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Abstract

Under certain conditions, solutions of the boundary value problem, y′′ = f (x, y, y′), y(x1) = y1, and
y(x2) − ∑m

i=1 riy(ηi) = y2, are differentiated with respect to boundary conditions, where a < x1 < η1 <

· · · < ηm < x2 < b, r1, . . . , rm ∈ R, and y1, y2 ∈ R.
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1. Introduction

In this paper, we will be concerned with differentiating solutions of certain nonlocal boundary
value problems with respect to boundary data for the second order ordinary differential equation,

y′′ = f (x, y, y′), a < x < b, (1.1)
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satisfying

y(x1) = y1, y(x2) −
m∑

i=1

riy(ηi) = y2, (1.2)

where a < x1 < η1 < · · · < ηm < x2 < b, and y1, y2, r1, . . . , rm ∈ R, and where we assume:

(i) f (x,u1, u2) : (a, b) × R
2 → R is continuous,

(ii) ∂f
∂ui

(x,u1, u2) : (a, b) × R
2 → R are continuous, i = 1,2, and

(iii) solutions of initial value problems for (1.1) extend to (a, b).

We remark that condition (iii) is not necessary for the spirit of this work’s results, however, by
assuming (iii), we avoid continually making statements in terms of solutions’ maximal intervals
of existence.

Under uniqueness assumptions on solutions of (1.1), (1.2), we will establish analogues of a
result that Hartman [8] attributes to Peano concerning differentiation of solutions of (1.1) with
respect to initial conditions. For our differentiation with respect to boundary conditions results,
given a solution y(x) of (1.1), we will give much attention to the variational equation for (1.1)
along y(x), which is defined by

z′′ = ∂f

∂u1

(
x, y(x), y′(x)

)
z + ∂f

∂u2

(
x, y(x), y′(x)

)
z′. (1.3)

Interest in multipoint boundary value problems for second order ordinary differential equa-
tions has been ongoing for several years, with much attention given to positive solutions. To see
only few of these papers, we refer the reader to papers by Bai and Fang [1], Gupta and Trofim-
chuk [7], Ma [15,16] and Yang [23].

Likewise, many papers have been devoted to smoothness of solutions of boundary value prob-
lems in regard to smoothness of the differential equation’s nonlinearity, as well as the smoothness
of the boundary conditions. For a view of how this work has evolved, involving not only boundary
value problems for ordinary differential equations, but also discrete versions, functional differ-
ential equations versions and smoothness versions concerning solutions of dynamic equations on
time scales, we suggest the manifold results in the papers [2–6,8–12,14,17–22]. In fact, smooth-
ness results have been given some consideration for (1.1), (1.2) when m = 1, r1 = 1; see [13].

The theorem for which we seek an analogue and attributed to Peano by Hartman can be stated
in the context of (1.1) as follows:

Theorem 1.1 (Peano). Assume that with respect of (1.1), conditions (i)–(iii) are satisfied. Let
x0 ∈ (a, b) and y(x) ≡ y(x, x0, c1, c2) denote the solution of (1.1) satisfying the initial condi-
tions y(x0) = c1, y′(x0) = c2. Then,

(a) ∂y
∂c1

and ∂y
∂c2

exist on (a, b), and αi ≡ ∂y
∂ci

, i = 1,2, are solutions of the variational equa-
tion (1.3) along y(x) satisfying the respective initial conditions,

α1(x0) = 1, α′
1(x0) = 0,

α2(x0) = 0, α′
2(x0) = 1.

(b) ∂y
∂x0

exists on (a, b), and β ≡ ∂y
∂x0

is the solution of the variational equation (1.3) along y(x)

satisfying the initial conditions,
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β(x0) = −y′(x0),

β ′(x0) = −y′′(x0).

(c) ∂y
∂x0

(x) = −y′(x0)
∂y
∂c1

(x) − y′′(x0)
∂y
∂c2

(x).

In addition, our analogue of Theorem 1.1 depends on uniqueness of solutions of (1.1), (1.2),
a condition we list as an assumption:

(iv) Given a < x1 < η1 < · · · < ηm < x2 < b, if y(x1) = z(x1) and y(x2) − ∑m
i=1 riy(ηi) =

z(x2) − ∑m
i=1 riz(ηi), where y(x) and z(x) are solutions of (1.1), then y(x) ≡ z(x).

We will also make extensive use of a similar uniqueness condition on (1.3) along solutions y(x)

of (1.1).

(v) Given a < x1 < η1 < · · · < ηm < x2 < b, and a solution y(x) of (1.1), if u(x1) = 0 and
u(x2) − ∑m

i=1 riu(ηi) = 0, where u(x) is a solution of (1.3) along y(x), then u(x) ≡ 0.

2. An analogue of Peano’s Theorem for (1.1), (1.2)

In this section, we derive our analogue of Theorem 1.1 for boundary value problem (1.1),
(1.2). For such a differentiation result, we need continuous dependence of solutions on boundary
conditions. Such continuity was established recently in [11], which we state here.

Theorem 2.1. Assume (i)–(iv) are satisfied with respect to (1.1). Let u(x) be a solution of (1.1)
on (a, b), and let a < c < x1 < η1 < · · · < ηm < x2 < d < b be given. Then, there exists a δ > 0
such that, for |xi − ti | < δ, i = 1,2, |ηi − τi | < δ, i = 1, . . . ,m, |ri − ρi | < δ, i = 1, . . . ,m,
and |u(x1) − y1| < δ, |u(x2) − ∑m

i=1 riu(ηi) − y2| < δ, there exists a unique solution uδ(x)

of (1.1) such that uδ(t1) = y1, uδ(t2) − ∑m
i=1 ρiuδ(τi) = y2, and {u(j)

δ (x)} converges uniformly
to u(j)(x), as δ → 0, on [c, d], for j = 0,1.

We now present the result of the paper.

Theorem 2.2. Assume conditions (i)–(v) are satisfied. Let u(x) be a solution (1.1) on (a, b).

Let a < x1 < η1 < · · · < ηm < x2 < b be given, so that u(x) = u(x, x1, x2, u1, u2, η1, . . . , ηm,

r1, . . . , rm), where u(x1) = u1 and u(x2) − ∑m
i=1 riu(ηi) = u2. Then,

(a) ∂u
∂u1

and ∂u
∂u2

exist on (a, b), and yi ≡ ∂u
∂ui

, i = 1,2, are solutions of (1.3) along u(x) and
satisfy the respective boundary conditions,

y1(x1) = 1, y1(x2) −
m∑

i=1

riy1(ηi) = 0,

y2(x1) = 0, y2(x2) −
m∑

i=1

riy2(ηi) = 1.

(b) ∂u
∂x1

and ∂u
∂x2

exist on (a, b), and zi ≡ ∂u
∂xi

, i = 1,2, are solutions of (1.3) along u(x) and
satisfy the respective boundary conditions,
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z1(x1) = −u′(x1), z1(x2) −
m∑

i=1

riz1(ηi) = 0,

z2(x1) = 0, z2(x2) −
m∑

i=1

riz2(ηi) = −u′(x2).

(c) For 1 � j � m, ∂u
∂ηj

exists on (a, b), and wj ≡ ∂u
∂ηj

, j = 1, . . . ,m, is a solution of (1.3) along

u(x) and satisfies

wj(x1) = 0, wj (x2) −
m∑

i=1

riwj (ηi) = rju
′(ηj ).

(d) For 1 � j � m, ∂u
∂rj

exists on (a, b), and vj ≡ ∂u
∂rj

, j = 1, . . . ,m, is a solution of (1.3) along

u(x) and satisfies

vj (x1) = 0, vj (x2) −
m∑

i=1

rivj (ηi) = u(ηj ).

Proof. For part (a) we will give the argument for ∂u
∂u1

, since the argument for ∂u
∂u2

is some-
what similar. In this case we designate, for brevity, u(x, x1, x2, u1, u2, η1, . . . , ηm, r1, . . . , rm)

by u(x,u1).
Let δ > 0 be as in Theorem 2.1. Let 0 < |h| < δ be given and define

y1h(x) = 1

h

[
u(x,u1 + h) − u(x,u1)

]
.

Note that u(x1, u1 + h) = u1 + h, and u(x1, u1) = u1, so that, for every h �= 0,

y1h(x1) = 1

h
[u1 + h − u1] = 1.

In addition, for every h �= 0,

y1h(x2) −
m∑

i=1

riy1h(ηi) = 1

h
[u2 − u2] = 0.

Let

β2 = u′(x1, u1),

and

ε2 = ε2(h) = u′(x1, u1 + h) − β2.

By Theorem 2.1, ε2 = ε2(h) → 0, as h → 0. Using the notation of Theorem 1.1 for solutions of
initial value problems for (1.1) and viewing the solutions u as solutions of initial value problems,
we have

y1h(x) = 1

h

[
y(x, x1, u1 + h,β2 + ε2) − y(x, x1, u1, β2)

]
.

Then, by utilizing a telescoping sum, we have
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y1h(x) = 1

h

[{
y(x, x1, u1 + h,β2 + ε2) − y(x, x1, u1, β2 + ε2)

}
+ {

y(x, x1, u1, β2 + ε2) − y(x, x1, u1, β2)
}]

.

By Theorem 1.1 and the Mean Value Theorem, we obtain

y1h(x) = 1

h
α1

(
x, y(x, x1, u1 + h̄, β2 + ε2)

)
(u1 + h − u1)

+ 1

h
α2

(
x, y(x, x1, u1, β2 + ε̄2)

)
(β2 + ε2 − β2),

where αi(x, y(·)), i = 1,2, is the solution of the variational equation (1.3) along y(·) and satisfies
in each case,

α1(x1) = 1, α′
1(x1) = 0,

α2(x1) = 0, α′
2(x1) = 1.

Furthermore, u1 + h̄ is between u1 and u1 + h, and β2 + ε̄2 is between β2 and β2 + ε2. Now
simplifying,

y1h(x) = α1
(
x, y(x, x1, u1 + h̄, β2 + ε2)

) + ε2

h
α2

(
x, y(x, x1, u1, β2 + ε̄2)

)
.

Thus, to show limh→0 y1h(x) exists, it suffices to show limh→0
ε2
h

exists.
Now α2(x, y(·)) is a nontrivial solution of (1.3) along y(·), and α2(x1, y(·)) = 0. So, by

assumption (v),

α2
(
x2, y(·)) −

m∑
i=1

riα2
(
ηi, y(·)) �= 0.

However, we observed that y1h(x2) − ∑m
i=1 riy1h(ηi) = 0, from which we obtain

ε2

h
=

∑m
i=1 riα1(ηi, y(x, x1, u1 + h̄, β2 + ε2)) − α1(x2, y(x, x1, u1 + h̄, β2 + ε2))

[α2(x2, y(x, x1, u1, β2 + ε̄2)) − ∑m
i=1 riα2(ηi, y(x, x1, u1, β2 + ε̄2))] .

As a consequence of continuous dependence, we can let h → 0, so that

lim
h→0

ε2

h
= −[α1(x2, y(x, x1, u1, β2)) − ∑m

i=1 riα1(ηi, y(x, x1, u1, β2))]
[α2(x2, y(x, x1, u1, β2)) − ∑m

i=1 riα2(ηi, y(x, x1, u1β2))]

= −[α1(x2, u(·)) − ∑m
i=1 riα1(ηi, u(·))]

[α2(x2, u(·)) − ∑m
i=1 riα2(ηi, u(·))]

:= D.

Let y1(x) = limh→0 y1h(x), and note by construction of y1h(x),

y1(x) = ∂u

∂u1
(x,u1).

Furthermore,

y1(x) = lim y1h(x) = α1
(
x, y(x, x1, u1, β2)

) + Dα2
(
x,u(x, x1)

)
,

h→0
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which is a solution of the variational equation (1.3) along u(x). In addition because of the bound-
ary conditions satisfied by y1h(x), we also have

y1(x1) = 1, y1(x2) −
m∑

i=1

riy1(ηi) = 0.

This completes the argument for ∂u
∂u1

.

In part (b) of the theorem, we will produce the details for ∂u
∂x1

, with the arguments for ∂u
∂x2

being somewhat along the same lines. This time, we designate u(x, x1, x2, u1, u2, η1, . . . , ηm,

r1, . . . , rm) by u(x, x1).

So, let δ > 0 be as in Theorem 2.1, let 0 < |h| < δ be given, and define

z1h(x) = 1

h

[
u(x, x1 + h) − u(x, x1)

]
.

Note that

z1h(x1) = 1

h

[
u(x1, x1 + h) − u(x1, x1)

]
= 1

h

[
u(x1, x1 + h) − u(x1 + h,x1 + h)

]
= − 1

h

[
u′(cx1,h, x1 + h) · h]

= −u′(cx1,h, x1 + h),

where cx1,h lies between x1 and x1 + h. In addition, we note that

z1h(x2) −
m∑

i=1

riz1h(ηi)

= 1

h

[
u(x2, x1 + h) −

m∑
i=1

riu(ηi, x1 + h) −
{

u(x2, x1) −
m∑

i=1

riu(ηi, x1)

}]

= 1

h
[u2 − u2]

= 0,

for every h �= 0. Next, let

β2 = u′(x1, x1),

ε1 = ε1(h) = u(x1, x1 + h) − u1,

and

ε2 = ε2(h) = u′(x1, x1 + h) − β2.

Let us note at this point that
ε1

h
= z1h(x1) = −u′(cx1,h, x1 + h).

By Theorem 2.1, both ε1 → 0 and ε2 → 0, as h → 0. As in part (a), we employ the notation
of Theorem 1.1 for solutions of initial value problems for (1.1), and viewing the solutions u as
solutions of initial value problems, we have
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z1h(x) = 1

h

[
y(x, x1, u1 + ε1, β2 + ε2) − y(x, x1, u1, β2)

]
= 1

h

[
y(x, x1, u1 + ε1, β2 + ε2) − y(x, x1, u1, β2 + ε2)

+ y(x, x1, u1, β2 + ε2) − y(x, x1, u1, β2)
]
.

By the Mean Value Theorem,

z1h(x) = 1

h

[
ε1α1

(
x, y(x, x1, u1 + ε̄1, β2 + ε2)

) + ε2α2
(
x, y(x, x1, u1, β2 + ε̄2)

)]
,

where u1 + ε̄1 lies between u1 and u1 + ε1, β2 + ε̄2 lies between β2 and β2 + ε2, and α1(x, y(·))
and α2(x, y(·)) are the solutions of (1.3) along y(·) and satisfy, respectively,

α1(x1) = 1, α′
1(x1) = 0,

α2(x1) = 0, α′
2(x1) = 1.

As before, to show limh→0 z1h(x) exists, it suffices to show limh→0
ε1
h

and limh→0
ε2
h

exist. Now,
from above

lim
h→0

ε1

h
= lim

h→0
z1h(x1) = − lim

h→0
u′(cx1,h, x1 + h) = −u′(x1).

Since α2(x, y(·)) is a nontrivial solution of (1.3) along y(·) and since α2(x1, y(·)) = 0, it follows
from assumption (v) that

α2
(
x2, y(·)) −

m∑
i=1

riα2
(
ηi, y(·)) �= 0.

From z1h(x2) − ∑m
i=1 riz1h(ηi) = 0, we have

ε2

h
=

(−ε1

h

)
A

α2(x2, y(x, x1, u1, β2 + ε̄2)) − ∑m
i=1 riα2(ηi, y(x, x1, u1, β2 + ε̄2))

,

where

A = α1
(
x2, y(x, x1, u1 + ε̄1, β2 + ε2)

) −
m∑

i=1

riαi

(
ηi, y(x, x1, u1 + ε̄1, β2 + ε2)

)
.

And so,

lim
h→0

ε2

h
= u′(x1)[α1(x2, y(x1, x1, u1, β2)) − ∑m

i=1 riαi(ηi, y(x, x1, u1, β2))]
α2(x2, y(x, x1, u1, β2)) − ∑m

i=1 riα2(ηi, y(x, x1, u1, β2))

= u′(x1)[α1(x2, u(·)) − ∑m
i=1 riαi(ηi, u(·))]

α2(x2, u(·)) − ∑m
i=1 riα2(ηi, u(·))

:= E.

From the above expression,

z1h(x) = ε1

h
α1

(
x, y(x1, x1, u1 + ε̄1, β2 + ε2)

) + ε2

h
α2

(
x, y(x, x1, u1, β2 + ε̄2)

)
,

and we can evaluate the limit as h → 0. If we let z1(x) = limh→0 z1h(x), then z1(x) = ∂u , and

∂x1
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z1(x) = lim
h→0

z1h(x)

= −u′(x1)α1
(
x, y(x, x1, u1, β2)

) + Eα2
(
x, y(x, x1, u1, β2)

)
= −u′(x1)α2

(
x,u(x, x1)

) + Eα2
(
x,u(x, x1)

)
,

which is a solution of (1.3) along u(x). In addition, from above observations, z2(x) satisfies the
boundary conditions,

z1(x1) = lim
h→0

z1h(x1) = −u′(x1),

z2(x2) −
m∑

i=1

riz2(ηi) = lim
h→0

(
z1h(x2) −

m∑
i=1

riz1h(ηi)

)
= 0.

This completes the proof for ∂u
∂x1

.
The proofs of (c) and (d) are in very much the same spirit.
For (c), we fix 1 � j � m, and this time we designate u(x, x1, x2, u1, u2, η1, . . . , ηm,

r1, . . . , rm) by u(x,ηj ). Let δ > 0 be as in Theorem 2.1, let 0 < |h| < δ be given, and define

wjh(x) = 1

h

[
u(x,ηj + h) − u(x,ηj )

]
.

Note that for every h �= 0, wjh(x1) = 0. Next, let

β2 = u′(x1, ηj ),

and

ε2 = ε2(h) = u′(x1, ηj + h).

By Theorem 2.1, ε2 → 0, as h → 0. Again, we use the notation of Theorem 1.1 for solutions of
initial value problems for (1.1), and viewing the solutions u as solutions of initial value problems,
we have

wjh(x) = 1

h

[
y(x, x1, u1, β2 + ε2) − y(x, x1, u1, β2)

]
.

By the Mean Value Theorem,

wjh(x) = ε2

h
α2

(
x, y(x, x1, u1, β2 + ε̄2)

)
,

where α2(x, y(·)) is the solution of (1.3) along y(·) and satisfies

α2(x1) = 0, α′
2(x1) = 1,

and β2 + ε̄2 lies between β2 and β2 + ε2. Once again, to show limh→0 wjh(x) exists, it suffices
to show limh→0

ε2
h

exists.
Since α2(x, y(·)) is a nontrivial solution of (1.3) along y(·) and since α2(x1, y(·)) = 0, it

follows from assumption (v) that

α2
(
x2, y(·)) −

m∑
i=1

riα2
(
ηi, y(·)) �= 0.

Hence,

ε2

h
= wjh(x2) − ∑m

i=1 riwjh(ηi)

α (x , y(x, x ,u ,β + ε̄ )) − ∑m
r α (η , y(x, x ,u ,β + ε̄ ))

.

2 2 1 1 2 2 i=1 i 2 i 1 1 2 2
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We look in more detail at the numerator of this quotient. Consider

wjh(x2) −
m∑

i=1

riwjh(ηi)

= 1

h

[
u(x2, ηj + h) −

m∑
i=1

riu(ηi, ηj + h)

[
u(x2, ηj ) −

m∑
i=1

riu(ηi, ηj )

]]

= 1

h

[
u(x2, ηj + h) −

∑
i∈{1,...,m}\{j}

riu(ηi, ηj + h) − rju(ηj + h,ηj + h)

+ rju(ηj + h,ηj + h) − rju(ηj , ηj + h)

]
− u2

h

= u2

h
− u2

h
+ rju(ηj + h,ηj + h) − rju(ηj , ηj + h)

h

= rj

h

[
u(ηj + h,ηj + h) − u(ηj , ηj + h)

]

= rj

h

ηj +h∫
ηj

u′(s, ηj + h)ds

= rj

h
u′(cj,h, ηj + h)(ηj + h − ηj )

= rju
′(cj,h, ηj + h),

where cj,h is between ηj and ηj + h. So, as h → 0 we obtain

rju
′(ch, ηj + h) → rju

′(ηj , ηj ) = u′(ηj ).

When we return to the quotient defining ε2
h

, we compute the limit,

lim
h→0

ε2

h
= rju

′(ηj )

α2(x2, y(x, x1, u1, β2)) − ∑m
i=1 riα2(ηi, y(x, x1, u1, β2))

= rju
′(ηj )

α2(x2, u(·)) − ∑m
i=1 riα2(ηi, u(·))

:= Ej .

From wjh(x) = ε2
h

α2(x, y(x, x1, u1, β2 + ε̄2)), if we let wj(x) = limh→0 wjh(x), then wj(x) =
rj

∂u
∂ηj

, and

wj(x) = lim
h→0

wjh(x)

= Ejα2
(
x, y(x, x1, u1, β2)

)
= Ejα2

(
x,u(x, ηj )

)
,

which is a solution of (1.3) along u(x). In addition, from above observations, wj(x) satisfies the
boundary conditions,

wj(x1) = lim wjh(x1) = 0,

h→0
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and

wj(x2) −
m∑

i=1

riwj (ηi) = rju
′(ηj ).

This concludes the proof of (c).
It remains to verify part (d). Fix 1 � j � m as before. We consider ∂u

∂rj
. To this end, let δ > 0

be as in Theorem 2.1 and let 0 < |h| < δ. Define

vjh(x) = 1

h

[
u(x, rj + h) − u(x, rj )

]
,

where, for brevity, we designate u(x, x1, x2, u1, u2, η1, . . . , ηm, r1, . . . , rm) by u(x, rj ). Note that

vjh = 1

h
(u1 − u1) = 0,

for every h �= 0. Also, we see that

vjh(x2) −
m∑

i=1

rivjh(ηi)

= 1

h

[
u(x2, rj + h) − u(x2, rj ) −

m∑
i=1

ri
(
u(ηi, rj + h) − u(ηi, rj )

)]

= 1

h

[
u(x2, rj + h) − u(x2, rj ) −

m∑
i=1

riu(ηi, rj + h) +
m∑

i=1

riu(ηi, rj )

]

= 1

h
u(x2, rj + h) − 1

h

m∑
i=1

riu(ηi, rj + h) − u2

h

= 1

h

[
u(x2, rj + h) −

∑
i∈{1,...,m}\{j}

riu(ηi, rj + h) − rju(ηj , rj + h)

− hu(ηj , rj + h) + hu(ηj , rj + h)

]
− u2

h

= 1

h

[
u(x2, rj + h) −

∑
i∈{1,...,m}\{j}

riu(ηi, rj + h) − (rj + h)u(ηj , rj + h)

]

+ u(ηj , rj + h) − u2

h

= u2

h
+ u(ηj , rj + h) − u2

h
= u(ηj , rj + h).

And so by Theorem 2.1,

vjh(x2) −
m∑

i=1

rivjh(ηi) → u(ηj , rj ), h → 0.

Now recall that, u(x1, rj ) = u1, and define

β2 = u′(x1, rj ),
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and

ε2 = ε2(h) = u′(x1, rj + h) − β2.

As usual, ε2 → 0 as h → 0. Once again, using the notation for solutions of initial value problems
for (1.1), we have

vjh(x) = 1

h

[
y(x, x1, u1, β2 + ε2) − y(x, x1, u1, β2)

]
.

By the Mean Value Theorem,

vjh(x) = 1

h
α2

(
x, y(x, x1, u1, β2 + ε2)

)
(β2 + ε2 − β2)

= ε2

h
α2

(
x, y(x, x1, u1, β2 + ε2)

)
,

where α2(x, y(·)) is the solution of (1.3) along y(·) and satisfies

α2(x1) = 0, α′
2(x1) = 1,

and β2 + ε2 lies between β2 and β2 + ε. As in previous cases considered, it follows from as-
sumption (v) that

α2
(
x2, y(·)) −

m∑
i=1

riα2
(
ηi, y(·)) �= 0.

Hence,

ε2

h
= vjh(x2) − ∑m

i=1 rivjh(ηi)

α2(x2, y(x, x1, u1, β2 + ε̄2)) − ∑m
i=1 riα2(ηi, y(x, x1, u1, β2 + ε̄2))

,

and so from above,

lim
h→0

ε2

h
= rju(ηj , rj )

α2(x2, y(x, x1, u1, β2)) − ∑m
i=1 riα2(ηi, y(x, x1, u1, β2))

= rju(ηj , rj )

α2(x2, u(·)) − ∑m
i=1 riα2(ηi, u(·))

:= Ej .

From vjh(x) = ε2
h

α2(x, y(x, x1, u1, β2 + ε̄2)), if we set vj (x) = limh→0 vjh(x), we obtain
vj (x) = ∂u

∂rj
, and in particular,

vj (x) = lim
h→0

vjh(x)

= Ejα2
(
x, y(x, x1, u1, β2)

)
= Ejα2

(
x,u(x, ηj )

)
,

which is a solution of (1.3) along u(x). In addition, vj (x) satisfies the boundary conditions,

vj (x1) = lim
h→0

wjh(x1) = 0,

and

vj (x2) −
m∑

i=1

rivj (ηi) = u(ηj ).

This completes case (d), which in turn completes the proof of the theorem. �
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We conclude the paper with a corollary to Theorem 2.2, whose verification is a consequence
of the two-dimensionality of the solution space for the variational equation (1.3). In addition, this
corollary establishes an analogue of part (c) of Theorem 1.1.

Corollary 2.3. Assume the conditions of Theorem 2.2. Then, for i = 1,2,

∂u

∂xi

= −u′(xi)
∂u

∂ui

,

and for 1 � j � m,

∂u

∂ηj

= rj
u′(ηj )

u(ηj )

∂u

∂rj
.
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