D(\mathbb{T}^2) = C^\infty(\mathbb{T}^2), \ldots$$

to denote the spaces of doubly periodic functions with the indicated degree of regularity. The space $D'(\mathbb{T}^2)$ denotes the space of distributions on \mathbb{T}^2.

By a doubly periodic solution of (1) we mean that a $(u, v) \in L^1(\mathbb{T}^2) \times L^1(\mathbb{T}^2)$ satisfies (1) in the distribution sense, i.e.

$$\begin{cases}
\int_{\mathbb{T}^2} \varphi_{tt} u - \varphi_{xx} - c_1 \varphi_t + a_{11} \varphi + a_{12} \int_{\mathbb{T}^2} v \varphi = \int_{\mathbb{T}^2} b_1 f \varphi, \\
\int_{\mathbb{T}^2} \varphi_{tt} v - \varphi_{xx} - c_2 \varphi_t + a_{22} \varphi + a_{21} \int_{\mathbb{T}^2} u \varphi = \int_{\mathbb{T}^2} b_2 g \varphi,
\end{cases} \quad \forall \varphi \in D(\mathbb{T}^2).$$

First, we consider the linear equation

$$u_{tt} - u_{xx} + c_1 u_t - \lambda_i u = h_i(t, x), \quad \text{in } D'(\mathbb{T}^2), \quad (i = 1, 2),$$

where $c_i > 0$, $\lambda_i \in \mathbb{R}$, $h_i \in L^1(\mathbb{T}^2)$ ($i = 1, 2$).

Let \mathcal{L}_{λ_i} be the differential operator

$$\mathcal{L}_{\lambda_i} = u_{tt} - u_{xx} + c_1 u_t - \lambda_i u,$$
acting on functions on \mathbb{T}^2. Following the discussion in [5,8], we know that if $\lambda_i < 0$, \mathcal{L}_{λ_i} has the resolvent R_{λ_i}

$$R_{\lambda_i} : L^1(\mathbb{T}^2) \rightarrow C(\mathbb{T}^2), \quad h_i \mapsto u_i,$$

where u_i is the unique solution of (3), and the restriction of R_{λ_i} on $L^p(\mathbb{T}^2) (1 < p < \infty)$ or $C(\mathbb{T}^2)$ is compact. In particular, $R_{\lambda_i} : C(\mathbb{T}^2) \rightarrow C(\mathbb{T}^2)$ is a completely continuous operator.

For $\lambda_i = -c_i^2/4$, the Green function of the differential operator \mathcal{L}_{λ_i} is explicitly expressed, which has been obtained in [5]. We denote it by $G_i(t, x)$. By Lemma 5.1 in [5], $G_i(t, x) \in L^\infty$, is doubly 2π-periodic. So the unique solution of (3) can be represented by the convolution product

$$u_i(t, x) = (R_{\lambda_i} h_i)(t, x) = \int_{\mathbb{T}^2} G_i(t, x) h_i(s, y) ds dy. \quad (4)$$

The expression of $G_i(t, x)$ will be given in what follows.

Let $D_i = R^2 \setminus \xi_i$, where ξ_i is the family of lines

$$x \pm t = 2k\pi, \quad k \in \mathbb{Z}.$$

Let $D_i^{(mn)}$ denote the connected component of D_i with center at $(m\pi, n\pi)$, where $m + n$ is an odd number. By periodicity, the value of G_i on $D_i^{(10)}$ and $D_i^{(01)}$ completely determines the value of G_i on the whole set D_i. In $D_i^{(10)}$ and $D_i^{(01)}$, $G_i(t, x)$ is explicitly given by

$$G_i(t, x) = \begin{cases}
\gamma_i^{(10)} e^{-c_i t/2}, & (t, x) \in D_i^{(10)}, \\
\gamma_i^{(01)} e^{-c_i t/2}, & (t, x) \in D_i^{(01)},
\end{cases}$$

where

$$\gamma_i^{(10)} = (1 + e^{-c_i \pi})/2(1 - e^{-c_i \pi})^2, \quad \gamma_i^{(01)} = e^{-c_i \pi}/(1 - e^{-c_i \pi})^2,$$

see Lemma 5.2 in [5].

From the definition of $G_i(t, x)$, we have

$$G_i := \text{ess inf} G_i(t, x) = e^{-3c_i \pi/2}/(1 - e^{-c_i \pi})^2,$$

$$\overline{G_i} := \text{ess sup} G_i(t, x) = (1 + e^{-c_i \pi})/2(1 - e^{-c_i \pi})^2.$$

Let $h \in L^1(\mathbb{T}^2)$ with $h(t, x) \geq 0$ for a.e. $(t, x) \in \mathbb{T}^2$. Then from (4) we have, $R_{\lambda_i} h$ satisfies the positive estimate

$$\|h\|_{L^1(\mathbb{T}^2)} \leq (R_{\lambda_i} h)(t, x) \leq \overline{G_i} \|h\|_{L^1(\mathbb{T}^2)}. \quad (5)$$

Let X denote the Banach space $C(\mathbb{T}^2)$. Then X is an ordered Banach space with cone

$$K_0 = \{ u \in X \mid u(t, x) \geq 0, \forall (t, x) \in \mathbb{T}^2 \}.$$

Now, we consider Eq. (3) when $-\lambda_i$ is replaced by $a_{ii}(t, x)$. In [8], the author has proved the following unique existence and positive estimate result.

Lemma 1. $h_i \in L^1, X$ is the Banach space $C(\mathbb{T}^2)$, Then Eq. (3) has a unique solution $u_i = P_i h_i$, $P_i : L^1 \rightarrow X$ is a linear bounded operator with the following properties,

(i) $P_i : C(\mathbb{T}^2) \rightarrow C(\mathbb{T}^2)$ is a completely continuous operator;

(ii) If $h_i > 0$, a.e $(t, x) \in \mathbb{T}^2$, $P_i h_i$ has the positive estimate

$$\frac{G_i}{\overline{G_i} \|a_{ii}\|_{L^1}} \|h_i\|_{L^1} \leq (P_i h_i) \leq \frac{\overline{G_i}}{G_i} \|h_i\|_{L^1}. \quad (6)$$

To prove our results, we need the following fixed-point theorem of cone mapping.
Lemma 2. (See Guo and Lakshmikantham [10].) Let E be a Banach space, and let $K \subset E$ be a cone in E. Assume Ω_1, Ω_2 are open subsets of E with $0 \in \Omega_1, \overline{\Omega}_1 \subset \Omega_2$, and let $T : K \cap (\overline{\Omega}_2 \setminus \Omega_1) \to K$ be a completely continuous operator such that either

(i) $\|T\tilde{u}\| \leq \|\tilde{u}\|$, $\tilde{u} \in K \cap \partial \Omega_1$ and $\|T\tilde{u}\| \geq \|\tilde{u}\|$, $\tilde{u} \in K \cap \partial \Omega_2$;

(ii) $\|T\tilde{u}\| \geq \|\tilde{u}\|$, $\tilde{u} \in K \cap \partial \Omega_1$ and $\|T\tilde{u}\| \leq \|\tilde{u}\|$, $\tilde{u} \in K \cap \partial \Omega_2$.

Then T has a fixed point in $K \cap (\overline{\Omega}_2 \setminus \Omega_1)$.

3. Existence result

We assume the following conditions throughout:

(H1) $a_{ii} \in C(T^2)$, $0 \leq a_{ii}(t, x) \leq \frac{\varepsilon^2}{4}$ for $(t, x) \in T^2$, and $\int_{T^2} a_{ii}(t, x) \, dt \, dx > 0$, $a_{12}, a_{21} \in C(T^2, R^-)$;

(H2) $b_i \in C(T^2)$, $0 \leq b_i(t, x)$ for $(t, x) \in T^2$, and $\int_{T^2} b_i(t, x) \, dt \, dx > 0$;

(H3) $f, g \in C(T^2 \times R^+ \times R^+ \times R^+)$.

For convenience, we introduce the following notations:

\[
\begin{align*}
 f_0 &= \lim_{(u, v) \to 0} \left(f(t, x, u, v) / (u + v) \right), & g_0 &= \lim_{(u, v) \to 0} \left(g(t, x, u, v) / (u + v) \right), \\
 f_\infty &= \lim_{(u, v) \to \infty} \left(f(t, x, u, v) / (u + v) \right), & g_\infty &= \lim_{(u, v) \to \infty} \left(g(t, x, u, v) / (u + v) \right), \\
 A_1 &= \frac{G_1 a_{11} L_1}{2G_1 b_1 L_1}, & A_2 &= \frac{G_2 a_{12} L_1}{2G_2 b_2 L_1}, \\
 B_1 &= \frac{(1 + G_1 a_{12} L_1) G_1}{G_3 b_1 L_1}, & B_2 &= \frac{(1 + G_2 a_{21} L_1) G_2}{G_3 b_2 L_1}.
\end{align*}
\]

We have the following existence result.

Theorem 3.1. Assume (H1)–(H3) hold. $G_1 a_{11} L_1 \geq 2G_1 a_{12} L_1, G_2 a_{22} L_1 \geq 2G_2 a_{21} L_1$. Then in each case of the following conditions

(i) $f_0 \leq A_1, g_0 \leq A_2$, and $f_\infty \geq B_1$ or $g_\infty \geq B_2$;

(ii) $f_\infty \leq A_1, g_\infty \leq A_2$ and $f_0 \geq B_1$ or $g_0 \geq B_2$,

system (1) has at least one nonnegative doubly periodic solutions.

Proof. Set

\[
\delta = \min \left\{ \frac{G_2^2 a_{11} L_1}{G_1}, \frac{G_2^2 a_{22} L_1}{G_2} \right\}.
\]

From condition (H1) and the definitions of G_1 and \overline{G}_1, it can be obtained that $0 < \delta < 1$.

Let E denote the Banach space $C(T^2) \times C(T^2)$ with the norm $\|\tilde{u}\|_E = \|u\| + \|v\|$, $\|u\| = \max_{(t, x) \in T^2} |u(t, x)|$, $\tilde{u} = (u, v) \in E$. The cone is defined as

\[
K = \{ \tilde{u} = (u, v) \in E: u \geq 0, \ v \geq 0, \ u + v \geq \delta \|\tilde{u}\|_E \}.
\]

By P_i $(i = 1, 2) : L^1 \to C(T^2)$, we denote the solution operators as follows, respectively

\[
\begin{align*}
 u_{tt} - u_{xx} + c_1 u_t + a_{11}(t, x) u &= h_1(t, x), \\
 v_{tt} - v_{xx} + c_2 v_t + a_{22}(t, x) v &= h_2(t, x).
\end{align*}
\]
By Lemma 1, (H2) and (H3) we have
\[I_n \text{ in the same way, we have} \]
so we have
\[T(\tilde{u}) = T(u, v) = (Q_1(u, v), Q_2(u, v)). \]

By Lemma 1, (H2) and (H3) we have
\[Q_1(u, v) = P_1(-a_{12}v + b_1(t, x) f(t, x, u, v)) \]
\[Q_2(u, v) = P_2(-a_{21}u + b_1(t, x) g(t, x, u, v)) \]
\[T(u, v) = (Q_1(u, v), Q_2(u, v)), \quad K \rightarrow E. \]

We have the conclusion that \(T : E \rightarrow E \) is completely continuous and \(T(K) \subseteq K \). The complete continuity is obvious by Lemma 1, we show that \(T(K) \subseteq K \).

\(\forall \tilde{u} \in K \), we have
\[T(\tilde{u}) = T(u, v) = (Q_1(u, v), Q_2(u, v)). \]

By Lemma 1, (H2) and (H3) we have
\[Q_1(u, v) = P_1(-a_{12}v + b_1(t, x) f(t, x, u, v)) \geq G_1 \| -a_{12}v + b_1 f \|_{L^1}. \]
\[\| Q_1(u, v) \| = \| P_1(-a_{12}v + b_1(t, x) f(t, x, u, v)) \| \leq \frac{G_1}{G_1 \| a_{11} \|_{L^1}} \| -a_{12}v + b_1 f \|_{L^1}. \]

So we get
\[Q_1(u, v) \geq \frac{G_1^2 \| a_{11} \|_{L^1}}{G_1} \| Q_1(u, v) \| \geq \delta \| Q_1(u, v) \|. \]

In the same way, we also have
\[Q_2(u, v) \geq \frac{G_2^2 \| a_{22} \|_{L^1}}{G_2} \| Q_2(u, v) \| \geq \delta \| Q_2(u, v) \|. \]

So
\[Q_1(u, v) + Q_2(u, v) \geq \delta (\| Q_1(u, v) \| + \| Q_2(u, v) \|), \]

namely
\[T(\tilde{u}) = T(u, v) = (Q_1(u, v), Q_2(u, v)) \in K. \]

Thus, \(T(K) \subseteq K \).

To prove the results we verify in what follows that the conditions of Lemma 2 are satisfied.

Let \(\Omega_i = \{ \tilde{u} = (u, v) \in E: \| \tilde{u} \|_E \leq r_i \} \) \((i = 1, 2) \), \(0 \in \Omega_1, \tilde{r}_1 \subseteq \Omega_2 \).

Case 1. Assume condition (i) hold. Since \(f_0 \leq A_1, g_0 \leq A_2 \), by the definition of \(f_0, g_0 \), we may choose \(\eta > 0 \) such that \(f(t, x, u, v) \leq A_1(u + v), g(t, x, u, v) \leq A_2(u + v) \forall (t, x) \in \mathbb{T}^2, 0 \leq u + v \leq \eta \).

Choose \(r_1 \in (0, \eta) \), we now prove that
\[\| T\tilde{u} \|_E \leq \| \tilde{u} \|_E, \quad \tilde{u} \in K \cap \partial \Omega_1. \] (7)

By Lemma 1 and the above inequality, we have
\[\| Q_1(u, v) \| = \| P_1(-a_{12}v + b_1 f(t, x, u, v)) \| \]
\[\leq \frac{G_1}{G_1 \| a_{11} \|_{L^1}} \| -a_{12}v + b_1 f \|_{L^1} \]
\[\leq \frac{G_1}{G_1 \| a_{11} \|_{L^1}} (\| b_1 \|_{L^1} \| f \| + \| a_{12} \|_{L^1} \| v \|) \]
\[\leq \frac{G_1}{G_1 \| a_{11} \|_{L^1}} (A_1 \| u + v \| \| b_1 \|_{L^1} + \| a_{12} \|_{L^1} \| v \|) \]
\[
\begin{align*}
&\leq \frac{G_1}{\|a_{11}\|_{L^1}} \left[\|b_1\|_{L^1} A_1 (\|u\| + \|v\|) + \|a_{12}\|_{L^1} (\|u\| + \|v\|) \right] \\
&\leq \frac{G_1}{\|a_{11}\|_{L^1}} \left[\|b_1\|_{L^1} A_1 + \|a_{12}\|_{L^1} \right] (\|u\| + \|v\|) \\
&\leq \frac{1}{2} (\|u\| + \|v\|),
\end{align*}
\]

namely
\[
\|Q_1(u, v)\| \leq \frac{1}{2} (\|u\| + \|v\|).
\]

In the same way, we also have
\[
\|Q_2(u, v)\| \leq \frac{1}{2} (\|u\| + \|v\|).
\]

So we have
\[
\|T\tilde{u}\|_E = \|Q_1(u, v)\| + \|Q_2(u, v)\| \leq \|u\| + \|v\| = \|\tilde{u}\|_E.
\]

On the other hand, since \(f_\infty \geq B_1\), or \(g_\infty \geq B_2\), by the definition of \(f_\infty, g_\infty\), there exists \(R > 0\) such that
\[
f(t, x, u, v) \geq B_1(u + v) \quad \text{or} \quad g(t, x, u, v) \geq B_2(u + v), \quad \forall (t, x) \in \mathbb{T}^2, \ u + v \geq R.
\]

Choosing \(r_2 = \max\{R/\delta, 2r_1\}\), we now prove
\[
\|T\tilde{u}\|_E \geq \|\tilde{u}\|_E. \tag{8}
\]

If \(\tilde{u} \in K \cap \partial\Omega_2, u + v \geq \delta \|\tilde{u}\|_E \geq R\) and \(f(t, x, u, v) \geq B_1(u + v), \forall (t, x) \in \mathbb{T}^2, \ u + v \geq R\), then
\[
h_1 = -a_{12}v + b_1 f \geq -a_{12}v + B_1 b_1 (u + v) \geq -a_{12}v + B_1 b_1 \delta \|\tilde{u}\|_E, \\
\|h_1\|_{L^1} = -a_{12}v + b_1 f \|_{L^1} \geq B_1 \delta \|b_1\|_{L^1} \|\tilde{u}\|_E - \|a_{12}\|_{L^1} \|\tilde{u}\|_E.
\]

By Lemma 1, we have
\[
\|Q_1(u, v)\| = \|P_1 h_1\| \geq \frac{G_1}{\|a_{11}\|_{L^1}} \geq \frac{G_1}{\|a_{11}\|_{L^1}} (B_1 \delta \|b_1\|_{L^1} - \|a_{12}\|_{L^1}) \|\tilde{u}\|_E,
\]

namely
\[
\|Q_1(u, v)\| \geq \|\tilde{u}\|.
\]

If \(\tilde{u} \in K \cap \partial\Omega_2, u + v \geq \delta \|\tilde{u}\|_E \geq R\) and \(g(t, x, u, v) \geq B_2(u + v), \forall (t, x) \in \mathbb{T}^2, \ u + v \geq R\), in the same way, we also have
\[
\|Q_2(u, v)\| \geq \|\tilde{u}\|.
\]

Thus (8) holds.

By Lemma 2, \(T\) has a fixed point in \(K \cap (\overline{\Omega_2} \setminus \Omega_1)\)
\[
\tilde{u} = (u, v) \in E: \quad u \geq 0, \ v \geq 0, \ u + v \geq \delta \|\tilde{u}\|_E \geq \delta r_1 > 0.
\]

So \(\tilde{u} = (u, v)\) is a negative doubly periodic solution of (1).

Case 2. Assume (ii) holds. Since \(f_0 \geq B_1\) or \(g_0 \geq B_2\), there exists \(\tilde{\eta} > 0\) such that
\[
f(t, x, u, v) \geq B_1(u + v) \quad \text{or} \quad g(t, x, u, v) \geq B_2(u + v), \quad \forall (t, x) \in \mathbb{T}^2, \ 0 \leq u + v \leq \tilde{\eta}.
\]

Let \(r_1 \in (0, \tilde{\eta})\), with a similar argument of (8), we can prove that
\[
\|T\tilde{u}\|_E \geq \|\tilde{u}\|_E. \quad \tilde{u} \in K \cap \partial\Omega_1.
\]

On the other hand, since \(f_\infty \leq B_1, g_\infty \leq B_2\), by the definition of \(f_\infty, g_\infty\), there exists \(\overline{R} > 0\) such that
\[f(t,x,u,v) \leq B_1(u + v), \quad g(t,x,u,v) \leq B_1(u + v), \quad \forall (t,x) \in \mathbb{T}^2, \quad u + v \geq \overline{R}. \]

Choose \(r_2 = \max\{\overline{R}/\delta, 2r_1\} \), we now prove
\[
\|T\tilde{u}\|_E \leq \|	ilde{u}\|_E, \quad \tilde{u} \in K \cap \partial \Omega_2.
\]

If \(\tilde{u} \in K \cap \partial \Omega_2, u + v \geq \delta \|	ilde{u}\|_E \geq \overline{R} \), and therefore
\[
h_1(t,x) = -a_{12} v + b_1(t,x) f(t,x,u,v) \leq -a_{12} v + b_1 A_1(u + v).
\]

By Lemma 1 and the above inequality, we have
\[
\|Q_1(u,v)\| = \|P_1 h_1\| = \|P_1 (-a_{12} v + b_1 f(t,x,u,v))\| \leq \|P_1\|_{L^1} \leq \frac{G_1}{G_1 \|a_{11}\|_{L^1}} \|a_{12} v + b_1 f\|_{L^1} \leq \frac{G_1}{G_1 \|a_{11}\|_{L^1}} \|a_{12} v + b_1 f\|_{L^1} \leq \frac{G_1}{G_1 \|a_{11}\|_{L^1}} \left(A_1 \|u + v\||b_1||_{L^1} + \|a_{12}\|_{L^1} \|v\| \right) \leq \frac{G_1}{G_1 \|a_{11}\|_{L^1}} \left(\|b_1||_{L^1} A_1 + \|a_{12}\|_{L^1} \right) \left(\|u\| + \|v\| \right) \leq \frac{1}{2} \left(\|u\| + \|v\| \right).
\]

In a similar way, we also have
\[
\|Q_2(u,v)\| \leq \frac{1}{2} \left(\|u\| + \|v\| \right).
\]

So
\[
\|T\tilde{u}\|_E = \|Q_1(u,v)\| + \|Q_2(u,v)\| \leq \|u\| + \|v\| = \|	ilde{u}\|_E.
\]

By Lemma 2, \(T \) has a fixed point in \(K \cap (\overline{\Omega}_2 \setminus \Omega_1) \)
\[
\tilde{u} = (u,v) \in E: \quad u \geq 0, \quad v \geq 0, \quad u + v \geq \delta \|	ilde{u}\|_E \geq \delta r_1 > 0.
\]

So \(\tilde{u} = (u,v) \) is a nonnegative doubly periodic solution of (1).

The proof of Theorem 1 is complete. \(\square \)

4. Multiplicity theorems

In this section we consider the multiplicity of solutions. The main results are the following theorems.

Theorem 4.1. Assume (H1)–(H3) hold. \(G_1 \|a_{11}\|_{L^1} \geq 2G_1 \|a_{12}\|_{L^1}, \quad G_2 \|a_{22}\|_{L^1} \geq 2G_2 \|a_{21}\|_{L^1} \). In addition, assume that there exist constants \(r > 0, \quad 0 < \sigma < 1 \) such that

(a) \(f_0 = g_0 = f_\infty = g_\infty = 0 \);
(b) \(f(t,x,u,v) \geq Mr \text{ or } g(t,x,u,v) \geq Mr \), for \(\sigma r \leq u + v \leq r \), where \(M = \max \left\{ \frac{1+G_1 \|a_{12}\|_{L^1}}{G_1 \|b_1\|_{L^1}}, \frac{1+G_2 \|a_{21}\|_{L^1}}{G_2 \|b_2\|_{L^1}} \right\} \).

Then (1) has at least two nonnegative doubly periodic solutions.

Proof. Let \(A = \min\{A_1, A_2\} \).
Step 1. Since \(f_0 = g_0 = 0 \), there exists \(r_1 \in (0, \sigma r] \) such that
\[
f(t, x, u, v) \leq A(u + v), \quad g(t, x, u, v) \leq A(u + v), \quad \text{for } 0 \leq u + v \leq r_1.
\]
Let \(\Omega_1 = \{ \tilde{u} = (u, v) \in E : \| \tilde{u} \|_E < r_1 \} \). By the proof of Theorem 1, we have
\[
\| T \tilde{u} \|_E \leq \| \tilde{u} \|_E, \quad \tilde{u} \in K \cap \partial \Omega_1.
\] (9)

Step 2. Since \(f_\infty = g_\infty = 0 \), there exists \(R > r_1 \) such that
\[
f(t, x, u, v) \leq A(u + v), \quad g(t, x, u, v) \leq A(u + v), \quad \text{for } u + v \geq R.
\]
Let \(r_2 = R/\delta \), \(\Omega_2 = \{ \tilde{u} = (u, v) \in E : \| \tilde{u} \|_E < r_2 \} \). By the proof of Theorem 1, we have
\[
\| T \tilde{u} \|_E \leq \| \tilde{u} \|_E, \quad \tilde{u} \in K \cap \partial \Omega_2.
\] (10)

Step 3. Let \(\Omega_3 = \{ \tilde{u} = (u, v) \in E : \| \tilde{u} \|_E < r_1 \} \), \(\forall \tilde{u} \in K \cap \partial \Omega_3 \). By Lemma 1, we have
\[
Q_1(u, v) = P_1 h_1 \geq G_1 \| h_1 \|_{L^1}
\[
= G_1 \int_{T^2} (b_1 f - a_{12}v) \, dt \, dx
\[
\geq G_1 \left[Mr \| b_1 \|_{L^1} - \| a_{12} \|_{L^1} r \right]
\[
\geq r = \| \tilde{u} \|_E,
\]

namely
\[
\| Q_1(u, v) \| \geq \| \tilde{u} \|_E.
\] So we can get
\[
\| T \tilde{u} \|_E \geq \| \tilde{u} \|_E, \quad \tilde{u} \in K \cap \partial \Omega_3.
\] (11)

Consequently, from (9)–(11) and Lemma 2, (1) has at least two nonnegative solutions \((u_1, v_1) \in K \cap (\overline{\Omega}_3 \setminus \Omega_1), (u_2, v_2) \in K \cap (\overline{\Omega}_2 \setminus \Omega_3) \) with
\[
0 \leq \| (u_1, v_1) \|_E < r < \| (u_2, v_2) \|_E.
\]
Thus, the proof of Theorem 4.1 is complete. \(\square \)

Theorem 4.2. Assume (H1)–(H3) hold. \(G_1 \| a_{11} \|_{L^1} \geq 2G_1 \| a_{12} \|_{L^1}, \quad G_2 \| a_{22} \|_{L^1} \geq 2G_2 \| a_{21} \|_{L^1}. \) In addition, assume that there exist constants \(r > 0, \ 0 < \sigma < 1 \) such that

(a) \(f_\infty = \infty \) or \(g_\infty = \infty \);
(b) \(f(t, x, u, v) \leq M r \) and \(g(t, x, u, v) \leq M r \), for \(\sigma r \leq u + v \leq r \), where \(M = \min \{ A_1, A_2 \} \).

Then (1) has at least two nonnegative doubly periodic solutions.

Proof. Let \(B = \max \{ B_1, B_2 \} \).

Step 1. Since \(f_\infty = \infty \), there exist \(r_1 \in (0, \sigma r] \) such that
\[
f(t, x, u, v) \geq B(u + v), \quad \text{for } 0 < u + v \leq r_1.
\]
Let \(\Omega_1 = \{ \tilde{u} = (u, v) \in E : \| \tilde{u} \|_E < r_1 \} \). Like in the proof of Theorem 1, we have
\[
\| T \tilde{u} \|_E \geq \| \tilde{u} \|_E, \quad \tilde{u} \in K \cap \partial \Omega_1.
\] (12)
Step 2. Since \(f_\infty = \infty \), there exists \(R > r \) such that
\[
f(t, x, u, v) \geq B(u + v), \quad \text{for } u + v \geq R.
\]
Let \(r_2 = R/\delta \), \(\Omega_2 = \{ \tilde{u} = (u, v) \in E: \| \tilde{u} \|_E < r_2 \} \). Like in the proof of Theorem 1, we have
\[
\| T\tilde{u} \|_E \geq \| \tilde{u} \|_E, \quad \tilde{u} \in K \cap \partial \Omega_2.
\]
(13)

Step 3. Let \(\Omega_3 = \{ \tilde{u} = (u, v) \in E: \| \tilde{u} \|_E < r \} \), \(\forall \tilde{u} \in K \cap \partial \Omega_3 \). By Lemma 1, we have
\[
Q_1(u, v) = P_1h_1 \leq \frac{G_1}{G_1\| a_{11} \|_{L^1}} \| -a_{12}v + b_1f \|_{L^1}
\leq \frac{G_1}{G_1\| a_{11} \|_{L^1}} (\| b_1 \|_{L^1}Mr + \| a_{12} \|_{L^1}r)
\leq \frac{1}{2}r,
\]
namely
\[
\| Q_1(u, v) \| \leq \frac{1}{2}r.
\]
In a similar way, we have
\[
Q_2(u, v) = P_2h_2 \leq \frac{G_2}{G_2\| a_{22} \|_{L^1}} \| -a_{21}u + b_2f \|_{L^1}
\leq \frac{G_2}{G_2\| a_{22} \|_{L^1}} (\| b_2 \|_{L^1}Mr + \| a_{21} \|_{L^1}r)
\leq \frac{1}{2}r,
\]
namely
\[
\| Q_2(u, v) \| \leq \frac{1}{2}r.
\]
So we get
\[
\| T\tilde{u} \|_E = \| Q_1(u, v) \| + \| Q_2(u, v) \| \leq r = \| \tilde{u} \|_E.
\]
(14)

Consequently, from (12)–(14) and Lemma 2, (1) has at least two nonnegative solutions \((u_1, v_1) \in K \cap (\Omega_3 \setminus \Omega_1) \), \((u_2, v_2) \in K \cap (\Omega_2 \setminus \Omega_3) \) with \(0 \leq \| (u_1, v_1) \|_E < r < \| (u_2, v_2) \|_E \).

We can have the same result when \(g_0 = g_\infty = \infty \).

Thus, the proof of Theorem 4.2 is complete. \(\square \)

References