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ŽWe explore the connection between ideals of fat points which correspond to
n Ž . .subschemes of P obtained by intersecting mixed powers of ideals of points , and

Ž .piecewise polynomial functions splines on a d-dimensional simplicial complex D
d w xembedded in R . Using the inverse system approach introduced by Macaulay 11 ,

we give a complete characterization of the free resolutions possible for ideals in
w x Žk x, y generated by powers of homogeneous linear forms we allow the powers to

.differ . We show how ideals generated by powers of homogeneous linear forms are
related to the question of determining, for some fixed D, the dimension of the
vector space of splines on D of degree less than or equal to k. We use this
relationship and the results above to derive a formula which gives the number of

Ž .planar mixed splines in sufficiently high degree. Q 1998 Academic Press

1. INTRODUCTION

w xIn 10 , Iarrobino observed that there is a relationship between splines
and fat points. In this section, we give a quick overview of the relationship
between fat points and ideals generated by powers of homogeneous linear
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FAT POINTS AND PIECEWISE POLYNOMIALS 117

forms, and then discuss how ideals of the latter form are related to splines.
w x w xGood references for the first relationship are Geramita 8 , Iarrobino 10 ,

w x w xor Macaulay 11 ; sources for the latter are Schenck 12 , or Schenck and
w xStillman 13, 14 .

w x n Ž . w xLet P s p : p : ??? : p g P , I P s ` : R s k x , . . . , x , andi i0 i1 in i i 0 n

L s Ýn p y . A fat points ideal is an ideal of the form I s l m ` a i,P js0 i j is1 ii j

w xa G 1. Let S s k y , . . . , y , and define an action of R on S by partiali 0 n
Ž . Ž .differentiation, i.e., x ? y s  y r y . This makes S into a gradedj i i j

R-module. Since I is a submodule of R, it acts on S, and we can ask what
elements of S are annihilated by this action. The set of such elements is

y1 Ž y1 .denoted by I . In Section 2, we will see that for j 4 0, I sj
Ž jya1q1 jya mq1 . Ž y1 . Ž .L , . . . , L , and that dim I s dim RrI . In other words,P P j j j1 m

fat points ideals are strongly related to ideals generated by powers of
homogeneous linear forms.

Now suppose that D is a d-dimensional simplicial complex, embedded in
Rd. A fundamental problem in geometric modelling and approximation
theory is determining the dimension of the space of piecewise polynomial

Ž .functions on D imagine a polynomial supported on each maximal simplex ,
which meet with prescribed order of smoothness across shared d y 1

w xfaces. In 12 , a chain complex of modules on D was constructed, such that
the module of homogeneous splines appeared as the top homology mod-
ule. The modules which appear in that chain complex are direct sums of
quotients of R by ideals generated by powers of homogeneous linear
forms, i.e., the ideals described above.

Thus, there is a strong connection between splines and fat points ideals.
The setup of this paper is as follows. In Section 2, we give a more detailed
discussion of inverse systems and fat points. For the case where n s 1, we
use the relationship between fat points ideals and ideals generated by
powers of homogeneous linear forms to completely describe possible
Hilbert functions for the latter ideals. This, in turn, allows us to actually
write the free resolutions which are possible for such ideals. In Section 3
we review the spline problem which was sketched above. In Section 4, we
combine the results of the previous two sections to derive a formula for
the number of planar mixed splines in high degree.

2. FAT POINTS AND INVERSE SYSTEMS

� 4 nLet X s P , . . . , P : P be a set of distinct points in projective1 s
Ž .n-space and let I s I s ` l ??? l ` , where ` s I P : R sX 1 s i i

w xk x , . . . , x .0 n
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w xLet S s k y , . . . , y . We think of S both as a ring, isomorphic to R,0 n
and as an R-module where the action R = S ª S is that given eitheri j jyi
by partial differentiation or contraction.

y1 � 4Let P and L be as defined in Section 1, and I s f g S N I ? f s 0 .i Pi

Then Iy1 may be described as follows:

PROPOSITION 2.1.

y1 ² t t :I s L , . . . , L : SŽ . t P P t1 s

and

Rty1dim I s H RrI , t s dim .Ž . Ž .tk k It

Proof. The proof follows from the following more general theorem,
given below.

Ž w x.THEOREM 2.2 Ensalem and Iarrobino 6 . Keep the notation as abo¨e,
but let I be an ideal of fat points, i.e., I s ` n1q1 l ??? l ` n sq1 . Then we ha¨e1 s

� 4S for j F max nj iy1I sŽ . j jyn jyn1 s½ 5� 4L S q ??? qL S for j G max n q 1P n P n i1 1 s s

and

dim Iy1 s dim RrI , j s H RrI , j .Ž . Ž . Ž .jk k

w xProof. See 8, p. 22 .

Of course, the vector space

L jyn1 S q ??? qL jyn s S : SP n P n j1 1 s s

is nothing more than the jth graded piece of the ideal in S generated by

L jyn1 , . . . , L jyn s .P P1 s

If we fix n , . . . , n and let j vary, we obtain, from an ideal of fat points,1 s
information about the size of pieces of infinitely many different ideals
generated by powers of s homogeneous linear forms.

On the other hand, if we let j and the n vary in such a way that thei
numbers j y n s t are fixed for each i, then we obtain information abouti i
the sizes of the various graded pieces of the ideal generated by Lt1, . . . , Lts

1 s
in an infinite family of ideals of fat points. For more details on this

w xcorrespondence, see the discussion in Section 3 of 8 .
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COROLLARY 2.3. Let L , . . . , L be any s pairwise linearly independent1 s
w xhomogeneous linear forms in S s k y , y , 0 - a F ??? F a be integers,0 1 1 s

Ž a1 as.and let J s L , . . . , L . Then, for each integer t, the ¨ector space J has the1 s t
maximum dimension possible, i.e.,

s

� 4dim J s min t q 1, max t y a q 1, 0 .Ýk t i½ 5
is1

Proof. By Theorem 2.2, given an integer t G 0,

dim J s dim RrI , t ,Ž .k t k

where

I s ` tya1q1 l ??? l ` tya sq1
1 s

and ` , . . . , ` are the ideals of the points corresponding to L , . . . , L1 s 1 s
Ž r .here we use the convention that ` s R if r F 0 . Now I is a principal
ideal generated by a form F of degree d , wheret

s

� 4d s max t y a q 1, 0 .Ýt i
is1

Hence,

dim J s H RrI , t s min t q 1, d ,Ž . Ž .k t t

as we wanted to show.

This last result is surprising in that it does not depend on the homoge-
Žneous linear forms chosen save only that they be pairwise linearly inde-

.pendent . A small piece of this result, namely that the vector space
² t t : � 4 ŽL , . . . , L has dimension min t q 1, s for pairwise linearly indepen-1 s

w x.dent L in k y , y can easily be deduced using properties of the van deri 0 1
Ž .Monde matrix. In the pure power case where the a are all equal , thisi

w xresult specializes to a result which appears in 14 .
The corollary above is also useful for determining a minimal set of

generators for an ideal generated by powers of homogeneous linear forms
w xin k y , y .0 1

EXAMPLE 2.4. Let L , . . . , L be pairwise linearly independent homo-1 5
w x Ž 4 6 7 7 9 .geneous linear forms in k y , y and let J s L , L , L , L , L . From0 1 1 2 3 4 5

Ž 4 6 7 7 . Ž .Corollary 2.3 we see that if J9 s L , L , L , L then dim J9 s1 2 3 4 k 9
� Ž . Ž . Ž . Ž .4min 10, 9 y 4 q 1 q 9 y 6 q 1 q 9 y 7 q 1 q 9 y 7 q 1 s
� 4 9min 10, 14 s 10, and so L g J9 and thus J s J9. Using the same reason-5

6 Ž 4 . 7 Ž 4 6 . 7 Ž 4 6 7 .ing, we can show that L f L , L f L , L , and L f L , L , L .2 1 3 1 2 4 1 2 3
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So the generators of J9 are a minimal set of generators. We formalize this
procedure as follows:

Ž a1 a t.COROLLARY 2.5. Let 0 - a F a ??? F a and let J s L , . . . , L .1 2 t 1 t
Then for m G 2,

Ým a y mis1 ia a amq 1 1 mL f L , . . . , L m a F .Ž .mq 1 1 m mq1 m y 1

Ž a1 am. amq 1Proof. Let J s L , . . . , L . Then L f J if and only ifm 1 m mq1 m
Ž . Ž .J / J . By Corollary 2.3,m a mq1 amq 1 mq1

m

dim J s min a q 1, a y a q 1 ,Ž . Ž .Ýak m mq1 mq1 imq 1 ½ 5
is1

mq1

dim J s min a q 1, a y a q 1 .Ž . Ž .Ýak mq1 mq1 mq1 imq 1 ½ 5
is1

Ž . Ž .Hence, J / J if and only ifm a mq1 amq 1 mq1

m

a q 1 ) a y a q 1 ,Ž .Ýmq 1 mq1 i
is1

which simplifies to the above condition.

Ž a1 a t.Henceforth, when we write J s L , . . . , L , we shall assume that the1 t
Ž .exponent ¨ector a s a , . . . , a of J satisfies the conditions of the previ-1 t

ously corollary. In other words, the homogeneous linear forms are a
minimal generating set for J, i.e., for each integer m g 2 . . . t y 1, amq 1

Ž m . Ž . ŽF Ý a y m r m y 1 since we are assuming that the L are pairwiseis1 i i
linearly independent, and that J is not principal, we will always need the

.first two forms . By Corollary 2.3, we also have the following:

Ž a1 a t.THEOREM 2.6. Let J s L , . . . , L where the exponent vector of J1 t
corresponds to a minimal generating set of J, and d is as given ini
Corollary 2.3. Then

� 4H SrJ , i s max 0, i q 1 y d .Ž . i

From this theorem we can easily calculate the socle degree of SrJ. In
Ž .fact, the least integer V for which H SrJ, V s 0 is the least integer p

t � 4such that p q 1 y d F 0; equivalently p - Ý max p y a q 1, 0 . Thus,p is1 i
d F V y 1 and V - d ; the socle degree of SrJ is V y 1. Since allVy 1 V

the minimal generators of J occur in degree at most one greater than the
socle degree of SrJ, we obtain that V G a for all i.i
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It is easy to give a direct formula for V in terms of the a , i.e.,i

tÝ a y tis1 i
V s q 1.

t y 1

With this information on the Hilbert function we can now write a minimal
w xfree resolution for the ideal J : k x, y .

Ž a1 a t.THEOREM 2.7. Let J be an ideal minimally generated by L , . . . , L , so1 t
that V y 1 is the socle degree of SrJ. Then J has resolution

a ty1ya t0 ª S yV y 1 [ S yV ª [ S ya ª J ª 0,Ž . Ž . Ž .is1 i

where

t

a s H SrJ , V y 1 s a q 1 y t ? V .Ž . Ž .Ý i
is1

Ž w x.Proof. By the Hilbert Syzygy Theorem see 5 , J has projective
Ž .dimension one we are assuming that J is not principal , so has a

resolution

0 ª F ª F ª J ª 0.1 0

We have already described the minimal generators of J, i.e., we know
t Ž .F s [ S ya , so we need only show that F is as stated.0 is1 i 1

In Corollary 2.3 we saw that J grows as ‘‘quickly as possible.’’ Hence,
there are no syzygies on J before degree V. Now, since the socle degree of
SrJ is V y 1 and J is of codimension two, the highest shift in the minimal
resolution of SrJ is V y 1 q 2 s V q 1 and it appears with multiplicity
Ž .H SrJ, V y 1 s a. Applying Theorem 2.6 to compute a, and then com-

paring the ranks of F , F , and J, we obtain the desired resolution.0 1

Since J has the maximum dimension possible, the Hilbert Series of SrJt
is the expected Hilbert Series for an ideal generated by generic binary
forms of degree a , . . . , a . This is the series1 s

2a i1 y z r 1 y z ,Ž . Ž .Ł
i

i < i < iwhere if Ýc z is a series with integer coefficients we let Ýc z s Ýd zi i i
with d s c if c , . . . , c ) 0 and d s 0 if c F 0 for some j F i.i i 0 i i j

w xIn 7 , Froberg made a conjecture about the expected Hilbert series of¨
w xan ideal generated by a generic set of forms in k x , . . . , x , and proved1 n

the conjecture for n s 2. Theorem 2.6 gives another proof for the case
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n s 2, which is somewhat stronger since it shows that, in this case, we can
Žchoose powers of linear forms as the generic forms. We are grateful to the

.referee for this remark.

EXAMPLE 2.8. We continue with the previous example, in which J was
Ž 4 6 7 7 . ?Žminimally generated by L , L , L , L , and V s 4 q 6 q 7 q 7 y1 2 3 4

. @4 r3 q 1 s 7. By Theorem 2.6, a s 3 so t y 1 y a s 0, hence the resolu-
tion is

3 20 ª S y8 ª S y4 [ S y6 [ S y7 ª J ª 0.Ž . Ž . Ž . Ž .

Notice that t y 1 y a is zero; this occurs if and only if t y 1 divides Ýa .i

3. SPLINES ON A SIMPLICIAL COMPLEX

Let D be a d-dimensional simplicial complex embedded in Rd, such that
ŽD and all its links are pseudomanifolds basically, one should visualize D as

.triangulating a manifold . A spline on D is a piecewise polynomial function
Ž .imagine a polynomial supported on each maximal simplex , such that two

Ž .polynomials f , g supported on d-simplices which share a common d y 1
face t meet with some desired order of smoothness along that face. If we
let L denote the linear form vanishing on t , then the algebraic formula-t

tion of C r smoothness across the face t is that Lrq1 divides f y g.t

w xIn 2 , Billera introduced the use of homological algebra in the study of
w xsplines; other references are 3, 4, 12]14 . In this paper, we consider mixed

splines, which are splines where the order of smoothness may differ on the
0 Žvarious d y 1 faces. Let D be the set of interior i faces of D alli

. 0 < 0 <d-dimensional faces are considered interior , f s D , and let a be ai i
vector of length f 0 , where a denotes the desired order of smoothnessdy1 i
across the ith interior d y 1 face. The set of splines of degree at most k
Ž .i.e., each individual polynomial is of degree at most k is a vector space,

a Ž .which we will denote C D .k
It turns out that a good way to study the dimension of this vector space

dq1 ˆis to embed D in the hyperplane x s 1 : R , and form the cone Ddq1
a ˆ ˆŽ .over D, with vertex at the origin. If we let C D be the set of splines on Dk

of degree exactly k, then there is a vector space isomorphism between
a ˆ r a ˆŽ . Ž . Ž .C D and C D . If we form the abelian group [ C D , then this cank k k G 0 k

a ˆŽ .be viewed as a graded module, denoted C D , over the polynomial ring R
a a ˆŽ . Ž .in d q 1 variables, so the dimension of C D is the dimension of C Dk

in degree exactly k.
All this information can be encoded by defining a chain complex of

modules, and computing the homology modules. First, for t an interior
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d y 1 face of D, let l denote the homogeneous linear form vanishing on t̂t

Ž .this is just the homogenization of L . For any interior face g , definet

Ž . a iq1 Ž . Ž .0II g s Ý l ; II g is the ideal generated by the mixed pow-g :t g D ti dy1 i

ers of homogeneous linear forms which define hyperplanes incident to g .ˆ
Ž .Let  be the relative modulo D simplicial boundary map, and let RR bei

the chain complex defined by RR s R f i
0
. So the homology of the RR is justi

Ž .relative modulo D simplicial homology, with coefficients in R. Notice
that  also gives us a differential on the quotient of RR by II, in particular,i
we have a chain complex RRrII:

  iq1 i iy1
??? ª RRrII a ª RRrII b ª RRrII g ª ??? .Ž . Ž . Ž .[ [ [

0 0 0agD bgD ggDiq1 i iy1

w x Ž .In 12 where the a are all equal , it is shown that the top homologyi
a ˆŽ .module of this complex is precisely the module C D . This is also easy to

verify for the case where a is mixed. If we can understand the modules in
the complex and the lower homology modules of this complex, then the

a ˆŽ .Euler characteristic equation will allow us to understand C D .
The connection between fat points and piecewise polynomial functions

is now completely clear, because understanding the modules in the chain
complex is equivalent to understanding ideals of the form considered in
Section 1. In particular, for cases where the lower homology modules

Ž .vanish, if we understand modules of the form RRrII t , then we will be
able to give a complete answer to the question of describing the dimension

a ˆŽ .of C D .k

4. THE PLANAR CASE

w xIn 12 , which considered the pure power case, localization techniques
Ž .were used to prove that for all i - d, H RRrII has dimension at mosti

w xi y 1 as an RR s R x , . . . , x module. It is easy to check that these1 dq1
techniques also work for the case where a is mixed.

We now specialize to the case where D is embedded in R2, i.e., D is a
Žplanar simplicial complex this is perhaps the most studied case in spline

. Ž .theory . The aforementioned result implies that H RRrII is a zero-1
w x Ždimensional RR s R x, y, z module i.e., is a finite dimensional graded

.vector space , so vanishes in sufficiently high degree.

Ž .THEOREM 4.1. H RRrII is an RR-module of finite length.1

w xProof. See 12 and the remarks above.

There is a short exact sequence of complexes
0 ª II ª RR ª RRrII ª 0,



GERAMITA AND SCHENCK124

which gives rise to a long exact sequence of homology modules. Modulo
the image of  , every vertex is equivalent to a vertex on the boundary, and1

Ž . Ž .thus H RR vanishes, which also forces H RRrII to vanish, by the long0 0
exact sequence in homology.

THEOREM 4.2. With notation as abo¨e, if k 4 0, then

2
ia ˆdim C D s dim y1 RRrII b .Ž . Ž .Ž . Ý [ kkR R

0bgDis0 2y i

w xProof. The Euler characteristic equation 15, p. 172

x H RRrII s x RRrIIŽ . Ž .Ž .
implies that

2
idim H RRrII s dim y1 RRrII bŽ . Ž . Ž .Ý [k kR 2 R

0bgDis0 2y i

1
iq dim y1 H RRrII .Ž . Ž .Ý kR 1yi

is0

a ˆŽ . Ž .Since H RRrII is the homogeneous spline module C D , the above2
Ž .formula, coupled with Theorem 4.1 and the fact that H RRrII s 00

concludes the proof.

Since we know

k q 20dim RR s f ?[R k 2 ž /20sgD 2

and
0f1 k q 2 y a y 1k q 2 idim RRrII t s y ,Ž .[ ÝkR ž / ž /20 2tgD is11

we need only determine

dim RRrII g .Ž .[ kR
0ggD 0

Observe that for any vertex g , we may translate g to the origin, hencei i
Ž .may assume that the linear forms in II g involve only the variables x, y.i

Thus,

w x w xRRrII g , R z m R x , y rII g .Ž . Ž .i R i
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Let b s a q 1, and suppose L b1, . . . , L b t i is a minimal generating set forj j 1 t i
Ž . i Ž . Ž .II g , with b s b , . . . , b the corresponding exponent vector for II g .i 1 t ii

If we rewrite the resolution given in Theorem 2.7, letting V and a denotei i
the values for V and a at g , and defining b s t y 1 y a , then a freei i i i

Ž .resolution for RRrII g is given byi

a bi ti i0 ª RR yV y 1 [ RR yV ª [ RR yb ª RR ª RRrII g ª 0.Ž . Ž . Ž .Ž .i i js1 j i

From the additivity of the Hilbert polynomial, we obtain that

dim RRrII gŽ .[R i k
0g gDi 0

is equal to

0f0 k q 2 y b k q 2 y Vk q 2 j iy q b ?Ý Ý iž / ž /ž /2 22iis1 b gbj

k q 2 y V y 1iqa ? .i ž /2

THEOREM 4.3. Let D be a planar simplicial complex, satisfying the
a ˆŽ .conditions of Section 3. Then for k 4 0, dim C D is gï en byR k

f 0
1 k q 2 y a y 1k q 2 i0 0 0f y f q f ? qŽ . Ý2 1 0 ž / ž /2 2is1

0f0 k q 2 y bjy y bÝ Ý iž /2iis1 b gbj

k q 2 y V k q 2 y V y 1i i? y a ? ,iž / ž /2 2

i Ž .where b is a minimal generating set for II g .i

Proof. We have determined the Hilbert polynomial for each module in
the chain complex RRrII, so we may apply Theorem 4.2.

Ž Ž . .Notice that D is a topological disk i.e., H RR s 0 , then we can1
0 0 0 k q 2 k q 2Ž . Ž . Ž .simplify the term f y f q f ? to , by Euler’s equation.2 1 0 2 2

Also, it is worth mentioning that in the case where the a are all equal,i
w xthis is the same bound given by Alfred and Schumaker 1 .
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EXAMPLE 4.4. Let D be the planar simplicial complex given below.

Ž . Ž . Ž . Ž .Suppose the vertex locations are 0, 0 , 1, 0 , 0, 1 , y1, y1 , and that
Ž . Ž . Ž .a s 1, 2, 3 . There is only one interior vertex g the origin ; II g s

Ž 2 3 Ž .4. Ž 2 3.x , y , x y y , and is minimally generated by x , y . V s 4, and
a s 1, b s 0. By Theorem 4.3, for k 4 0

k q 2 k y 2 k y 3a ˆdim C D s q q .Ž . kR ž / ž / ž /2 2 2

EXAMPLE 4.5. We conclude with a more complicated example.

Suppose a s 2 on the three edges of the center triangle, a s 3 on the sixi i
edges which connect the interior vertices to boundary vertices. For each of

Ž . Ž 3 3 4 4.the three interior vertices, II g is of the form l , l , l , l , where the l1 2 3 4 i
are pairwise linearly independent homogeneous linear forms. By Corollary

Ž . Ž 3 3 4.2.5, II g is minimally generated by l , l , l , so V s 4, and a s 2,1 2 3
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b s 0. Thus, by Theorem 4.3,

k q 2 k y 1 k y 2 k y 3a ˆdim C D s y 3 ? q 3 ? q 6 ? ,Ž . kR ž / ž / ž / ž /2 2 2 2

k 4 0.

a ˆŽ . ŽIt is possible to calculate C D as the kernel of a certain matrix see
w x.Billera and Rose 3 . It is worth doing this, to see that the above examples

are indeed correct. Care must be exercised when considering for which
Ž .values k 4 0 the theorem holds. We know by Theorem 4.1 that H RRrII1

vanishes in high degree, but this degree has not been specified.
For the three dimensional version of this problem, there are two

important aspects to consider. First, we will want to analyze ideals gener-
ated by powers of linear forms in three variables; this case is much harder

Žthan the case of two variables, since I will never be principal which is
. Ž .what made the planar case so nice . Second, although the module H RRrII1

will still vanish in high degree, this will not be the case for the module
Ž . ŽH RRrII ; in fact, the latter module is often one-dimensional recall that2

Ž ..for d s 3, the spline module is H RRrII . So it will also be necessary to3
Ž .analyze the behavior of H RRrII .2
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