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1. Introduction

The Bruck–Bose representation of PG(2,q2) in PG(4,q) has been studied in great detail. Many
authors have investigated the representation of Baer sublines, subplanes and unitals of PG(2,q2) in
PG(4,q) (see [2] for a survey and proofs of many of these results). In this article, we investigate a cu-
bic extension, namely the Bruck–Bose representation of PG(2,q3) in PG(6,q). We study sublines and
secant and tangent subplanes of PG(2,q3) of order q and determine their representation in PG(6,q).
We then generalize these results to the Bruck–Bose representation of PG(2,qn) in PG(2n,q), in that
we completely determine the representation in PG(2n,q) of sublines and secant and tangent sub-
planes of PG(2,qn) of order q. The results in this paper form a foundation for further work by the
authors investigating the representation in PG(6,q) of unitals and Baer subplanes of PG(2,q3) when
q is square.
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Fig. 1. The Bruck–Bose construction of PG(2,q3) in PG(6,q).

2. The Bruck–Bose representation of PG(2,q3) in PG(6,q)

2.1. The 2-spreads and 2-reguli of PG(5,q)

A 2-spread of PG(5,q) is a set of q3 + 1 planes that partition PG(5,q). A 2-regulus of PG(5,q)

is the system of maximal 2-spaces of a Segre variety S1;2 (see [7, Section 25.5] for full details on
Segre varieties). That is, a 2-regulus R is a set of q + 1 mutually disjoint planes π1, . . . ,πq+1 with
the property that if a line meets three of the planes, then it meets all q + 1 of them. Thus there are
q2 + q + 1 mutually disjoint lines associated with R (these are the maximal 1-spaces of S1;2). Three
mutually disjoint planes in PG(5,q) lie on a unique 2-regulus. A 2-spread S is regular if for any three
planes in S , the 2-regulus containing them is contained in S . In a regular 2-spread, any q + 1 spread
elements meeting a line form a 2-regulus.

The following construction of a regular 2-spread of PG(5,q) will also be useful. Embed PG(5,q) in
PG(5,q3) and let g be a line of PG(5,q3) disjoint from PG(5,q). Let gq , gq2

be the conjugate lines

of g , both of these are disjoint from PG(5,q). Let Pi be a point on g; then the plane 〈Pi, P q
i , P q2

i 〉
meets PG(5,q) in a plane. As Pi ranges over all the points of g , we get q3 + 1 planes of PG(5,q) that
partition the space. These planes form a regular spread S of PG(5,q). The lines g , gq , gq2

are called
the (conjugate skew) transversal lines of the spread S . Conversely, given a regular 2-spread in PG(5,q),
there is a unique set of three (conjugate skew) transversal lines in PG(5,q3) that generate S in this
way. See [7, Section 25.6] for more information on 2-reguli and 2-spreads.

2.2. The Bruck–Bose representation

In this section we introduce the linear representation of a finite translation plane P of dimension
at most three over its kernel, an idea which was developed independently by André [1] and Bruck
and Bose [4,5]. We will use the vector space construction as developed by Bruck and Bose.

Let Σ∞ be a hyperplane of PG(6,q) and let S be a 2-spread of Σ∞ . We use the phrase a subspace
of PG(6,q)\Σ∞ to mean a subspace of PG(6,q) that is not contained in Σ∞ . Consider the following
incidence structure: the points of A(S) are the points of PG(6,q)\Σ∞; the lines of A(S) are the
3-spaces of PG(6,q)\Σ∞ that contain an element of S ; and incidence in A(S) is induced by incidence
in PG(6,q). Fig. 1 illustrates this construction. Then the incidence structure A(S) is an affine plane
of order q3. We can complete A(S) to a projective plane P (S); the points on the line at infinity �∞
have a natural correspondence to the elements of the 2-spread S .

The projective plane P (S) is the Desarguesian plane PG(2,q3) if and only if S is a regular 2-spread
of Σ∞ ∼= PG(5,q) [3].

In the case P (S) ∼= PG(2,q3), we can relate the coordinates of PG(2,q3) and PG(6,q) as follows.
Let τ be a primitive element in GF(q3) with primitive polynomial

x3 − t2x2 − t1x − t0.
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Then every element α ∈ GF(q3) can be uniquely written as α = a0 +a1τ +a2τ
2 with a0,a1,a2 ∈ GF(q).

Points in PG(2,q3) have homogeneous coordinates (x, y, z) with x, y, z ∈ GF(q3). Let the line at in-
finity �∞ have equation z = 0; so the affine points of PG(2,q3) have coordinates (x, y,1). Points in
PG(6,q) have homogeneous coordinates (x0, x1, x2, y0, y1, y2, z) with x0, x1, x2, y0, y1, y2, z ∈ GF(q).
Let Σ∞ have equation z = 0. Let P = (α,β,1) be a point of PG(2,q3). We can write α = a0 +
a1τ +a2τ

2 and β = b0 +b1τ +b2τ
2 with a0,a1,a2,b0,b1,b2 ∈ GF(q). Then the map φ : PG(2,q3)\�∞→

PG(6,q)\Σ∞ such that φ(α,β,1) = (a0,a1,a2,b0,b1,b2,1) is the Bruck–Bose map.
To complete this to a projective map, we generalize the construction of Bruck–Bose coordi-

nates of PG(2,q2) in PG(4,q) (see [2, Section 3.4.4] for full details of this 2-dimensional case).
First define σ(α,β,0) = (a0,a1,a2,b0,b1,b2,0). Let (1, δ,0) be a point of �∞ in PG(2,q3); then
we can write δ = f0 + f1τ + f2τ

2 for unique f0, f1, f2 ∈ GF(q). Then the spread element of Σ∞
in PG(6,q) corresponding to (1, δ,0) is the plane spanned by the three points D0, D1, D2 given
by

D0 = σ(1, δ,0) = (1,0,0, f0, f1, f2,0),

D1 = σ(τ , δτ ,0) = (0,1,0, f2t0, f0 + f2t1, f1 + f2t2,0),

D2 = σ
(
τ 2, δτ 2,0

) = (
0,0,1, f1t0 + f2t0t2, f2t0 + f2t1t2 + f1t1, f0 + f2t1 + f2t2

2 + f1t2,0
)
.

Note also that the point (0,1,0) of �∞ in PG(2,q3) corresponds to the spread element that is spanned
by the three points (0,0,0,1,0,0,0), (0,0,0,0,1,0,0), (0,0,0,0,0,1,0).

Later we will need the equation of the three (conjugate skew) transversals of S in the cubic
extension Σ = PG(6,q3); so we calculate their equations here.

Lemma 2.1. Let g be the line of PG(6,q3) through the points A1 = (p0, p1, p2,0,0,0,0) and A2 =
(0,0,0, p0, p1, p2,0) where p0 = t1 + t2τ − τ 2 , p1 = t2 − τ , p2 = −1. Then g is one of the three (con-
jugate skew) transversals of the regular 2-spread S . (The remaining transversals are gq, gq2

.)

Proof. Label the planes of S by πδ , δ ∈ GF(q3) ∪ {∞}, such that πδ corresponds to the point (1, δ,0)

of �∞ in PG(2,q3). Note that g is not a line of Σ∞ ∼= PG(5,q), but lies in the cubic extension. We
need to show that the line g meets each of the planes πδ (considering πδ as a plane in the cubic
extension). Now π∞ corresponds to the point (0,1,0) and so is the plane spanned by the points
(0,0,0,1,0,0,0), (0,0,0,0,1,0,0), (0,0,0,0,0,1,0). Clearly π∞ meets the line g in the point A2.
The plane πδ , δ ∈ GF(q3), is spanned by the three points D0, D1, D2 calculated above. The point
P = A1 + δA2 is on the line g . Moreover, P = p0 D0 + p1 D1 + p2 D2 and so P is on the spread
element πδ . Hence g meets every spread element, and so g and its conjugates gq , gq2

are the unique
transversals of the spread S . �
2.3. Sublines and subplanes of PG(2,q3)

In any plane P of order q3, a natural subplane B to consider is an order-q-subplane, that is, a set
of q2 + q + 1 points where every line of P meets B in 0, 1 or q + 1 points. Hence every line of the
subplane B has q + 1 points and we call these order-q-sublines. In particular, if P = PG(2,q3), then
every order-q-subplane is isomorphic to PG(2,q).

We consider the representation of order-q-sublines and order-q-subplanes in the Bruck–Bose rep-
resentation of PG(2,q3) in PG(6,q). There are six cases to consider: Theorem 2.4 looks at order-q-
sublines contained in �∞; Theorem 2.3 looks at order-q-sublines tangent to �∞; Theorem 2.5 looks
at order-q-sublines disjoint from �∞ , Theorem 2.2 looks at order-q-subplanes secant to �∞ and The-
orem 2.7 looks at order-q-subplanes tangent to �∞ . Note that the case of order-q-subplanes exterior
to �∞ is not covered in this paper and a succinct description of its representation in PG(6,q) remains
an open problem.
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Theorem 2.2. Consider the translation plane P (S) defined from a 2-spread S of a hyperplane Σ∞ of PG(6,q).

(a) A plane of PG(6,q)\Σ∞ that meets q + 1 elements of S represents an order-q-subplane of P (S) secant
to �∞ .

(b) If P (S) ∼= PG(2,q3), then every order-q-subplane of P (S) that is secant to �∞ is represented by a plane
of PG(6,q)\Σ∞ that meets q + 1 elements of S .

Proof. Let π be a plane of PG(6,q)\Σ∞ , so π meets Σ∞ in a line. We are interested in the case when
this line is not contained in a spread element, so it meets q+1 spread elements, each in a point. (Note
that if S were a regular spread then these q + 1 spread elements would form a 2-regulus of S .) Then,
in P (S), π corresponds to a set A of q2 affine points, and q + 1 points on �∞ (corresponding to the
q + 1 spread elements that π meets). In PG(6,q), a 3-space about a spread element meets π in 0, 1
or q + 1 points; hence, in P (S), lines meet A in 0, 1 or q + 1 points. Thus A is a subplane of order q
and (a) holds.

To prove (b), we count the number of order-q-subplanes secant to �∞ in PG(2,q3). Since a quad-
rangle (A, B, C, D) with A, B ∈ �∞ and C, D /∈ �∞ uniquely determines an order-q-subplane, the
number of order-q-subplanes secant to �∞ is

(q3 + 1)(q3)(q6)(q6 − 2q3 + 1)

(q + 1)(q)(q2)(q2 − 2q + 1)
= (

q2 − q + 1
)
q6(q2 + q + 1

)2
. (1)

We now count the number of planes of PG(6,q) that meet Σ∞ in a line which does not lie in a
spread element. We first count the number of lines of PG(5,q); it is

q6−1
q−1 (

q6−1
q−1 − 1)

(q − 1)q
= (

q4 + q2 + 1
)(q5 − 1

q − 1

)
.

The number of lines in one spread element is q2 +q+1; so we subtract (q3 +1)(q2 +q+1) to find the
number of lines not in any spread element. Given that any such line determines q6/q2 = q4 planes of
PG(6,q)\Σ∞ it is easy to show that the required number (1) follows. Hence, when P (S) ∼= PG(2,q3),
the correspondence of part (a) is exact. �

As an immediate corollary, we have the representation of order-q-sublines that are tangent to �∞ .

Theorem 2.3. Consider the translation plane P (S) defined from a 2-spread S of a hyperplane Σ∞ of PG(6,q).

(a) A line of PG(6,q)\Σ∞ represents an order-q-subline of P (S) tangent to �∞ .
(b) If P (S) ∼= PG(2,q3), then every order-q-subline of P (S) tangent to �∞ is represented by a line of

PG(6,q)\Σ∞ .

Theorem 2.4. Consider the translation plane P (S) defined from a 2-spread S of a hyperplane Σ∞ of PG(6,q).

(a) A 2-regulus R of S represents an order-q-subline of �∞ in P (S).
(b) If P (S) ∼= PG(2,q3), then every order-q-subline of �∞ in P (S) is represented by a 2-regulus of S .

Proof. Part (a) is an immediate corollary of Theorem 2.2. To prove (b) we first note that three points
on �∞ in PG(2,q3) are contained in a unique subline of order q. Hence the number of sublines

of �∞ of order q is
(q3+1

3

)
/
(q+1

3

) = q2(q4 + q2 + 1). Alternatively, suppose S is a regular 2-spread in
Σ∞ ∼= PG(5,q). Then the number of 2-reguli in S is q2(q4 + q2 + 1) by [7, Theorem 25.6.6]. As these
two numbers are equal, if P (S) ∼= PG(2,q3), then the correspondence in (a) is exact. �
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Theorem 2.5.

(a) Let � be a line of PG(2,q3) and let b be an order-q-subline of � that is disjoint from �∞ . Then in PG(6,q),
b corresponds to a normal rational curve in the 3-space Σ corresponding to �.

(b) Let Σ be a 3-space of PG(6,q)\Σ∞ about a spread element and let N be a normal rational curve in Σ

that is disjoint from Σ∞ . Then N corresponds to an order-q-subline of PG(2,q3) disjoint from �∞ if and
only if in the cubic extension PG(6,q3), the cubic extension N of N meets the conjugate transversal lines
g, gq, gq2

of the spread S .

Proof. We use coordinates to prove (a), generalizing the argument in [2, Theorem 3.17]. Let � be
the line of equation x = y in PG(2,q3) and let ω ∈ GF(q3)\GF(q). We find an order-q-subline of �

disjoint from �∞ as follows. The set {(1,d,0) | d ∈ GF(q) ∪ {∞}} is clearly an order-q-subline of �∞ .
The homography with matrix

A =
( 0 1 0

0 1 1
ω 1 0

)

maps this to the set �ω = {Pd = (d,d,d +ω) | d ∈ GF(q)∪{∞}}. So �ω is an order-q-subline of � which
is clearly disjoint from �∞ .

As we are using homogeneous coordinates, for all d ∈ GF(q) we can write the points Pd of �ω as

Pd = (α,α, c) = (
d
(
d + ωq)(d + ωq2)

,d
(
d + ωq)(d + ωq2)

, (d + ω)
(
d + ωq)(d + ωq2))

. (2)

We claim that c = c(d) = (d + ω)(d + ωq)(d + ωq2
) is a polynomial in d with c : GF(q) → GF(q). We

have c(d) ∈ GF(q) as c(d)q = c(d) for all d ∈ GF(q). So we can write c(d) = c0 + c1d + c2d2 + d3 for
some constants c0, c1, c2 ∈ GF(q). Write ω = w0 + w1τ + w2τ

2 for constants w0, w1, w2 ∈ GF(q). Now
recall that τ is a solution to x3 − t2x2 − t1x − t0 and so the other two roots are τ q , τ q2

. Hence t2 =
τ + τ q + τ q2

, −t1 = ττ q + ττ q2 + τ qτ q2
and t0 = ττ qτ q2

. Many relationships follow, for example t2
2 +

2t1 = τ 2 + τ 2q + τ 2q2
and t2

1 − 2t0t2 = τ 2qτ 2q2 + τ 2τ 2q2 + τ 2τ 2q . Using these and other relationships
we can show that

c0 = w3
0 + w2

0 w1t2 + w2
0 w2

(
t2

2 + 2t1
) − w0 w2

1t1 − w0 w1 w2(3t0 + t1t2)

+ w0 w2
2

(
t2

1 − 2t0t2
) + w3

1t0 + w2
1 w2t0t2 − w1 w2

2t0t1 + w3
2t2

0,

c1 = 3w2
0 + 2w0 w1t2 + w0 w2

(
2t2

2 + 4t1
) − w2

1t1 − w1 w2(3t0 + t1t2) + w2
2

(
t2

1 − 2t0t2
)
,

c2 = 3w0 + w1t2 + w2
(
t2

2 + 2t1
)
.

However, the element α = d(d + ωq)(d + ωq2
) is in GF(q3) and not necessarily GF(q), so we will

write it as α = a0 + a1τ + a2τ
2 for unique functions a0,a1,a2 : GF(q) → GF(q) of d. Using similar

methods as for the ci we calculate

a0(d) = d3 + d2(2w0 + w1t2 + w2
(
t2

2 + 2t1
))

+ d
(

w2
0 + w0 w1t2 + w0 w2

(
t2

2 + 2t1
) − w2

1t1 − w1 w2(t0 + t1t2) + w2
2

(
t2

1 − t0t2
))

,

a1(d) = −d2 w1 + d
(−w0 w1 − w2

1t2 − w1 w2t2
2 + w2

2(t0 + t1t2)
)
,

a2(d) = −d2 w2 + d
(−w0 w2 + w2

1 + w1 w2t2 − w2
2t1

)
.
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In particular, we have a0(d) is a cubic in d, and a1(d), a2(d) are quadratics in d, that is,

a0(d) = a00 + a01d + a02d2 + d3, a1(d) = a10 + a11d + a12d2, a2(d) = a20 + a21d + a22d2,

for constants aij ∈ GF(q), and where a00 = a10 = a20 = 0.
Hence the point Pd = (α,α, c) in PG(2,q3) corresponds to the point

P d = (
a0(d),a1(d),a2(d),a0(d),a1(d),a2(d), c(d)

)
(3)

in PG(6,q).
To show that N = {P d | d ∈ GF(q) ∪ {∞}} is a normal rational curve in Σ , it is sufficient to exhibit

a homography that maps the point (d3,d2,d,1) to the point (a0(d),a1(d),a2(d), c(d)). Consider the
matrix

B =
⎛
⎜⎝

1 a02 a01 a00
0 a12 a11 a10
0 a22 a21 a20
1 c2 c1 c0

⎞
⎟⎠ , where

⎛
⎜⎝

a0(d)

a1(d)

a2(d)

c(d)

⎞
⎟⎠ = B

⎛
⎜⎝

d3

d2

d
1

⎞
⎟⎠ . (4)

To show that B corresponds to a homography, we need to show that the determinant of B is non-zero.
It is sufficient to show that there are four distinct values of d for which the points P d are linearly
independent, since this would mean that B has full rank.

We will do this in the following way. First, we show that for d ∈ GF(q) we can obtain the coor-
dinates of P d by solving a set of simultaneous linear equations. Then we can extend this definition
to d ∈ GF(q3), so the extended curve N = {P d | d ∈ GF(q3) ∪ {∞}} contains N . It is sufficient to find
four values of d ∈ GF(q3) with points P d being linearly independent. The points we will consider
correspond to d = 0,−ω,−ωq,−ωq2

.
Recall the definition of Pd (d ∈ GF(q)) from (2). So we have

d
(
d + ωq)(d + ωq2) = a0(d) + a1(d)τ + a2(d)τ 2 (5)

where the ai : GF(q) → GF(q). How can we determine, without explicit calculation, the values of the
ai(d) for a given value of d? As above, for n = 3 we can explicitly calculate the ai and hence ai(d) (for
d ∈ GF(q)) but for general n this will be a difficult problem.

Eq. (5) determines uniquely the values of ai(d) for d ∈ GF(q). However, when we extend to d ∈
GF(q3), then one equation will not uniquely determine the values of ai(d) for a given value of d. As
there are three unknowns a0(d), a1(d), a2(d), we will need three linearly independent equations to
uniquely determine the values of ai(d). Applying the field automorphism to (5), and then again to the
resultant equation, we obtain for all d ∈ GF(q),

d
(
d + ωq2)

(d + ω) = a0(d) + a1(d)τ q + a2(d)τ 2q, (6)

d(d + ω)
(
d + ωq) = a0(d) + a1(d)τ q2 + a2(d)τ 2q2

. (7)

Adding our last equation from the definition of P d we obtain the system D = T Rd , where D , T , Rd
are defined below

D =

⎛
⎜⎜⎝

d(d + ωq)(d + ωq2
)

d(d + ωq2
)(d + ω)

d(d + ω)(d + ωq)
q q2

⎞
⎟⎟⎠ , T =

⎛
⎜⎜⎝

1 τ τ 2 0
1 τ q τ 2q 0
1 τ q2

τ 2q2
0

0 0 0 1

⎞
⎟⎟⎠ , Rd =

⎛
⎜⎜⎝

a0(d)

a1(d)

a2(d)

c(d)

⎞
⎟⎟⎠ .
(d + ω)(d + ω )(d + ω )
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Note that the determinant of T is 1 times the determinant of a Vandermonde matrix, and so |T | 
= 0.
Hence we have obtained expressions for a0(d), a1(d), a2(d) and c(d). The expression for P d given
in (3) is defined for d ∈ GF(q), but extends in the natural way for d ∈ GF(q3) using our expression
Rd = T −1 D . We will now consider the value d = −ω.

We work in PG(6,q3) and show that

P −ω = αω

(
τ 2 − t2τ − t1, τ − t2,1, τ 2 − t2τ − t1, τ − t2,1,0

)
,

where αω ∈ GF(q3) (defined below) is a constant depending on ω. For d = −ω, the last coordinate c(d)

of P d is zero, so we only need to show that our choice of P −ω satisfies (5), (6), (7). First note that

−ω
(
ωq − ω

)(
ωq2 − ω

) = (
τ q − τ

)(
τ q2 − τ

)
αω, (8)

where αω = −ω(w1 + w2(τ
q + τ ))(w1 + w2(τ

q2 + τ )) 
= 0 since the LHS of (8) is non-zero. So sub-
stituting d = −ω into (5), (6) and (7) and letting Ai = ai/αω : GF(q3) → GF(q3) (1 � i � 3), we obtain

−ω
(−ω + ωq)(−ω + ωq2) = αω

(
A0 + A1τ + A2τ

2), (9)

0 = αω

(
A0 + A1τ

q + A2τ
2q), (10)

0 = αω

(
A0 + A1τ

q2 + A2τ
2q2); (11)

that is

(−τ + τ q)(−τ + τ q2) = A0 + A1τ + A2τ
2, (12)

0 = A0 + A1τ
q + A2τ

2q, (13)

0 = A0 + A1τ
q2 + A2τ

2q2
. (14)

Now we check that RHS (12) = (τ 2 − t2τ − t1) + (τ − t2)τ + τ 2 = 3τ 2 − 2t2τ − t1. Also, LHS (12)
= τ qτ q2 − ττ q2 − ττ q + τ 2 = (−t1 − ττ q − ττ q2

) − ττ q2 − ττ q + τ 2 = −t1 − 2τ (τ q + τ q2
) + τ 2 =

−t1 − 2τ (t2 − τ )+ τ 2 = 3τ 2 − 2t2τ − t1 = RHS (12). Further, RHS (13) = (τ 2 − t2τ − t1)+ (τ − t2)τ
q +

τ 2q = (τ 2 − t2τ − t1) + (−τ q − τ q2
)τ q + τ 2q = τ 2 − t2τ − t1 − τ qτ q2 = 1

τ (τ 3 − t2τ
2 − t1τ − ττ qτ q2

) =
1
τ (t0 − t0) = 0 as required. Similarly for (14). This proves our equation for P −ω is correct.

Comparing the coordinates of P −ω = αω(τ 2 − t2τ − t1, τ − t2,1, τ 2 − t2τ − t1, τ − t2,1,0) to the
definition of the transversal g calculated in Lemma 2.1, we see that P −ω ∈ g . Note that c(−ω) = 0,
and as the coefficients of the polynomial ai(d) are in GF(q), it follows that ai(d)q = ai(dq). Hence

(P −ω)q = (
a0(−ω)q,a1(−ω)q,a2(−ω)q,a0(−ω)q,a1(−ω)q,a2(−ω)q,0

)
= (

a0
(−ωq),a1

(−ωq),a2
(−ωq),a0

(−ωq),a1
(−ωq),a2

(−ωq),0
)

= P −ωq .

So (P −ω)q = P−ωq lies on the transversal gq , and (P −ω)q2 = P−ωq2 lies on the transversal gq2
.

As the lines g , gq and gq2
are independent and lie in the cubic extension Σ∞ = PG(5,q3) of

Σ∞ = PG(5,q), and P 0 ∈ Σ = PG(6,q)\Σ∞ , it follows that the points P −ω , P −ωq , P−ωq2 , P 0 are

independent points in the 3-space Σ defined by the P d . This is the result we need to show that
N = {P d | d ∈ GF(q3) ∪ {∞}} is a normal rational curve in Σ , and hence N = {P d | d ∈ GF(q) ∪ {∞}} is
a normal rational curve in 3-space Σ corresponding to �, completing the proof of part (a).
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Note that we have shown above that N meets the plane Σ ∩ Σ∞ when c = 0, and in the cubic
extension PG(6,q3), N meets the plane Σ ∩ Σ∞ in the three points P −ω , P −ωq , P −ωq2 .

We now prove part (b). Let � be a line of PG(2,q3) and let Σ be the 3-space of PG(6,q) corre-
sponding to �. We now count to show that the number of normal rational curves in Σ that when
extended to PG(6,q3) meet the transversals of S , is equal to the number of order-q-sublines of � that
are disjoint from �∞ . In PG(6,q3), let P1 = g ∩ Σ , P2 = gq ∩ Σ , and P3 = gq2 ∩ Σ . Now 〈P1, P2, P3〉
is a plane that meets PG(6,q) in the spread element π = Σ ∩ Σ∞ . Further, if the extension of a
plane of PG(6,q) contains one of the Pi , then it contains them all. Hence if Q 1, Q 2, Q 3 are three
non-collinear points of Σ\π , then in PG(6,q3), {P1, P2, P3, Q 1, Q 2, Q 3} is a set of six points, no four
coplanar. Hence, by [6, Theorem 21.1.1], they lie in a unique normal rational curve N of Σ ⊂ PG(6,q3).
That is, Q 1, Q 2, Q 3 lie in a unique normal rational curve of Σ which contains the points P1, P2, P3
in the cubic extension PG(6,q3).

Let Q 1, Q 2, Q 3 be three points of �\�∞ . They lie in a unique order-q-subline of �. This subline
meets �∞ if and only if, in PG(6,q), the points Q 1, Q 2, Q 3 are collinear. If Q 1, Q 2, Q 3 are not
collinear in PG(6,q), then, by the above argument, they lie in a unique normal rational curve of Σ

that contains P1, P2, P3 in the cubic extension PG(6,q3). Hence the number of order-q-sublines of �

that are disjoint from �∞ is equal to the number of normal rational curves of Σ that contain P1, P2,
P3 in the cubic extension PG(6,q3), proving part (b). �

We next look at the representation of subplanes that are tangent to �∞ . We will need to use coor-
dinates; so we first present a lemma that calculates results about the coordinates of a representative
order-q-subplane that is tangent to �∞ in PG(2,q3). Note that PG(2,q) = {(x, y, z) | x, y, z ∈ GF(q),
not all zero} is an order-q-subplane that is secant to �∞ . We find a homography that maps this to a
tangent order-q-subplane. Note also that the point (x, y,1) lies in PG(2,q) if and only if xq = x and
yq = y.

Lemma 2.6. In PG(2,q3), let B be the unique order-q-subplane containing the quadrangle (1,0,0), (0,0,1),
(1,1,1) and (1 +ω,1,1 +ω) for some fixed ω ∈ GF(q3)\GF(q). Then B is tangent to �∞ , and B contains the
points (1,0,1), (1,1,1 + ω), and the order-q-subline �ω = {Pd = (d,d,d + ω) | d ∈ GF(q) ∪ {∞}}. Further,
B is the image of the order-q-subplane PG(2,q) under the homography σ1 with matrix A1; and also under the
homography σ2 with matrix A2 where

A1 =
(−ω 1 + ω 0

0 1 0
0 1 + ω −ω

)
, A2 =

(
ω 1 −ω
0 1 0
ω 1 0

)

such that σi : PG(2,q) → B is given by σi(X) = Ai X , writing each point X as a column vector (1 � i � 2).

Proof. There is a unique homography σ1 satisfying σ1(1,0,0) = (1,0,0), σ1(0,1,0) = (1 + ω,1,

1+ω), σ1(0,0,1) = (0,0,1), and σ1(1,1,1) = (1,1,1), namely the homography with matrix A1 given
above. So B is the image of PG(2,q) under the homography σ1. Note that σ−1

1 : B → PG(2,q) such that
σ−1

1 (X) = A′
1 X has matrix given by

A′
1 =

(−1 1 + ω 0
0 ω 0
0 1 + ω −1

)
.

To show that B is tangent to �∞ (of equation z = 0), we show that (1,0,0) is the only point of B
which is on �∞ . Now, a point (x, y, z) ∈ PG(2,q) maps to the point σ1(x, y, z) = (−xω + y(1 + ω), y,

y(1 + ω) − zω) of B , which is on �∞ if and only if y(1 + ω) − zω = 0 for some y, z ∈ GF(q), if and
only if y = z = 0, giving the point (1,0,0). Hence B meets �∞ in the point (1,0,0). It is easy to check
that σ−1

1 (1,0,1), σ−1
1 (1,1,1 + ω), and σ−1

1 (d,d,d + ω) for d ∈ GF(q) ∪ {∞} all lie in PG(2,q). Hence
(1,0,1), (1,1,1 + ω) and �ω all lie in B .
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Alternatively, we can map PG(2,q) to an order-q-subplane B ′ via the homography σ2 uniquely
determined by σ2(1,0,0) = (1,0,1), σ2(0,1,0) = (1,1,1), σ2(0,0,1) = (1,0,0), and σ2(1,1,1) =
(1,1,1 + ω). We calculate σ2(X) = A2 X where A2 is given in the statement of the lemma. As B
and B ′ both contain the quadrangle (1,0,1), (1,1,1), (1,0,0), and (1,1,1 +ω), we have B = B ′ . Note
also that σ−1

2 has matrix A′
2 given by

A′
2 =

( 0 −1 1
0 ω 0

−1 0 1

)
. �

Theorem 2.7. Let B be an order-q-subplane of PG(2,q3) that is tangent to �∞ in the point T . Let πT be the
spread element corresponding to T . Then B determines a set B of points in PG(6,q) (where the affine points
of B correspond to the affine points of B) such that:

(a) B is a ruled surface with conic directrix C contained in the plane πT ∈ S , and normal rational curve
directrix N contained in a 3-space Σ that meets Σ∞ in a spread element (distinct from πT ). The points
of B lie on q + 1 pairwise disjoint generator lines joining C to N .

(b) The q + 1 generator lines of B joining C to N are determined by a projectivity from C to N .
(c) When we extend B to PG(6,q3), it contains the conjugate transversal lines g, gq, gq2

of the spread S .
(d) B is the intersection of nine quadrics in PG(6,q).

Proof. Let B be an order-q-subplane of PG(2,q3) that meets �∞ in the point T . Consider the q + 1
order-q-sublines of B through T . By Theorem 2.3(b), these correspond to q + 1 lines m1, . . . ,mq+1 of
PG(6,q)\Σ∞ . Let B be the set of points that lie on these lines, so the affine part of B corresponds to
the affine part of the order-q-subplane B . Let mi ∩ πT = Mi , i = 1, . . . ,q + 1.

First note that M1, . . . , Mq+1 are distinct. Since if Mi = M j , then 〈mi,m j〉 is a plane and either
meets πT in a point and consequently corresponds to an order-q-subplane secant to �∞ (Theo-
rem 2.2), or, meets πT in a line. In the first case we have two order-q-subplanes in PG(2,q3) with a
common quadrangle, a contradiction, and in the second case the 3-subspace spanned by mi and πT

corresponds to a line of PG(2,q3) containing at least 2(q + 1) points of B , another contradiction. If �

is a line of PG(2,q3) that does not contain T and meets B in an order-q-subline (necessarily disjoint
from �∞) then in PG(6,q), � corresponds to a 3-space Σ that meets B in a normal rational curve N
(by Theorem 2.5(a)).

We will show that the points {M1, . . . , Mq+1} form a conic. Hence we can conclude that B consists
of q + 1 mutually disjoint lines m1, . . . ,mq+1 joining the conic C = {M1, . . . , Mq+1} in πT , and the
normal rational curve N . That is, B is a ruled surface with a conic directrix C and a normal rational
curve directrix N . We use coordinates to show that the points {M1, . . . , Mq+1} form a conic. As in
the proof of Theorem 2.5, fix ω ∈ GF(q3)\GF(q) and consider the point set of PG(2,q3) given by
�ω = {Pd = (d,d,d + ω) | d ∈ GF(q) ∪ {∞}}. Then �ω is an order-q-subline of the line x = y which is
disjoint from �∞ . Let B be the unique order-q-subplane containing �ω , T = (1,0,0) and A = (1,0,1)

(as calculated in Lemma 2.6). Note that B is tangent to �∞ at T . The line x = z has two points in B ,
and so meets B in an order-q-subline. Let Rd , d ∈ GF(q) ∪ {∞} be the point of intersection of the line
x = z and the line T Pd , so Rd = (d + ω,d,d + ω), see Fig. 2.

Using the notation from Theorem 2.5, the coordinates of P d , Rd in PG(6,q), are P d = (a0(d),a1(d),

a2(d),a0(d),a1(d),a2(d), c(d)) and Rd = (c(d),0,0,a0(d),a1(d),a2(d), c(d)). If d ∈ GF(q), the line join-
ing P d and Rd meets Σ∞ of equation z = 0 in the point Q d = (a0(d) − c(d),a1(d),a2(d),0,0,0,0).
Now consider the case d = ∞. In PG(2,q3), R∞ = P∞ = (1,1,1), so to find the final line through T
we need to find another point of B on the line through T = (1,0,0) and P∞ = (1,1,1), that is,
the line of equation y = z. We note that P1 = (1,1,1 + ω) and (1,0,1) are points of B , so the line
joining them is a line of B and hence meets y = z in a point of B; namely the point with coor-
dinates F = (1 − ω,1,1). The two points P∞ and F on the line y = z are represented in PG(6,q)

by the points P ∞ = (1,0,0,1,0,0,1) and F = (1 − w0,−w1,−w2,1,0,0,1). The line joining P ∞
and F meets Σ∞ in the point (−w0,−w1,−w2,0,0,0,0), which is the point Q ∞ . Hence we
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Fig. 2. A tangent order-q-subplane of PG(2,q3).

have {M1, . . . , Mq+1} = { Q d | d ∈ GF(q) ∪ {∞}}. Now a0(d) − c(d), a1(d), a2(d) are quadratics in d
over GF(q) with “leading terms” −d2 w0, −d2 w1, −d2 w2 respectively, so at least one is nonlinear.
Hence we need to find a homography that maps the set { Q d | d ∈ GF(q) ∪ {∞}} to the set of points
{(d2,d,1) | d ∈ GF(q) ∪ {∞}}. In the proof of Theorem 2.5, the matrix B was defined as follows, and
now suppose C is the matrix with

⎛
⎜⎜⎝

a0(d)

a1(d)

a2(d)

c(d)

⎞
⎟⎟⎠ = B

⎛
⎜⎜⎝

d3

d2

d
1

⎞
⎟⎟⎠ ,

⎛
⎝a0(d) − c(d)

a1(d)

a2(d)

⎞
⎠ = C

⎛
⎝d2

d
1

⎞
⎠ .

In Theorem 2.5 we showed that the four points Pd with d = 0,−ω,−ωq,−ωq2
were independent.

Note that for d = −ω,−ωq,−ωq2
, c(d) = 0, hence it follows that Q d for d = −ω,−ωq,−ωq2

are
three independent points. Thus C represents a homography, and hence the points {M1, . . . , Mq+1}
form a conic in πT .

Hence we have shown that B is a ruled surface with conic directrix C = { Q d | d ∈ GF(q) ∪ {∞}}
in πT and normal rational curve directrix N = {P d | d ∈ GF(q)∪ {∞}} in Σ , with q + 1 generator lines
Q d P d , d ∈ GF(q) ∪ {∞}, proving (a). From the coordinates, we have a natural projectivity from the
points Q d of C to the points P d of N , proving (b).

Now consider the cubic extension PG(6,q3). We can naturally extend the conic C and normal
rational curve N in PG(6,q) to C and N in PG(6,q3). Hence the projectivity C → N is extended to

C → N , and so B is naturally extended to B in PG(6,q3). We have from Theorem 2.5 that N contains
the points g ∩Σ = P −ω , gq ∩Σ = P−ωq , gq2 ∩Σ = P−ωq2 . Similarly, C contains the point Q −ω which

we calculate to be Q −ω = (τ 2 − t2τ − t1, τ − t2,1,0,0,0,0), which lies on g (using Lemma 2.1). It

follows that C contains the three points g ∩π T = Q −ω , gq ∩π T = Q −ωq , gq2 ∩π T = Q −ωq2 . Thus B

contains the three transversal lines g = P −ω Q −ω , gq = P−ωq Q −ωq , gq2 = P−ωq2 Q −ωq2 , proving (c).
Finally we show that B is an algebraic variety by showing that it is the intersection of nine

quadrics. We continue to work with the order-q-subplane B with coordinates given in Lemma 2.6.
So the affine points of B are the points (x, y,1) satisfying σ−1

1 (x, y,1) ∈ PG(2,q) (where σ1 is speci-
fied in Lemma 2.6). That is, we require P = ((1 + ω)y − x,ωy, (1 + ω)y − 1) ∈ PG(2,q).
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We first consider the case (1+ω)y −1 
= 0. So P ≡ (((1+ω)y − x)/((1+ω)y −1),ωy/((1+ω)y −
1),1), and so P ∈ PG(2,q) if and only if

(
(1 + ω)y − x

(1 + ω)y − 1

)q

= (1 + ω)y − x

(1 + ω)y − 1
and

(
ωy

(1 + ω)y − 1

)q

= ωy

(1 + ω)y − 1
.

The second equation is

(
(1 + ω)y − 1

)
(ωy)q − (

(1 + ω)y − 1
)q

ωy = 0. (15)

We simplify the first equation as follows:

(
(1 + ω)y − 1 + 1 − x

(1 + ω)y − 1

)q

= (1 + ω)y − 1 + 1 − x

(1 + ω)y − 1
,

(1 − x)q((1 + ω)y − 1
) = (1 − x)

(
(1 + ω)y − 1

)q
. (16)

We use Eq. (15) in (16) to obtain

(1 − x)(ωy)q − (1 − x)qωy = 0, (17)

which we will need later.
Consider the two equations (15) and (16) in PG(2,q3). If we write x = x0 + x1τ + x2τ

2, y = y0 +
y1τ + y2τ

2, and ω = w0 + w1τ + w2τ
2 for xi, yi, wi ∈ GF(q), then simplify and equate coefficients

of powers of τ , we will obtain the equations of six affine quadrics in PG(6,q). We can homogenize
these, and so the points of B in PG(2,q3) correspond to points in PG(6,q) that lie on all six quadrics.
The intersection is not exact though, as we need to consider the case (1 + ω)y − 1 = 0, that is,
y = 1/(1 + ω). The points of PG(2,q3) that satisfy y = 1/(1 + ω) lie on a line �1 that corresponds to
a 3-space Σ1 of PG(6,q). The points on �1 satisfy Eqs. (15) and (16), and so the points of Σ1 will lie
on all six quadrics, that is, all six quadrics will contain Σ1.

We can show that B is the precise intersection of nine quadrics by considering a second represen-
tation of B in PG(2,q3). That is, we repeat the above argument using σ2 from Lemma 2.6. So we have
the affine points of B are the points (x, y,1) satisfying σ−1

2 (x, y,1) ∈ PG(2,q). That is, we require
P = (1 − y,ωy,1 − x) ∈ PG(2,q).

Consider the case x 
= 1. So P ≡ ((1 − y)/(1 − x),ωy/(1 − x),1), and so P ∈ PG(2,q) if and only if

(
1 − y

1 − x

)q

= 1 − y

1 − x
and

(
ωy

1 − x

)q

= ωy

1 − x
.

Rearranging these two equations in PG(2,q3) yields

(1 − y)q(1 − x) − (1 − y)(1 − x)q = 0, (18)

(1 − x)(ωy)q − (1 − x)qωy = 0. (19)

As before, writing x = x0 + x1τ + x2τ
2, y = y0 + y1τ + y2τ

2, and ω = w0 + w1τ + w2τ
2, simplifying,

and equating coefficients of powers of τ yields the equations of six affine quadrics in PG(6,q). These
six quadrics all contain the 3-space Σ2 corresponding to the line �2 of PG(2,q3) with affine equation
x = 1, so B is the residual intersection of these six quadrics.

Putting these two sets of six quadrics together, we have B contained in twelve quadrics. As
the 3-space Σ1 meets the 3-space Σ2 in an affine point corresponding to the point (1, 1

1+ω ,1) of
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PG(2,q3), we have that B is the exact intersection of all twelve quadrics. However, as Eq. (19) is the
same as Eq. (17), B is the exact intersection of nine quadrics in PG(6,q). �

Note that in proving part (d) of the above theorem, we have shown that, in PG(6,q), B is the
(residual) intersection of six quadrics that each contain a common 3-space. This generalizes the
2-dimensional result that a tangent Baer subplane of PG(2,q2) corresponds in PG(4,q) to the (resid-
ual) intersection of two quadrics that contain a common plane (see Vincenti [9], and Quinn and
Casse [8]). The argument in the proof of part (d) above can be generalized to the case of the Bruck–
Bose representation of PG(2,q2) in PG(4,q). In this case, Eqs. (15) and (16) yield four quadrics in
PG(4,q). However, on closer inspection, in this special case the four quadrics collapse into the two
quadrics given by Vincenti. Hence the proof of part (d) generalizes to this case to show that a tangent
Baer subplane corresponds to the residual intersection of two quadrics with a common plane; and to
the exact intersection of three quadrics. Moreover, the proof by Quinn and Casse in [8, Lemma 2.6]
gives a geometric construction of these two quadrics. We note that it is straightforward to generalize
the proof of Quinn and Casse to obtain a geometric construction of the six quadrics of B in PG(6,q).

3. The Bruck–Bose representation of PG(2,qn) in PG(2n,q)

We can generalize all the results for the case n = 3 to the Bruck–Bose representation of PG(2,qn)

in PG(2n,q) for general n � 4. That is, we fully determine the representation of order-q-sublines and
secant and tangent order-q-subplanes of PG(2,qn) in PG(2n,q) for n � 4.

3.1. The t-spreads and t-reguli of PG(2t + 1,q)

A t-spread of PG(2t + 1,q) is a set of qt + 1 t-spaces that partition PG(2t + 1,q). A t-regulus R of
PG(2t + 1,q) is a set of q + 1 mutually disjoint t-spaces with the property that if a line meets three of
the t-spaces in R, then it meets all q + 1 of them. Three mutually disjoint t-spaces in PG(2t +1,q) lie
on a unique t-regulus. A t-spread S is regular if for any three t-spaces in S , the t-regulus containing
them is contained in S . In a regular t-spread, any q + 1 spread elements meeting a line form a
t-regulus.

A regular t-spread of PG(2t + 1,q) has a set of t transversal lines that lie in PG(2t + 1,qt)\PG(2t +
1,q). Embed PG(2t + 1,q) in PG(2t + 1,qt) and let g be a line of PG(2t + 1,qt) disjoint from
PG(2t + 1,q). Let gq, . . . , gqt−1

be the conjugate lines of g . Let P i be a point on g , then the t-space

〈P i, P q
i , . . . , P qt−1

i 〉 meets PG(2t + 1,q) in a t-space. As P i ranges over all the points of g , we get
qt + 1 t-spaces of PG(2t + 1,q) that partition the space. These t-spaces form a regular spread S of
PG(2t +1,q). The lines g , gq, . . . , gqt−1

are called the (conjugate skew) transversal lines of the spread S .
Given a regular t-spread in PG(2t + 1,q), there is a unique set of t conjugate transversal lines in
PG(2t + 1,qt) that generate S in this way. See [7, Section 25.6] for more information on t-reguli and
t-spreads.

3.2. The Bruck–Bose representation

Let Σ∞ be a hyperplane of PG(2n,q) and let S be an (n − 1)-spread of Σ∞ . Consider the fol-
lowing incidence structure: the points of A(S) are the points of PG(2n,q)\Σ∞; the lines of A(S)

are the n-spaces of PG(2n,q)\Σ∞ that contain an element of S ; and incidence in A(S) is induced
by incidence in PG(2n,q). Then the incidence structure A(S) is an affine plane of order qn . We can
complete A(S) to a projective plane P (S) where the points on the line at infinity �∞ have a natural
correspondence to the elements of the (n − 1)-spread S . Further, P (S) is Desarguesian if and only if
S is regular.

It is straightforward to generalize the coordinates from Section 2.2 to PG(2n,q). In this case, τ is
a primitive element of GF(qn) with primitive polynomial

xn − tn−1xn−1 − · · · − t1x − t0.
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We can calculate the transversal lines of the regular (n − 1)-spread S .

Lemma 3.1. Let g be the line of PG(2n,qn) through the points (p0, . . . , pn−1,0, . . . ,0,0), and (0, . . . ,0,

p0, . . . , pn−1,0), where pi = ti+1 + ti+2τ + · · · + tn−1τ
n−2−i − τn−1−i , i = 0, . . . ,n − 2, and pn−1 = −1.

Then g is one of the conjugate skew transversals of the regular (n − 1)-spread S .

We omit the proof which involves induction to generalize the proof of Lemma 2.1.

3.3. Sublines and subplanes of PG(2,qn)

We completely determine the representation of order-q-sublines and secant and tangent order-q-
subplanes of PG(2,qn) in PG(2n,q). As before, an order-q-subplane of PG(2,qn) is a subplane B of
PG(2,qn) of order q. Every line of PG(2,qn) meets B in 0, 1 or q + 1 points; a line of B has q + 1
points and is called an order-q-subline of PG(2,qn). We generalize the results of Section 2.3. As before,
there are six cases to consider, and we completely determine five of them. Three cases are stated in
Theorems 3.2, 3.3, and 3.4. The proofs of these theorems are straightforward generalizations of those
in Section 2.3, so we do not include them here. We provide sketch proofs for the cases a disjoint
order-q-subline and tangent order-q-subplane in Theorems 3.5 and 3.6. As in the n = 3 case, we leave
open the case of the exterior order-q-subplanes.

Theorem 3.2. Consider the translation plane P (S) of order qn defined from an (n − 1)-spread S of a hyper-
plane Σ∞ of PG(2n,q).

(a) A plane of PG(2n,q)\Σ∞ that meets q + 1 elements of S represents an order-q-subplane of P (S) secant
to �∞ .

(b) If P (S) ∼= PG(2,qn), then every order-q-subplane of P (S) that is secant to �∞ is represented by a plane
of PG(2n,q)\Σ∞ that meets q + 1 elements of S .

Theorem 3.3. Consider the translation plane P (S) of order qn defined from an (n − 1)-spread S of a hyper-
plane Σ∞ of PG(2n,q).

(a) A line of PG(2n,q)\Σ∞ represents an order-q-subline of P (S) tangent to �∞ .
(b) If P (S) ∼= PG(2,qn), then every order-q-subline of P (S) tangent to �∞ is represented by a line of

PG(2n,q)\Σ∞ .

Theorem 3.4. Consider the translation plane P (S) of order qn defined from an (n − 1)-spread S of a hyper-
plane Σ∞ of PG(2n,q).

(a) A regulus R of S represents an order-q-subline of �∞ in P (S).
(b) If P (S) ∼= PG(2,qn), then every order-q-subline of �∞ in P (S) is represented by a regulus of S .

We now consider the remaining two cases: an order-q-subline disjoint from �∞ , an order-q-
subplane tangent to �∞ . The results from Section 2.3 do generalize; however, the proofs are much
more complex. We sketch the proofs for this general case.

Theorem 3.5.

(a) Let � be a line of PG(2,qn) and let b be an order-q-subline of � that is disjoint from �∞ . Then, in PG(2n,q),
b corresponds to a normal rational curve in the n-space Σ corresponding to �.

(b) Let Σ be an n-space of PG(2n,q)\Σ∞ about a spread element and let N be a normal rational curve in Σ

that is disjoint from Σ∞ . Then N corresponds to an order-q-subline of PG(2,qn) if and only if, in the
extension PG(2n,qn), N meets the conjugate transversal lines g, gq, . . . , gqn−1

of the spread S .
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Proof (Sketch only). We generalize the proof of Theorem 2.5. Using the notation of that proof, we can
write a point Pd = (d,d,d+ω) of the subline �ω as Pd = (α,α, c) = (d+ωq) · · · (d+ωqn−1

)(d,d,d+ω).
Now c ∈ GF(q), and c is a polynomial in d of degree n. We can write α = a0 + a1τ + · · · + an−1τ

n−1

for ai ∈ GF(q), where the ai are polynomials in d of degree at most n, and a0 has degree n. Hence we
can find a homography that maps the points of PG(2n,q) corresponding to the points on �ω to the
points {(dn,dn−1, . . . ,d,1) | d ∈ GF(q) ∪ {∞}}. That is, �ω corresponds to a normal rational curve in an
n-space of PG(2n,q).

To prove part (b), we show that P −ω = (−1)nαω(p0, . . . , pn−1, p0, . . . , pn−1,0) where pi is defined
in Lemma 3.1 and αω satisfies

(
ωq − ω

)(
ωq2 − ω

) · · · (ωqn−1 − ω
) = (

τ q − τ
)(

τ q2 − τ
) · · · (τ qn−1 − τ

)
αω.

In a generalization of Theorem 2.5 we write

(
d + ωq)(d + ωq2) · · · (d + ωqn−1) = z0 + z1τ + · · · + zn−1τ

n−1,

where zi = zi(d) : GF(qn) → GF(qn) and zi(d) ∈ GF(q) for d ∈ GF(q). We apply the field automorphism
x �→ xq a further n − 1 times to obtain a total of n equations, and then substitute d = −ω and arrive
at the following n equations:

(
τ q − τ

)(
τ q2 − τ

) · · · (τ qn−1 − τ
) = A0 + A1τ + · · · + An−1τ

n−1, (20)

0 = A0 + A1τ
q + · · · + An−1τ

(n−1)q, (21)

...

0 = A0 + A1τ
q + · · · + An−1τ

(n−1)qn−1
,

where the Ai have the same properties as the zi earlier. Now

τ
(
τ q − τ

)(
τ q2 − τ

) · · · (τ qn−1−τ
)

=
(

T ′

n − 1

)
τ + · · · + (−1)i−1

(
T ′

n − i

)
+ · · · + (−1)n−2

(
T ′

1

)
τn−1 + (−1)n−1τn

where T ′ = {τ q, τ q2
, . . . , τ qn−1 }, T = T ′ ∪ {τ } and for example

(T
k

)
is the sum of the products of all the

elements in each k subset of T , e.g.

(
T

1

)
= τ + τ q + · · · + τ qn−1

,

(
T

n

)
= ττ q · · ·τ qn−1

.

As (x − τ )(x − τ q) · · · (x − τ qn−1
) = xn − tn−1τ

n−1 − · · · − t1x − t0, it follows that

tk = (−1)n−k+1
(

T

n − k

)
and

(
T

k + 1

)
= τ

(
T ′

k

)
+

(
T ′

k + 1

)

for 0 � k � n − 1. We show by backward induction i = n,n − 1, . . . ,2,1 that pi = (−1)n+i−1
( T ′

n−i

)
by

using above relationships, together with the relationship tk−1 + pk−1τ = pk−2. This will be enough to
prove that (20) holds for d = −ω.

For (21), note that (−1)nτ i+1 pi = −t0 − t1τ − · · · − tiτ
i for 0 � i � n − 1 and then show that

RHS (21) × τn = 0.
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So we have shown that P −ω ∈ g . In a similar manner to the case n = 3, we show that P −ωq =
(P −ω)q and so P −ωq ∈ gq and so on.

Hence we can conclude that the normal rational curve meets g and all the transversals of S . Con-
versely, let Q 1, Q 2, Q 3 be non-collinear points of Σ\Σ∞ , and let P i = gqi−1 ∩ Σ . Then P 1, . . . , P n ,
Q 1, Q 2, Q 3 are a set of n + 3 points in an n-space Σ , no n + 1 in an (n − 1)-space, and so lie in
a unique normal rational curve. Hence the counting argument in the proof of Theorem 2.5 general-
izes. �
Theorem 3.6. Let B be an order-q-subplane of PG(2,qn) that is tangent to �∞ in the point T . Let ΣT be the
spread element corresponding to T . Then B determines a set B of points in PG(2n,q) (where the affine points
of B correspond to the affine points of B) such that:

(a) B is a ruled surface with normal rational curve directrix C contained in the (n − 1)-space ΣT ∈ S , and
normal rational curve directrix N contained in an n-space Σ that meets Σ∞ in a spread element (distinct
from ΣT ). The points of B lie on q + 1 pairwise disjoint generator lines joining C to N .

(b) The q + 1 generator lines of B joining C to N are determined by a projectivity from C to N .
(c) When we extend B from PG(2n,q) to PG(2n,qn), it contains the (conjugate skew) transversal lines

g, gq, . . . , gqn−1
of the spread S .

(d) B is the intersection of 3n quadrics in PG(2n,q).

Proof. We generalize the proof of Theorem 2.7. Using the notation from that proof, in this more
general setting, we have that the points Q d lie in a spread element ΣT , and have coordinates that are
polynomials in d of degree n − 1. Hence they can be mapped to a normal rational curve in an (n − 1)-
space. So parts (a) and (b) hold. Note that we can naturally extend B to B in PG(2n,qn) as follows.
We extend the normal rational curves C and N in PG(2n,q) to C and N in PG(2n,qn) (respectively),
and the projectivity C → N is extended to C → N , then B is extended to B in PG(2n,qn). Part (c)
follows by computing the coordinates of Q −ω to be Q −ω = (p0, . . . , pn−1,0, . . . ,0,0) where pi are
defined in Lemma 3.1, hence Q −ω lies on g , and so B contains g . Finally the proof of Theorem 2.7(d)
generalizes immediately to show that B is the intersection of 3n quadrics in PG(2n,q). Hence B is an
algebraic variety. �
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