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Abstract

The main germination active compound in smoke, 3-methyl-2H-furo[2,3-c]pyran-2-one (butenolide), has structural similarities with
strigolactones that function as germination stimulants for root parasitic plants such as Orobanche spp. and Striga spp. (Scrophulariaceae).
Consequently, we tested whether butenolide also functions as a germination stimulant for parasitic weeds. Butenolide stimulated germination of
both Orobanche minor and Striga hermonthica to similar levels as the synthetic strigol analogue GR24 and was effective at similar concentrations
(1072 to 10'"" M). Both butenolide and GR24 were more effective than the synthetic strigol analogue Nijmegan-1. Across eight further
Orobanche spp., and for species from the root parasitic genera Cistanche, Conopholis and Lathraea, butenolide also had a similar level of activity
to GR24. These results suggest that the germination stimulatory activity of butenolide may result from analogy with strigolactones.

© 2007 SAAB. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Smoke from the combustion of plant material stimulates seed
germination in a wide range of species (e.g. Brown et al., 2003).
The main germination active compound in smoke, 3-methyl-
2H-furo[2,3-c]pyran-2-one, hereafter referred to as butenolide,
has recently been discovered (Flematti et al., 2004; Van Staden
et al., 2004), increasing our opportunities for understanding the
mode of action of smoke on germination.

The bioactivity of ‘butenolides’ that are structurally related
to the butenolide from smoke was first identified by Pepperman
and Cutler (1991) who conducted bioassays on wheat
coleoptiles. These authors attributed the activity of these
compounds to their structural similarities to strigolactones
(e.g. strigol) which are important germination stimulants for
parasitic weed species (Butler, 1995). Furthermore, while the
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mode of action of strigolactones on seed germination of root
parasitic weeds has not yet been identified (Humphrey and
Beale, 2006) the bioactiphore resides in the lactone-enol ether
D-ring portion of the molecule (see Fig. 1; Mangnus and
Zwanenburg, 1992; Wigchert and Zwanenburg, 1999) which is
shared with butenolide (Fig. 1).

Root parasites, such as Orobanche spp. and Striga spp., rely
on host plant(s) for mineral nutrition and as a carbon source. To
obtain nutrients, the parasites form a connection, usually via a
haustorium, to the host plant root. Due to this host plant
dependency, the parasitic seedling can only survive, post
germination, for a short period of time. Consequently, such
parasitic plants have a requirement for germination in proximity
to a host plant root, usually <20 mm (Kuiper, 1997), which is
reinforced by the minute size (2—3 pg; Flynn et al., 2006) of the
seed, i.e. the seedling has minimal reserves to support host
independent growth. This parasite/host plant interaction is often
highly specific and seeds of many parasitic plants persist in the
soil seed bank until they come into contact with secondary
metabolites, such as strigolactones, secreted by host plant roots,
which stimulate subsequent germination (Butler, 1995).
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Fig. 1. The chemical structures of (1) the naturally occurring germination
stimulant (+)-strigol (Cook et al., 1972), (2 and 3) the synthetic strigol analogues
GR24 and Nijmegan-1 (Johnson et al., 1981; Nefkens et al., 1997) and (4)
butenolide, the main germination active compound in plant-derived smoke (Van
Staden et al., 2004). The D-ring is shared between all four germination
stimulants.

We hypothesised that, given the structural similarity
between butenolide and strigolactones, butenolide may also
function as a germination stimulant for seeds of parasitic plants
such as Orobanche and Striga. Consequently we have tested
this proposition for 13 species of root parasitic plants in the
family Scrophulariaceae by comparing the efficacy of buteno-
lide with that of two synthetic strigol analogues, GR24 and
Nijmegan-1 that are known to stimulate seed germination in a
range of parasitic plants (Wigchert et al., 1999).

2. Materials and methods

All seedlots, except for Striga hermonthica, came from the
Millennium Seed Bank of the Royal Botanic Gardens, Kew, U.K.
after storage at —20 °C following drying to c¢. 15% RH (see
Table 1 for seedlot details). S. hermonthica was obtained from
Prof. A. Murdoch, University of Reading, U.K.

For the largest seeded species (Lathraea squamaria,
0.698 mg) a TZ test (2,3,5 triphenyl tetrazolium chloride) was
used to assess viability (ISTA, 2003). Part of the seed coat was
chipped off using a scalpel blade and seeds were soaked ina 1%
TZ solution for 24 h at 30 °C in the dark. Seeds were then cut
longitudinally and the degree of staining assessed. Seeds stained
red throughout were assumed to be viable. Those that were
incompletely stained or unstained were assumed to be non-viable.

Seeds of the remaining, smaller seeded species were stained
using fluorescein diacetate (FDA; Pritchard, 1985). Seeds were
rehydrated over water for 3 h and then gently crushed between two
glass slides in order to isolate the embryo from the membranous
testa. FDA solution, 0.5% (w/v) with absolute acetone, was added
to the slide 1:1 (v/v) with distilled water. Slides were then left over
night to allow the stain to develop. The number of embryos on the
slide was then counted using a light microscope. This number was
then compared to the number of fluorescent, presumably viable,
embryos visible under a UV microscope.

Parasitic weed seeds, including Orobanche and Striga, require
a pre-conditioning phase before treatment with a germination
stimulant. Before this, all seeds were sterilized in an aqueous
solution containing sodium hypochlorite (2 g/100 ml active
chlorine) and Triton X-100 (1% v/v) for 5 min (Mangnus et al.,
1992). Seeds (three replicates of c. 30 seeds per species per
treatment) were then conditioned by post-sterilisation drying in a
flow bench for 30 min followed by transfer onto one layer of filter
paper, in 90 mm Petri dishes, which had been moistened with 1 ml
sterile distilled water. Petri dishes were wrapped with parafilm
and aluminium foil to reduce water loss and ensure darkness.
S. hermonthica seeds were transferred to 30 °C (Wigchert et al.,
1999) for 7 d. Kebreab and Murdoch (1999) found that
conditioning at 20 °C for 14 d was suitable for four species of
Orobanche (O. aegyptiaca, O. cernua, O. crenata and O. minor):
we used these conditions for the nine Orobanche species we
studied. While there are no data in the literature regarding pre-
conditioning of Cistanche sp., Conopholis sp. and Lathraea sp.,
these were also pre-conditioned at 20 °C for 14 d since, like
Orobanche species, they have a more temperate/Mediterranean
distribution (Table 1) than the tropical genus Striga.

Table 1
Species used in comparing the germination stimulants

Species Country Viability ~ Germination %
of origin% * Butenolide GR24 Nijmegan-1
Cistanche Saudi  72.2+5.9% 51.1+4.4° 45.6+4.0° 18.9+2.9°
phelypaea Arabia
(L.) Cout.
Conopholis Mexico 75.6+7.8* 57.8+6.8° 58.9+7.8%° 38.9+6.6°
alpina
Liebm.
Lathraea England 63.3+3.3% 43.3+5.1° 46.7+5.1% 21.1+2.9°
squamaria L.
Orobanche Jordan 65.6+4.4% 456+2.9° 61.1+4.8° 56.7+3.84%

aegyptiaca Pers.
O. caryophyllacea England 57.8£5.9* 50.0+5.1°® 47.8+2.9"° 34.4+4.8"

Sm.
Orobanche

cernua Loefl.
O. corymbosa USA

Jordan 61.1+4.4* 47.8+4.0° 533+1.9° 422+2.9°

60.0+3.3" 433433 522+29% 36.7+3.8°

(Rydb.) Ferris

Orobanche New  85.6+4.0 57.8+4.4° 733+5.1% 233+3.8°
minor L. Zealand

O. purpurea Jacq. England 70.0£3.8* 51.1+4.8° 48.8+4.0° 38.9+2.9"

O. ramosa L. South  58.9+4.8% 24.4+62° 422429 233+3.3°
Africa
O. rapum-genistae Belgium 76.7+3.3* 34.4+29° 56.7+5.1° 37.8+4.4%
Thuill.
O. uniflora L. Canada 61.1+4.0° 43.3+3.3®® 50.0+3.5° 33.3+5.1°
Striga West  80.0+3.8" 61.1+4.4° 63.3+3.3% 26.7+3.3°
hermonthica Africa
Benth.

Included are seedlot viability and germination (+SE) data obtained with the three
germination stimulants. Germination data is with 10”7 M butenolide, 1077 M
GR24 and 10~ ® M Nijmegan-1.
Within each row, different superscripted letters indicate a significant difference
between treatments (P<0.05).

* Determined using FDA staining except for Lathraea squamaria where TZ
staining was used.
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For the germination treatments, test solutions were prepared by
dissolving 1 mg of GR24 or 1.5 mg of Nijmegan-1 in 1 ml
acetone. Subsequently, 100 ml distilled water was added to this
solution. These solutions contained concentrations of 3.35x 10™>
M GR24 and 4.39 x 10~ > M Nijmegan-1, respectively. From these
stock solutions, concentrations of 10> to 10~ "' M were prepared.
These values are within the range that has previously been found
to be suitable for germination of parasitic weed seeds (e.g.
Wigchert et al., 1999; Humphrey and Beale, 2006). Butenolide
used in these experiments was isolated, purified and identified
from smoke saturated water derived from burned Passerina
vulgaris Thoday and Themeda triandra L. as described by Van
Staden et al. (2004). Butenolide solutions were prepared at
concentrations of 10> to 10~ "' M. For non-parasitic plants,
concentrations in this range stimulate seed germination of a wide
range of species (Van Staden et al., 2004; Daws et al., 2007).

Following removal from the pre-conditioning conditions,
seeds of O. minor and S. hermonthica were placed on two
layers of filter paper in 90 mm diameter Petri dishes and covered
by two further filter papers. Approximately 30 seeds were sown
per dish. To each Petri dish was added 1.2 ml of either GR24,
Nijmegan-1, butenolide or sterile distilled water. All three
germination stimulants were applied at concentrations from
1077 to 10~ "' M. Each treatment was replicated three times.
Subsequently, Petri dishes were wrapped in parafilm and
aluminium foil and then placed at either 30 °C (S. hermonthica,
Wigchert et al., 1999) or 20 °C (O. minor, Kebreab and
Murdoch, 1999).

Subsequently, the additional species (Table 1) were pre-
conditioned and germinated as above except that, based on the
results from O. minor and S. hermonthica (Fig. 2), seeds were
only treated with one concentration of either GR24 (10~ M),
Nijmegan-1 (10~ ¢ M) or butenolide (107 M). All seeds were
germinated at 20 °C.

One-way ANOVA on arcsine transformed data followed by
Tukey’s post hoc test was used to determine, within each
seedlot, whether there were differences in the effectiveness of
the three germination treatments and the viability test.

3. Results

Seeds of O. minor and S. hermonthica failed to germinate
after pre-conditioning when treated with distilled water.
However, over a wide concentration range, treatment with the
two synthetic strigol analogues, GR24 and Nijmegan-1, elicited
germination (Fig. 2). While both compounds stimulated
germination, GR24 consistently resulted in higher levels of
germination than Nijmengan-1 and resulted in some germina-
tion (c. 5%) even at 10~ "' M: Nijmegan-1 ceased to be effective
below c. 1077 M (Fig. 2). Butenolide also stimulated
germination of both species across a wide concentration range
(10" to 10> M) and resulted in germination levels similar to
those achieved with GR24 (Fig. 2).

Forall 11 species subsequently investigated, <2% germination
was recorded in the distilled water control. In addition, the three
growth stimulants resulted, in all cases, in germination higher than
that observed in the distilled water control (Table 1). In addition,

Nijmegan-1 (10~ ® M) resulted in germination levels that were
consistently lower than those observed with GR24 (10”7 M),
while butenolide application (10”7 M) resulted in germination
levels that were, on average, similar to those achieved with GR24
(Table 1). For the majority of species (9 of 11), maximum
observed germination, in any treatment, was lower (albeit only
significantly in 3 of 11 species, One-way ANOVA, P<0.05) than
viability levels (as assessed by FDA or TZ staining).

4. Discussion

Several natural germination stimulants, including strigol
(Cook et al., 1972), sorgolactone (Hauck et al., 1992) and
alectrol (Miiller et al., 1992), exuded by host plants, have been
identified. Among parasitic weed species, there is well
documented host-specific variation in germination responses.
For example, seedlots of S. hermonthica grown on either maize
or sorghum as the host plant responded differentially to the
germination stimulants GR24 and sorgolactone (Wigchert et al.,
1999). Furthermore, ethylene has been reported to be important
in the germination of S. hermonthica, but not S. forbesii
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Fig. 2. Dose response curves of (A) Orobanche minor and (B) Striga
hermonthica to butenolide (L), GR24 (@) and Nijmegan-1 (O). O. minor seeds
were pre-conditioned at 20 °C in the dark for 14 d before treatment with the
germination stimulants and incubation at 20 °C in the dark. S. hermonthica
seeds were pre-conditioned at 30 °C in the dark for 7 d before treatment with the
germination stimulants followed by incubation at 30 °C in the dark. The dashed
horizontal lines correspond to viability levels estimated using fluorescein
diacetate staining. For clarity, error bars are not shown. However, the SE never
exceeded the vertical bars in the top left hand corner of each graph.



M.I. Daws et al. / South African Journal of Botany 74 (2008) 116—120 119

(Jackson and Parker, 1991). Thus, variation in the specific
natural germination stimulant, host species dependent sensitiv-
ity to germination stimulants and potentially different modes of
action of strigolactones (with respect to ethylene) may all
contribute to the differing effectiveness of butenolide, GR24
and Nijmegan-1 observed across our study species.

Furthermore, although pre-conditioning treatments have
been optimised for species such as S. hermonthica and O.
minor (e.g. Reid and Parker, 1979; Mangnus et al., 1992;
Kebreab and Murdoch, 1999) species-specific protocols have
not been determined for most of the species used in this study.
This may provide an explanation for why, in almost all species,
the application of a single set of conditions failed to result in
germination levels that matched viability (Table 1). Nonetheless
our data support previous work that found GR24 to be a highly
effective germination stimulant across diverse taxa and that
Nijmegan-1 is only effective at higher concentrations than
GR24 (Wigchert et al., 1999). While smoke has been reported to
stimulate germination of O. aegyptiaca (Bar Nun and Mayer,
2005) our data demonstrate butenolide to be an effective
germination stimulant across a wide range of parasitic species,
and may therefore be considered as a strigol analogue.

Strigolactones have been shown to be important for the
germination of root parasitic Scrophulariaceae in the genera
Alectra, Orobanche and Striga (Miiller et al., 1992; Butler,
1995). However, to the best of our knowledge this is not only
the first report of germination of species in the genera Lathraea,
Conopholis and Cistanche in responses to such compounds but
also suggests that this mechanism of host recognition is
widespread among root parasites.

Arbuscular mycorrhizal (AM) fungi form a symbiotic
relationship with plant roots, in which the fungus supplies the
plant host with essential nutrients, such as phosphate and obtains
photosynthates from the host plant. Branching of the fungal
hyphae that penetrates the host roots to allow nutrient exchange is
stimulated by a ‘branching factor’, which is secreted from the
roots of the host plant (Akiyama and Hayashi, 2006). A branching
factor has recently been isolated from the root exudates of Lotus
Jjaponicus and identified as a strigolactone, 5-deoxy-strigol
(Akiyama et al., 2005). Spores of AM fungi are able to germinate
in the absence of a host, but hyphal branching and development is
restricted, (Bécard and Piché, 1989). Interestingly, strigol and GR
24 are able to induce extensive hyphal branching in Gigaspora
margarita (Akiyama and Hayashi, 2006) and 5-deoxy-strigol is
effective at stimulating germination of O. crenata (Bergmann
et al., 1993). Consequently it appears that parasitic plants find
their potential hosts by detecting the same system of chemical
signals that AM fungi use for host recognition and branching
(Akiyama and Hayashi, 2006).

The agricultural application of strigolactones (e.g. Nijme-
gan-1) to soil to induce suicidal germination of parasitic weeds
has been proposed (Wigchert et al., 1999). However, such
application may potentially have unwanted negative effects on
soil fungi. Similarly, since butenolide is a naturally occurring
chemical in fire environments, it would also be of interest to
investigate any potential wider role for this chemical in the
rhizosphere. As strigol stimulates germination of both parasitic

weeds and non-parasitic plants (e.g. Avena sativa;, Bradow
et al,, 1990) and impacts on fungal growth, strigolactones
appear to have a wide range of roles in the soil that remain to be
explored in detail.
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