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The aim of this study was to investigate the possible anxiolytic-like effects of striatal MT2

activation, and its counteraction induced by the selective blockade of this receptor.

Furthermore, we analyzed this condition under the paradigm of rapid eye movement

(REM) sleep deprivation (REMSD) and the animal model of Parkinson’s disease (PD) induced

by rotenone. Male Wistar rats were infused with intranigral rotenone (12 μg/μL), and 7 days

later were subjected to 24 h of REMSD. Afterwards the rats underwent striatal micro-

infusions of selective melatonin MT2 receptor agonist, 8-M-PDOT (10 μg/μL) or selective

melatonin MT2 receptor antagonist, 4-P-PDOT (5 μg/μL) or vehicle. Subsequently, the

animals were tested in the open-field (OP) and elevated plus maze (EPM) tests. Results

indicated that the activation of MT2 receptors produced anxiolytic-like effects. In opposite,

the MT2 blockade did not show an anxiogenic-like effect. Besides, REMSD induced

anxiolytic-like effects similar to 8-M-PDOT. MT2 activation generated a prevalent locomo-

tor increase compared to MT2 blockade in the context of REMSD. Together, these results

suggest a striatal MT2 modulation associated to the REMSD-induced dopaminergic super-

sensitivity causing a possible dopaminergic influence in the MT2 anxiolytic-like effects in

the intranigral rotenone model of PD.

& 2015 Brazilian Association of Sleep. Production and Hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Parkinson’s disease (PD) is the second most common neuro-

degenerative disease, afflicting about 1% of people over 65

years old and 4–5% of people over 85 years old [1]. It is

characterized by major cardinal motor disturbances, namely
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rigidity, rest tremor and bradykinesia [2,3]. These alterations

are the result of the progressive dopaminergic neuronal loss

in the substantia nigra pars compacta (SNpc) and conse-

quently reductions in the striatal levels of dopamine [4]. In

addition to the motor dysfunction, PD patients usually dis-

play non-motor features of the disease [2], such as sleep
ng by Elsevier B.V. This is an open access article under the CC BY-

cias Biológicas, Departamento de Fisiologia, Av. Francisco H. dos
el.: þ55 41 3361 1722.
l.com (M.M.S. Lima).

https://core.ac.uk/display/82469786?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.slsci.2015.10.002
http://dx.doi.org/10.1016/j.slsci.2015.10.002
http://dx.doi.org/10.1016/j.slsci.2015.10.002
http://dx.doi.org/10.1016/j.slsci.2015.10.002
http://dx.doi.org/10.1016/j.slsci.2015.10.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.slsci.2015.10.002&domain=pdf
mailto:mmslima@ufpr.br
mailto:marcelomslima.neuro@gmail.com
http://dx.doi.org/10.1016/j.slsci.2015.10.002


S l e e p S c i e n c e 9 ( 2 0 1 6 ) 4 7 – 5 448
disorders, autonomic dysfunctions, olfactory deficits, and
neuropsychiatric symptoms particularly depression, anxiety
and apathy [2,5].

Anxiety is frequently reported in more than 50% of PD
patients [6]. In general, all types of anxiety disorders found in
PD are associated with generalized anxiety disorder, agora-
phobia, specific phobia, and social anxiety disorder, panic
disorder, and obsessive-compulsive disorder or related dis-
orders (according to DSM-V) [7,8]. Anxiety disorder, in some
patients, is a “reactive” response to the diagnosis of PD, as a
result of stress and motor disability [9]. However, PD patients
have greater risks developing anxiety before the diagnosis of
PD [5,10]. In addition, loss of striatal serotonin [11], dopamine
and noradrenaline [12] innervation are present in living
patients with PD. Therefore, these evidence suggest that
anxiety is an early non-motor symptom in Parkinson’s dis-
ease [13].

Moreover, another non-motor alteration that aggravates
anxiety, in humans, and consequently PD, is rapid eye move-
ment (REM) sleep loss [3]. Furthermore, REM sleep deprivation
(REMSD) is known to increase anxiety behaviors in humans
[14]. While preclinical studies, in rodents, are still inconsis-
tent, suggesting that REMSD triggers anxiolytic-like [15–17] or
anxiogenic-like effects [18–20]. These lack of consistency
difficult translational applicability of preclinical data of anxi-
ety and sleep deprivation [21].

The research of the motor and non-motor disturbances of
PD frequently adopts a number of animal models based on
neurotoxins injected within the brain. Rotenone is a pesticide
which, freely crosses cellular membranes and accumulates in
subcellular organelles such as mitochondria, where inhibits
the mitochondrial complex Ι of electrical transport chain, in
this way inducing apoptosis of the nigrostriatal pathway
[22,23]. This dopaminergic neuronal loss mimics several
motor [23] and non-motor features of PD, such as olfactory
dysfunction [24] and depression [25,26]. However, studies
reporting anxiety-like behaviors and their consequences after
REMSD, in neurotoxin-based models, are sparse and some-
what inconsistent [6,27]. It is worth mentioning, that only one
study, according to our knowledge, demonstrated the effects
of rotenone in anxiety-like behaviors, after intraperitoneal
injections of this neurotoxin [28].

There is a growing interest in exploring novel pharma-
cotherapeutic strategies for anxiety in the context of PD
[13,26,29]. Among these emerging targets, melatoninergic
drugs have gained considerable attention. Several reports
have demonstrated anxiolytic-like effects of melatonin,
observed in the elevated plus maze test (EPM) by an increase
in the number of entries and time spent into the open arms
[30–32]. The main roles of this neuropeptide are related to the
control of the circadian sleep-wake states, regulation of sleep
and seasonal biorhythm [33–35] by activating MT1 and MT2
receptors, two G-protein-coupled membrane receptors [36].

It has been hypothesized that dysregulations of these mela-
tonin receptors may be involved in the installation of mood
disorders [37]. As a matter of fact, it has been demonstrated that
MT2 receptors play an important role in depression [38] as well
as in anxiety [39]. Activation of MT2 receptors, by the partial
agonist UCM765, elicits an anxiolytic-like effect in rats [39].
However, it is still unexplained if this effect is also observed in
the intranigral rotenone model of PD. Besides, it remains to be
clarified if striatal MT2 receptors could elicit anxiety-like effects,
since these receptors are present within the striatum [40,41].
Hence, we hypothesize that striatal MT2 receptors associated to
dopamine depletion might be implicated in the pathogenesis of
anxiety in PD [42,43]. Therefore, in the present study we sought
to investigate the existence of a purportedly anxiolytic-like effect
generated by the striatal MT2 activation, achieved by the infu-
sion of a selective agonist 8-methoxy-2-propionamidotetralin
(8-M-PDOT), and counteracted by the selective antagonist
4-phenyl-2-propionamidotetralin (4-P-PDOT), after dopaminergic
degeneration, induced by intranigral rotenone. This hypothesis
was tested under the PD model and the REMSD protocol.
2. Material and methods

2.1. Ethics statement

The studies were carried out in accordance with the guide-
lines of the Committee on the Care and Use of Laboratory
Animals, United States National Institutes of Health. In
addition, the protocol complies with the recommendations
of Federal University of Paraná and was approved by the
Institutional Ethics Committee (approval ID # 695).

2.2. Animals

Male Wistar rats from our breeding colony were used,
weighing 280–320 g at the beginning of the experiments.
The animals were housed in groups of five, in polypropylene
cages and maintained under standard conditions of tempera-
ture (2272 1C) and illumination (12/12 h light–dark cycle). The
animals had free access to water and food throughout the
experiment.

2.3. Drugs

Xylazine and ketamine were purchased from Syntec (Brazil).
Rotenone was dissolved in dimethylsulfoxide (DMSO) at a final
concentration of 12 mg/mL, both drugs were purchased by
Sigma–Aldrich (United States). This solution was administered
by bilateral intranigral injections through stereotaxic surgery.
The selective MT2 agonist 8-methoxy-2-propionamidotetralin
(8-M-PDOT) and the selective MT2 antagonist 4-phenyl-2-
propionamidotetralin (4-P-PDOT) were purchased from
TOCRIS (San Diego, CA, USA), and were dissolved with DMSO.
The final concentrations were 10 mg/mL and 5 mg/mL, respec-
tively, which were injected into the striatum, through bilateral
cannulas also positioned by stereotaxic surgery. The vehicle
group was injected with DMSO.

2.4. Experimental design

In the present study, the rats were randomly distributed into
two groups named sham and rotenone. Seven days after the
stereotaxic surgery (Fig. 1) the animals underwent 24 h of
REMSD (REMSD group). In the control group the animals were
kept in their home cages undisturbed. Under these groups,
three subgroups were obtained as: vehicle, 8-M-PDOT, and
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Fig. 1 – Experimental design. SNpc – Substantia nigra pars
compacta, REMSD – REM sleep deprivation.
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4-P-PDOT. During the experiment the rats were randomly
assigned to 12 groups: sham control vehicle (n¼13), sham
control 8-M-PDOT (n¼10), sham control 4-P-PDOT (n¼10);
sham REMSD vehicle (n¼14), sham REMSD 8-M-PDOT (n¼12),
sham REMSD 4-P-PDOT (n¼12); rotenone control vehicle
(n¼8), rotenone control 8-M-PDOT (n¼10), rotenone control
4-P-PDOT (n¼9); rotenone REMSD vehicle (n¼10), rotenone
REMSD 8-M-PDOT (n¼12) and rotenone REMSD 4-P-PDOT
(n¼15). The drugs were administrated into the dorsal stria-
tum by bilateral cannulas immediately after the REMSD
period. All animals were tested, thirty minutes after the
drugs administration, in the EPM for anxiety-like behaviors
quantification and in the open-field test (OFT) for locomotion
activity. For further details see Fig. 1.
2.5. Stereotaxic surgery

Rats were sedated with intraperitoneal xylazine (10 mg/kg)
and anaesthetized with intraperitoneal ketamine (90 mg/kg).
The following coordinates were used (having the bregma as a
reference) to allow the bilateral nigral lesion with rotenone:
SNpc (AP)¼�5.0 mm, (ML)¼72.1 mm and (DV)¼�8.0 mm
[44]. Needles were guided to the region of interest for a
bilateral infusion of 1 mL of rotenone (12 mg/mL) using an
electronic infusion pump (Insight Instruments, Ribeirão
Preto, Brazil) at a rate of 0.33 mL/min for 3 min [45–47]. Sham
operations followed the same procedure, but 1 mL of DMSO
was injected instead. Complementarily, bilateral guide can-
nulas were implanted in the dorsal striatum of each rat
allowing a subsequent infusion 1 mL of 8-M-PDOT (10 mg/mL),
4-P-PDOT (5 mg/mL) or vehicle (DMSO) at a rate of 0.33 mL/min
for 3 min, in their respective groups. Coordinates with refer-
ence to bregma for implantation of guide cannulas were:
AP¼�1.0 mm, ML¼73.0 mm and DV¼�6.0 mm [44]. This
administration protocol was performed during the light-cycle
between 7:00 a.m. and 9:00 a.m.
2.6. REMSD procedure

REMSD was attained by means of the single platform method.
Rats were individually placed on a circular platform (6.5 cm in
diameter) in a cage (23 cm�23 cm�30 cm) filled with water
up to 1 cm below the platform level. At the onset of each REM
sleep episode, the animal experiences a loss of muscle tonus
and falls into the water, thus being awakened. When plat-
forms of this size are used, REM sleep is completely elimi-
nated [48]. Throughout the study, the experimental room was
maintained at controlled conditions (2272 1C, 12/12 h light/
dark cycle, lights on 7:00 a.m. and off on 7:00 p.m.). The
control group was kept in the same room as the REMSD rats
during the study. Food and water were provided ad libitum by
placing chow pellets in a dispenser positioned inside the cage
and water bottles on a grid located on top of the tank.

2.7. Elevated plus maze test

The elevated plus maze apparatus was made of wood, and
consisted in two opposite open-arms (50 cm�10 cm), and
two enclosed-arms (50 cm�10 cm�40 cm). The whole appa-
ratus was elevated 50 cm above the floor. The rats were
placed on the central platform (10 cm�10 cm) facing one of
the enclosed arms. Animal behavior was recorded by video-
tape for 5 min, with the following variables evaluated: time
spent in open arms and number of entries in open arms. Data
were expressed as the percentage of time spent in the open
arms. An increase in both the time spent on the open arms
and the number of entries into them are interpreted as
anxiolytic responses.

2.8. Open-field test

The apparatus consists of a circular arena (1 m of diameter)
limited by a 40 cm high wall and illuminated by four 60 W
lamps situated 48 cm above the arena floor, providing illu-
mination around 300 lx. The animals were gently placed in
the center of the arena and were allowed to freely explore the
area for 5 min. During the experiments, the open-field was
video recorded, and the measures of total distance were
computed online by an image analyzer system (Smart junior,
PanLab, Harvard Apparatus, Spain).

2.9. Statistical analysis

Differences between the groups in the elevated plus maze
and open-field test were analyzed by one-way analysis of
variance (ANOVA) followed by the Neuman-Keuls post hoc
test. Values are expresses as mean7standard error of mean
(SEM). The level of significance was set at Pr0.05. At this
point a note of caution should be added: the analysis of the
groups could also be performed by a two-way ANOVA,
however, our sample size has prevented us to perform it.
3. Results

The anxiety-like effects of 8-M-PDOT and 4-P-PDOT treatment,
in the EPM are shown in Fig. 2. The sham control 8-M-PDOT
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Fig. 2 – Anxiety-like parameters during the plus maze test. A. Percentage of open arms time after 8-M-PDOT treatment and
REMSD, B. Percentage of open arms time after 4-P-PDOT treatment and REMSD C. Open arms entries after 8-M-PDOT
treatment and REMSD, D. Open arms entries after 4-P-PDOT treatment and REMSD, E. Percentage of open arms time after 8-M-
PDOT and 4-P-PDOT treatment (rotenone groups), F. Open arms entries after 8-M-PDOT and 4-P-PDOT treatment (rotenone
groups). The bars represent the mean7standard error of the mean. n¼15 per group, *Pr0.05, **Pr0.01, ***Pr0.001. One-way
ANOVA followed by Newman Keuls post hoc test.
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increased the percentage of time spent in open arms, com-
pared with the sham control vehicle group (Pr0.01) (Fig. 2A).
An increase in this parameter can also be observed after the
REMSD in the sham REMSD vehicle group, compared with their
respective control (Pr0.001). The rotenone control group
remained unchanged. However, REMSD increased the percen-
tage of open arms time as observed in the rotenone REMSD
vehicle (Pr0.05) and rotenone REMSD 8-M-PDOT (Pr0.001)
groups, compared with their respective controls [F(7,88)¼13.26,
Po0.001]. The treatment with 4-P-PDOT (Fig. 2B) did not elicit
any change in this parameter. However, the only change in
percentage of open arms time was as a result of REMSD,
observed in the sham REMSD 4-P-PDOT (Pr0.05) and rotenone
REMSD 4-P-PDOT (Pr0.001) groups [F(7,91)¼14.71, Po0.001].
The treatment with 8-M-PDOT (Fig. 2C) increased the number
of open arms entries compared with the respective vehicle
group (Pr0.01). The same result is observed in the sham
REMSD vehicle group, compared with their respective control
group (Pr0.05). Further, the rotenone REMSD 8-M-PDOT
(Pr0.001) group presented an increase in this parameter
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compared with the rotenone control 8-M-PDOT; however the

latter group demonstrated a decrease in the number of open

arms entries compared to the sham control 8-M-PDOT group

(Pr0.05) [F(7,119)¼7.050, Po0.0001]. The number of open arms

entries was not altered by the 4-P-PDOT treatment (Fig. 2D).

Nonetheless, the sham REMSD vehicle group exhibited an

increase (Pr0.05) in this parameter compared to the sham

control vehicle group [F(7,96)¼4.334, P¼0.0004]. Fig. 2E depicts

the comparisons between treatments of the rotenone groups

considering the percentage of time in the open arms. Accord-

ingly, it was not observed significant differences between the 8-

M-PDOT and 4-P-PDOT treated groups. In spite of that, only

significant increments in the percentage of time in the open

arms is observed for the rotenone REMSD 8-M-PDOT and 4-P-

PDOT in comparison to their respective rotenone control group

[F(3,48)¼8.510, P¼0.0001]. Likewise, the same type of analysis

has been performed for the open arms entries (Fig. 2F), indicat-

ing a similar result, with only the increase of this parameter for

the rotenone REMSD 8-M-PDOT compared to the rotenone

control 8-M-PDOT group [F(3,55)¼9.540, P¼0.0001].
Fig. 3 shows the effects of 8-M-PDOT and 4-P-PDOT

treatment in the locomotion as demonstrated by the OFT.

The rotenone REMSD 8-M-PDOT group (Fig. 3A) exhibited an

increase in the locomotion compared to their respective

vehicle (Po0.01) and control (Po0.001) groups [F(7,76)¼
7.902, Po0.0001]. Furthermore, neither the treatment with
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4-P-PDOT nor the REMSD exposure modified the general
activity of the animals (Fig. 3B) [F(7,90)¼1.607, P¼0.1448].
Once more, the comparisons between treatments of the
rotenone groups (Fig. 3C), considering this parameter,
demonstrated an increased locomotion in the rotenone con-
trol 4-P-PDOT group (Po0.01) compared to the rotenone
control 8-M-PDOT group. Additionally, the rotenone REMSD
8-M-PDOT group demonstrated a locomotion increment
(Po0.01) compared to the rotenone REMSD 4-P-PDOT group
[F(3,38)¼12.38, Po0.001].
4. Discussion

The activation of striatal MT2 receptors by the selective
agonist 8-M-PDOT triggered an anxiolytic-like effect, demon-
strated, consistently, by the increased percentage of time
spent in the open arms and in the number of open arms
entries. Conversely, the selective blockade of striatal MT2
receptors, induced by 4-P-PDOT, did not show an anxiogenic-
like effect, as assumed. The anxiolytic effects of melatonin in
animal models are well described by previous reports [30–32],
and more recently, it has been demonstrated the involve-
ment of MT2 receptors in the melatonin anxiolytic-like
behavior [39]. The activation of MT2 receptors, by the partial
agonist UCM-765, increased the time and entries in the open
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p, **Pr0.01, ***Pr0.001. One-way ANOVA followed by
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arms. This effect was blocked by the selective MT2 receptor
antagonist, 4-P-PDOT [39]. Thus, anxiolytic-like effect is
purportedly associated to MT2 activation. Notwithstanding,
in our study we focused on the role of striatal MT2 receptors
hence, we investigated if after a dopaminergic degeneration,
induced by intranigral rotenone, the administration of MT2
agonist or antagonist would reduce the anxiogenic-like effect
of rotenone. In fact, rotenone did not increase the anxiety-
like behavior, however this neurotoxin was able to prevent
the anxiolytic-like effect promoted by 8-M-PDOT. Another
important consideration relies on the time of MT2 drugs
infusion (between 7:00 a.m. and 9:00 a.m.), which is nadir of
melatonergic blood levels. Conversely, it is demonstrated that
melatonin receptors, in the striatum, did not suffer diurnal
variations [49]. Furthermore, it is important to state that our
rationale is strictly based on pharmacological activation/
blockade of the receptors and not necessarily influenced by
the physiological melatonin blood, or brain levels.

Another important finding in this study is that REMSD was
able to induce remarkable anxiolytic-like effects similar to 8-
M-PDOT. This outcome becomes evident due to the ceiling
effect induced by REMSD (Fig. 2E). However, these results
cannot be interpreted as a merely consequence of an altera-
tion in locomotion inflicted by REMSD, since REMSD itself did
not appear to produce motor changes. Nonetheless, locomotor
adjustments occurred only in the presence of a dopaminergic
lesion induced by rotenone. In fact, striatal MT2 blockade
produced an increased locomotion not replicated in the con-
text of REMSD. Also, MT2 activation appeared to generate a
prevalent locomotor increase compared to MT2 blockade. This
result could also be interpreted as a possible anxiogenic effect
or even a mania-like effect [50], probably caused by REMSD.
Indeed, REMSD is known to cause hyperactivity as a result of
dopaminergic supersensitivity [51], and is also considered as a
model of mania [50]. Many studies describe anxiolytic-like
effects as consequence of insufficient sleep [15–17]. Mean-
while, anxiogenic-like effects are also reported in animal
studies [18–20]. One possible explanation for this discrepancy
is due to the variations in the REMSD protocols and different
behavioral tests employed to access anxiety [52].

The intranigral infusion of rotenone did not induce an
anxiogenic-like effect, suggesting that this neurotoxin, or
perhaps our protocol (or both), presented limitations in
mimicking anxiety-like alterations such as observed in PD.
Rotenone is a classical inhibitor of the mitochondrial com-
plex I of the electron transport chain, hence, inducing
apoptosis mechanisms of dopaminergic neurons very simi-
larly to PD [2]. That is, lipid peroxidation, changes in the
mitochondrial membrane potential, caspase-3 activation and
DNA fragmentation [53]. In fact, 40–80% of striatal dopamine
depletion can be observed after intranigral administration of
rotenone [46,54,55], while serotoninergic neurons is not
affected by this neurotoxin [54].

The use of rotenone as a PD model is gaining growing
attention particularly in light of non-motor disturbances like
REM sleep behavior disorder [56]. Further, this neurotoxin
mimics olfactory dysfunction [24] and depression [25,26]
which are pathophysiological conditions with a strong dopa-
minergic influence. Meanwhile, the findings presented in the
literature regarding anxiety behaviors induced by animal
models of PD have been inconsistent. While some studies
suggest the neurotoxin induction of anxiogenic-like beha-
viors [6,57,58], others reported absence of these effects [13,59].
Therefore, the present study takes place with this investiga-
tion and becomes the first report, to our knowledge, to show
the effects of intranigral rotenone in the context of anxiety-
like behaviors in rats.

Another important point to be examined is the possible
sedative effect that could be induced by the MT2 activation. In
this regard we did not detect such effect, according to our
protocol, as can be seen by the locomotion profile of the 8-M-
PDOT treated animals. Interestingly, there is a strong relation-
ship between anxiety disorders and glutamate receptors
[60,61]. In particular, abnormalities in the glutamatergic trans-
mission underlie anxiety [62]. Preclinical data indicate that
antagonists of the N-methyl-D-aspartate (NMDA) and group I
mGlu receptors reduce anxiety [61,63]. However, the involve-
ment of glutamate in the neurobiology of anxiety in PD is not
yet clear. Another neuropsychiatric condition relevant for PD
is depression. It has been demonstrated that melatonin
operates as a mediator of the antidepressant-like effects
induced by NMDA receptors [64]. Although, more studies about
the glutamatergic role of melatonin are needed and this
constitutes a very interesting field for futures studies.
5. Conclusions

Our results demonstrated that the activation of striatal
melatonin MT2 receptors elicited anxiolytic-like effects. In
opposite, the selective blockade of striatal MT2 receptors,
induced by 4-P-PDOT, did not show an anxiogenic-like effect.
REMSD was able to induce anxiolytic-like effects similar to 8-
M-PDOT. MT2 activation generated a prevalent locomotor
increase compared to MT2 blockade in the context of REMSD.
Together, these results suggest a striatal MT2 modulation
associated to the REMSD-induced dopaminergic supersensi-
tivity causing a possible dopaminergic influence in the MT2
anxiolytic-like effects in the intranigral rotenone model of PD.
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